Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Quasiconformal mappings). Showing records 1 – 9 of 9 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Massey University

1. Dillon, Samuel Adam Kuakini. Resolving decomposition by blowing up points and quasiconformal harmonic extensions.

Degree: PhD, Mathematics, 2012, Massey University

 In this thesis we consider two problems regarding mappings between various two-dimensional spaces with some constraint on their distortion. The first question concerns the use… (more)

Subjects/Keywords: Mappings (Mathematics); Homeomorphism; Quasiconformal mappings; Differential equations; Decomposition resolution; Hyperbolic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dillon, S. A. K. (2012). Resolving decomposition by blowing up points and quasiconformal harmonic extensions. (Doctoral Dissertation). Massey University. Retrieved from http://hdl.handle.net/10179/4267

Chicago Manual of Style (16th Edition):

Dillon, Samuel Adam Kuakini. “Resolving decomposition by blowing up points and quasiconformal harmonic extensions.” 2012. Doctoral Dissertation, Massey University. Accessed November 29, 2020. http://hdl.handle.net/10179/4267.

MLA Handbook (7th Edition):

Dillon, Samuel Adam Kuakini. “Resolving decomposition by blowing up points and quasiconformal harmonic extensions.” 2012. Web. 29 Nov 2020.

Vancouver:

Dillon SAK. Resolving decomposition by blowing up points and quasiconformal harmonic extensions. [Internet] [Doctoral dissertation]. Massey University; 2012. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10179/4267.

Council of Science Editors:

Dillon SAK. Resolving decomposition by blowing up points and quasiconformal harmonic extensions. [Doctoral Dissertation]. Massey University; 2012. Available from: http://hdl.handle.net/10179/4267


Massey University

2. Yao, Cong. Minimisation of mean exponential distortions and Teichmüller theory.

Degree: PhD, Mathematics, 2019, Massey University

 This thesis studies the Cauchy boundary value problem of minimising exponential integral averages of mappings of finite distortion. Direct methods in calculus of variations provide… (more)

Subjects/Keywords: Boundary value problems; Cauchy problem; Teichmüller spaces; Quasiconformal mappings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yao, C. (2019). Minimisation of mean exponential distortions and Teichmüller theory. (Doctoral Dissertation). Massey University. Retrieved from http://hdl.handle.net/10179/15703

Chicago Manual of Style (16th Edition):

Yao, Cong. “Minimisation of mean exponential distortions and Teichmüller theory.” 2019. Doctoral Dissertation, Massey University. Accessed November 29, 2020. http://hdl.handle.net/10179/15703.

MLA Handbook (7th Edition):

Yao, Cong. “Minimisation of mean exponential distortions and Teichmüller theory.” 2019. Web. 29 Nov 2020.

Vancouver:

Yao C. Minimisation of mean exponential distortions and Teichmüller theory. [Internet] [Doctoral dissertation]. Massey University; 2019. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10179/15703.

Council of Science Editors:

Yao C. Minimisation of mean exponential distortions and Teichmüller theory. [Doctoral Dissertation]. Massey University; 2019. Available from: http://hdl.handle.net/10179/15703


University of Michigan

3. Wildrick, Kevin Michael. Quasisymmetric parameterizations of two -dimensional metric spaces.

Degree: PhD, Pure Sciences, 2007, University of Michigan

 The classical Uniformization Theorem states that every simply connected Riemann surface is conformally equivalent to one of the disk, the plane, and the sphere, each… (more)

Subjects/Keywords: Quasiconformal Mappings; Quasisymmetric Parameterizations; Two-dimensional Metric Spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wildrick, K. M. (2007). Quasisymmetric parameterizations of two -dimensional metric spaces. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126854

Chicago Manual of Style (16th Edition):

Wildrick, Kevin Michael. “Quasisymmetric parameterizations of two -dimensional metric spaces.” 2007. Doctoral Dissertation, University of Michigan. Accessed November 29, 2020. http://hdl.handle.net/2027.42/126854.

MLA Handbook (7th Edition):

Wildrick, Kevin Michael. “Quasisymmetric parameterizations of two -dimensional metric spaces.” 2007. Web. 29 Nov 2020.

Vancouver:

Wildrick KM. Quasisymmetric parameterizations of two -dimensional metric spaces. [Internet] [Doctoral dissertation]. University of Michigan; 2007. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2027.42/126854.

Council of Science Editors:

Wildrick KM. Quasisymmetric parameterizations of two -dimensional metric spaces. [Doctoral Dissertation]. University of Michigan; 2007. Available from: http://hdl.handle.net/2027.42/126854


University of Michigan

4. Martin, Gaven John. The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic).

Degree: PhD, Pure Sciences, 1985, University of Michigan

 This thesis is a study of three topics, each of which describes an aspect of geometry relating to the general theory of quasiconformal mappings. The… (more)

Subjects/Keywords: Geodesic; Geometry; Lipschitz; Mappings; Quasiconformal; Quasihyperbolic; Uniform

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martin, G. J. (1985). The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/127813

Chicago Manual of Style (16th Edition):

Martin, Gaven John. “The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic).” 1985. Doctoral Dissertation, University of Michigan. Accessed November 29, 2020. http://hdl.handle.net/2027.42/127813.

MLA Handbook (7th Edition):

Martin, Gaven John. “The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic).” 1985. Web. 29 Nov 2020.

Vancouver:

Martin GJ. The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic). [Internet] [Doctoral dissertation]. University of Michigan; 1985. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2027.42/127813.

Council of Science Editors:

Martin GJ. The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic). [Doctoral Dissertation]. University of Michigan; 1985. Available from: http://hdl.handle.net/2027.42/127813


University of Oklahoma

5. Bhatia, Kavita Ganeshoas. Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary.

Degree: PhD, Department of Mathematics, 1997, University of Oklahoma

 Let Gρ denote the Kleinian group with presentation< T1, Ti, Eρ, E\mid[ T1, Ti]=1, [ Eρ, E]=1>.Let Ω(Gρ) be its region of discontinuity, Λ(Gρ) be… (more)

Subjects/Keywords: Topology.; Kleinian groups.; Manifolds (Mathematics); Mathematics.; Quasiconformal mappings.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bhatia, K. G. (1997). Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/5535

Chicago Manual of Style (16th Edition):

Bhatia, Kavita Ganeshoas. “Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary.” 1997. Doctoral Dissertation, University of Oklahoma. Accessed November 29, 2020. http://hdl.handle.net/11244/5535.

MLA Handbook (7th Edition):

Bhatia, Kavita Ganeshoas. “Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary.” 1997. Web. 29 Nov 2020.

Vancouver:

Bhatia KG. Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary. [Internet] [Doctoral dissertation]. University of Oklahoma; 1997. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/11244/5535.

Council of Science Editors:

Bhatia KG. Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary. [Doctoral Dissertation]. University of Oklahoma; 1997. Available from: http://hdl.handle.net/11244/5535

6. Medwid, Mark Edward. Rigidity of Quasiconformal Maps on Carnot Groups.

Degree: PhD, Mathematics, 2017, Bowling Green State University

Quasiconformal mappings were first utilized by Grotzsch in the 1920’s and then later named by Ahlfors in the 1930’s. The conformal mappings one studies in… (more)

Subjects/Keywords: Mathematics; quasiconformal mappings; rigidity; Carnot groups; Lie groups; Lie algebras; quasisymmetric mappings; analysis on metric spaces

…theory that the author was first exposed to the study of quasiconformal mappings. Details for… …x29;. Since then, the theory of quasiconformal mappings has been quite well-studied. The… …about quasiconformal mappings from various perspectives. Definition 2.2.1. (Kapovich… …looking at the nice properties of quasiconformal mappings, we will first look at a few simple… …only if it is 1-quasiconformal. (b) The mappings (x, y) 7! ( x, y… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Medwid, M. E. (2017). Rigidity of Quasiconformal Maps on Carnot Groups. (Doctoral Dissertation). Bowling Green State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104

Chicago Manual of Style (16th Edition):

Medwid, Mark Edward. “Rigidity of Quasiconformal Maps on Carnot Groups.” 2017. Doctoral Dissertation, Bowling Green State University. Accessed November 29, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104.

MLA Handbook (7th Edition):

Medwid, Mark Edward. “Rigidity of Quasiconformal Maps on Carnot Groups.” 2017. Web. 29 Nov 2020.

Vancouver:

Medwid ME. Rigidity of Quasiconformal Maps on Carnot Groups. [Internet] [Doctoral dissertation]. Bowling Green State University; 2017. [cited 2020 Nov 29]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104.

Council of Science Editors:

Medwid ME. Rigidity of Quasiconformal Maps on Carnot Groups. [Doctoral Dissertation]. Bowling Green State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104

7. Lytle, George H. APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM.

Degree: 2019, University of Kentucky

 In 2014, Astala, Päivärinta, Reyes, and Siltanen conducted numerical experiments reconstructing a piecewise continuous conductivity. The algorithm of the shortcut method is based on the… (more)

Subjects/Keywords: inverse problem; Calderón problem; Beltrami equation; Complex Geometric Optics solutions; quasiconformal mappings; Analysis; Partial Differential Equations

…theory of quasiconformal maps to conclude that ϕ exists and is a homeomorphism. For our class… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lytle, G. H. (2019). APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/61

Chicago Manual of Style (16th Edition):

Lytle, George H. “APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM.” 2019. Doctoral Dissertation, University of Kentucky. Accessed November 29, 2020. https://uknowledge.uky.edu/math_etds/61.

MLA Handbook (7th Edition):

Lytle, George H. “APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM.” 2019. Web. 29 Nov 2020.

Vancouver:

Lytle GH. APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM. [Internet] [Doctoral dissertation]. University of Kentucky; 2019. [cited 2020 Nov 29]. Available from: https://uknowledge.uky.edu/math_etds/61.

Council of Science Editors:

Lytle GH. APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM. [Doctoral Dissertation]. University of Kentucky; 2019. Available from: https://uknowledge.uky.edu/math_etds/61

8. Platis, Ioannis. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.

Degree: 2000, University of Crete (UOC); Πανεπιστήμιο Κρήτης

 Μελετάται η γεωμετρία του χώρου των Quasi-fuchsian παραμορφώσεων QF(S) μιας επιφάνειας S. Η διατριβή χωρίζεται σε δύο μέρη. Στο πρώτο μέρος εξετάζεται η μιγαδική συμπλεκτική… (more)

Subjects/Keywords: Ομάδες Klein; Quasiconformal απεικονίσεις; Riemann επιφάνειες; Teichmuller χώροι; Quasifuchsian χώροι; Μιγαδική συμπλεκτική γεωμετρία; Weil-Peterson γεωμετρία; Kleinian groups; Quasiconformal mappings; Riemann surfaces; Teichmuller space; Weil-Petersson geometry; Quasifuchsian space; Complex symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Platis, I. (2000). Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. (Thesis). University of Crete (UOC); Πανεπιστήμιο Κρήτης. Retrieved from http://hdl.handle.net/10442/hedi/31904

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Platis, Ioannis. “Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.” 2000. Thesis, University of Crete (UOC); Πανεπιστήμιο Κρήτης. Accessed November 29, 2020. http://hdl.handle.net/10442/hedi/31904.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Platis, Ioannis. “Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.” 2000. Web. 29 Nov 2020.

Vancouver:

Platis I. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. [Internet] [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10442/hedi/31904.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Platis I. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. Available from: http://hdl.handle.net/10442/hedi/31904

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

9. Prats Soler, Martí. Singular integral operators on sobolev spaces on domains and quasiconformal mappings.

Degree: Departament de Matemàtiques, 2015, Universitat Autònoma de Barcelona

 In this dissertation some new results on the boundedness of Calderón-Zygmund operators on Sobolev spaces on domains in Rd. First a T(P)-theorem is obtained which… (more)

Subjects/Keywords: Operadors de Calderón-Zygmund; Calderón-Zygmund operators; Operadores de Calderón-Zygmund; Aplicacions quasiconformes; Quasiconformal mappings; Apliaciones casiconformes; Espais de Sobolev; Sobolev spaces; Espacios de Sobolev; Ciències Experimentals; 517

…application to quasiconformal mappings Some tools . . . . . . . . . . . . . . . . . . . A Fredholm… …application to quasiconformal mappings Let µ P L8 be compactly supported in C with k : }µ}… …almost every z P C. Such a function f is said to be a K-quasiconformal mapping if it is a… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Prats Soler, M. (2015). Singular integral operators on sobolev spaces on domains and quasiconformal mappings. (Thesis). Universitat Autònoma de Barcelona. Retrieved from http://hdl.handle.net/10803/314193

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Prats Soler, Martí. “Singular integral operators on sobolev spaces on domains and quasiconformal mappings.” 2015. Thesis, Universitat Autònoma de Barcelona. Accessed November 29, 2020. http://hdl.handle.net/10803/314193.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Prats Soler, Martí. “Singular integral operators on sobolev spaces on domains and quasiconformal mappings.” 2015. Web. 29 Nov 2020.

Vancouver:

Prats Soler M. Singular integral operators on sobolev spaces on domains and quasiconformal mappings. [Internet] [Thesis]. Universitat Autònoma de Barcelona; 2015. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10803/314193.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Prats Soler M. Singular integral operators on sobolev spaces on domains and quasiconformal mappings. [Thesis]. Universitat Autònoma de Barcelona; 2015. Available from: http://hdl.handle.net/10803/314193

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.