Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Quasiconformal mappings)`

.
Showing records 1 – 9 of
9 total matches.

▼ Search Limiters

Massey University

1.
Dillon, Samuel Adam Kuakini.
Resolving decomposition by blowing up points and *quasiconformal* harmonic extensions.

Degree: PhD, Mathematics, 2012, Massey University

URL: http://hdl.handle.net/10179/4267

► In this thesis we consider two problems regarding *mappings* between various two-dimensional spaces with some constraint on their distortion. The first question concerns the use…
(more)

Subjects/Keywords: Mappings (Mathematics); Homeomorphism; Quasiconformal mappings; Differential equations; Decomposition resolution; Hyperbolic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dillon, S. A. K. (2012). Resolving decomposition by blowing up points and quasiconformal harmonic extensions. (Doctoral Dissertation). Massey University. Retrieved from http://hdl.handle.net/10179/4267

Chicago Manual of Style (16^{th} Edition):

Dillon, Samuel Adam Kuakini. “Resolving decomposition by blowing up points and quasiconformal harmonic extensions.” 2012. Doctoral Dissertation, Massey University. Accessed November 29, 2020. http://hdl.handle.net/10179/4267.

MLA Handbook (7^{th} Edition):

Dillon, Samuel Adam Kuakini. “Resolving decomposition by blowing up points and quasiconformal harmonic extensions.” 2012. Web. 29 Nov 2020.

Vancouver:

Dillon SAK. Resolving decomposition by blowing up points and quasiconformal harmonic extensions. [Internet] [Doctoral dissertation]. Massey University; 2012. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10179/4267.

Council of Science Editors:

Dillon SAK. Resolving decomposition by blowing up points and quasiconformal harmonic extensions. [Doctoral Dissertation]. Massey University; 2012. Available from: http://hdl.handle.net/10179/4267

Massey University

2. Yao, Cong. Minimisation of mean exponential distortions and Teichmüller theory.

Degree: PhD, Mathematics, 2019, Massey University

URL: http://hdl.handle.net/10179/15703

► This thesis studies the Cauchy boundary value problem of minimising exponential integral averages of *mappings* of ﬁnite distortion. Direct methods in calculus of variations provide…
(more)

Subjects/Keywords: Boundary value problems; Cauchy problem; Teichmüller spaces; Quasiconformal mappings

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yao, C. (2019). Minimisation of mean exponential distortions and Teichmüller theory. (Doctoral Dissertation). Massey University. Retrieved from http://hdl.handle.net/10179/15703

Chicago Manual of Style (16^{th} Edition):

Yao, Cong. “Minimisation of mean exponential distortions and Teichmüller theory.” 2019. Doctoral Dissertation, Massey University. Accessed November 29, 2020. http://hdl.handle.net/10179/15703.

MLA Handbook (7^{th} Edition):

Yao, Cong. “Minimisation of mean exponential distortions and Teichmüller theory.” 2019. Web. 29 Nov 2020.

Vancouver:

Yao C. Minimisation of mean exponential distortions and Teichmüller theory. [Internet] [Doctoral dissertation]. Massey University; 2019. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10179/15703.

Council of Science Editors:

Yao C. Minimisation of mean exponential distortions and Teichmüller theory. [Doctoral Dissertation]. Massey University; 2019. Available from: http://hdl.handle.net/10179/15703

University of Michigan

3. Wildrick, Kevin Michael. Quasisymmetric parameterizations of two -dimensional metric spaces.

Degree: PhD, Pure Sciences, 2007, University of Michigan

URL: http://hdl.handle.net/2027.42/126854

► The classical Uniformization Theorem states that every simply connected Riemann surface is conformally equivalent to one of the disk, the plane, and the sphere, each…
(more)

Subjects/Keywords: Quasiconformal Mappings; Quasisymmetric Parameterizations; Two-dimensional Metric Spaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wildrick, K. M. (2007). Quasisymmetric parameterizations of two -dimensional metric spaces. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126854

Chicago Manual of Style (16^{th} Edition):

Wildrick, Kevin Michael. “Quasisymmetric parameterizations of two -dimensional metric spaces.” 2007. Doctoral Dissertation, University of Michigan. Accessed November 29, 2020. http://hdl.handle.net/2027.42/126854.

MLA Handbook (7^{th} Edition):

Wildrick, Kevin Michael. “Quasisymmetric parameterizations of two -dimensional metric spaces.” 2007. Web. 29 Nov 2020.

Vancouver:

Wildrick KM. Quasisymmetric parameterizations of two -dimensional metric spaces. [Internet] [Doctoral dissertation]. University of Michigan; 2007. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2027.42/126854.

Council of Science Editors:

Wildrick KM. Quasisymmetric parameterizations of two -dimensional metric spaces. [Doctoral Dissertation]. University of Michigan; 2007. Available from: http://hdl.handle.net/2027.42/126854

University of Michigan

4.
Martin, Gaven John.
The Geometry Of *Quasiconformal* *Mappings* (lipschitz, Geodesic, Uniform, Quasihyperbolic).

Degree: PhD, Pure Sciences, 1985, University of Michigan

URL: http://hdl.handle.net/2027.42/127813

► This thesis is a study of three topics, each of which describes an aspect of geometry relating to the general theory of *quasiconformal* *mappings*. The…
(more)

Subjects/Keywords: Geodesic; Geometry; Lipschitz; Mappings; Quasiconformal; Quasihyperbolic; Uniform

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Martin, G. J. (1985). The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/127813

Chicago Manual of Style (16^{th} Edition):

Martin, Gaven John. “The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic).” 1985. Doctoral Dissertation, University of Michigan. Accessed November 29, 2020. http://hdl.handle.net/2027.42/127813.

MLA Handbook (7^{th} Edition):

Martin, Gaven John. “The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic).” 1985. Web. 29 Nov 2020.

Vancouver:

Martin GJ. The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic). [Internet] [Doctoral dissertation]. University of Michigan; 1985. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2027.42/127813.

Council of Science Editors:

Martin GJ. The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic). [Doctoral Dissertation]. University of Michigan; 1985. Available from: http://hdl.handle.net/2027.42/127813

University of Oklahoma

5. Bhatia, Kavita Ganeshoas. Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary.

Degree: PhD, Department of Mathematics, 1997, University of Oklahoma

URL: http://hdl.handle.net/11244/5535

► Let G_{ρ} denote the Kleinian group with presentation< T_{1}, T_{i}, E_{ρ}, E_{iρ}\mid[ T_{1}, T_{i}]=1, [ E_{ρ}, E_{iρ}]=1>.Let Ω(G_{ρ}) be its region of discontinuity, Λ(G_{ρ}) be…
(more)

Subjects/Keywords: Topology.; Kleinian groups.; Manifolds (Mathematics); Mathematics.; Quasiconformal mappings.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bhatia, K. G. (1997). Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/5535

Chicago Manual of Style (16^{th} Edition):

Bhatia, Kavita Ganeshoas. “Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary.” 1997. Doctoral Dissertation, University of Oklahoma. Accessed November 29, 2020. http://hdl.handle.net/11244/5535.

MLA Handbook (7^{th} Edition):

Bhatia, Kavita Ganeshoas. “Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary.” 1997. Web. 29 Nov 2020.

Vancouver:

Bhatia KG. Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary. [Internet] [Doctoral dissertation]. University of Oklahoma; 1997. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/11244/5535.

Council of Science Editors:

Bhatia KG. Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary. [Doctoral Dissertation]. University of Oklahoma; 1997. Available from: http://hdl.handle.net/11244/5535

6.
Medwid, Mark Edward.
Rigidity of *Quasiconformal* Maps on Carnot Groups.

Degree: PhD, Mathematics, 2017, Bowling Green State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104

► *Quasiconformal* *mappings* were first utilized by Grotzsch in the 1920’s and then later named by Ahlfors in the 1930’s. The conformal *mappings* one studies in…
(more)

Subjects/Keywords: Mathematics; quasiconformal mappings; rigidity; Carnot groups; Lie groups; Lie algebras; quasisymmetric mappings; analysis on metric spaces

…theory that the author was first exposed to the study of
*quasiconformal* *mappings*. Details for… …x29;. Since then,
the theory of *quasiconformal* *mappings* has been quite well-studied. The… …about *quasiconformal* *mappings* from various perspectives.
Definition 2.2.1. (Kapovich… …looking at the nice properties of *quasiconformal* *mappings*, we will first look at a few simple… …only if it is 1-*quasiconformal*.
(b) The *mappings* (x, y) 7! ( x, y…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Medwid, M. E. (2017). Rigidity of Quasiconformal Maps on Carnot Groups. (Doctoral Dissertation). Bowling Green State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104

Chicago Manual of Style (16^{th} Edition):

Medwid, Mark Edward. “Rigidity of Quasiconformal Maps on Carnot Groups.” 2017. Doctoral Dissertation, Bowling Green State University. Accessed November 29, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104.

MLA Handbook (7^{th} Edition):

Medwid, Mark Edward. “Rigidity of Quasiconformal Maps on Carnot Groups.” 2017. Web. 29 Nov 2020.

Vancouver:

Medwid ME. Rigidity of Quasiconformal Maps on Carnot Groups. [Internet] [Doctoral dissertation]. Bowling Green State University; 2017. [cited 2020 Nov 29]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104.

Council of Science Editors:

Medwid ME. Rigidity of Quasiconformal Maps on Carnot Groups. [Doctoral Dissertation]. Bowling Green State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104

7. Lytle, George H. APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM.

Degree: 2019, University of Kentucky

URL: https://uknowledge.uky.edu/math_etds/61

► In 2014, Astala, Päivärinta, Reyes, and Siltanen conducted numerical experiments reconstructing a piecewise continuous conductivity. The algorithm of the shortcut method is based on the…
(more)

Subjects/Keywords: inverse problem; Calderón problem; Beltrami equation; Complex Geometric Optics solutions; quasiconformal mappings; Analysis; Partial Differential Equations

…theory of *quasiconformal* maps to conclude that
ϕ exists and is a homeomorphism. For our class…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lytle, G. H. (2019). APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/61

Chicago Manual of Style (16^{th} Edition):

Lytle, George H. “APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM.” 2019. Doctoral Dissertation, University of Kentucky. Accessed November 29, 2020. https://uknowledge.uky.edu/math_etds/61.

MLA Handbook (7^{th} Edition):

Lytle, George H. “APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM.” 2019. Web. 29 Nov 2020.

Vancouver:

Lytle GH. APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM. [Internet] [Doctoral dissertation]. University of Kentucky; 2019. [cited 2020 Nov 29]. Available from: https://uknowledge.uky.edu/math_etds/61.

Council of Science Editors:

Lytle GH. APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM. [Doctoral Dissertation]. University of Kentucky; 2019. Available from: https://uknowledge.uky.edu/math_etds/61

8. Platis, Ioannis. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.

Degree: 2000, University of Crete (UOC); Πανεπιστήμιο Κρήτης

URL: http://hdl.handle.net/10442/hedi/31904

► Μελετάται η γεωμετρία του χώρου των Quasi-fuchsian παραμορφώσεων QF(S) μιας επιφάνειας S. Η διατριβή χωρίζεται σε δύο μέρη. Στο πρώτο μέρος εξετάζεται η μιγαδική συμπλεκτική…
(more)

Subjects/Keywords: Ομάδες Klein; Quasiconformal απεικονίσεις; Riemann επιφάνειες; Teichmuller χώροι; Quasifuchsian χώροι; Μιγαδική συμπλεκτική γεωμετρία; Weil-Peterson γεωμετρία; Kleinian groups; Quasiconformal mappings; Riemann surfaces; Teichmuller space; Weil-Petersson geometry; Quasifuchsian space; Complex symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Platis, I. (2000). Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. (Thesis). University of Crete (UOC); Πανεπιστήμιο Κρήτης. Retrieved from http://hdl.handle.net/10442/hedi/31904

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Platis, Ioannis. “Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.” 2000. Thesis, University of Crete (UOC); Πανεπιστήμιο Κρήτης. Accessed November 29, 2020. http://hdl.handle.net/10442/hedi/31904.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Platis, Ioannis. “Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.” 2000. Web. 29 Nov 2020.

Vancouver:

Platis I. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. [Internet] [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10442/hedi/31904.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Platis I. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. Available from: http://hdl.handle.net/10442/hedi/31904

Not specified: Masters Thesis or Doctoral Dissertation

9.
Prats Soler, Martí.
Singular integral operators on sobolev spaces on domains and *quasiconformal* * mappings*.

Degree: Departament de Matemàtiques, 2015, Universitat Autònoma de Barcelona

URL: http://hdl.handle.net/10803/314193

► In this dissertation some new results on the boundedness of Calderón-Zygmund operators on Sobolev spaces on domains in Rd. First a T(P)-theorem is obtained which…
(more)

Subjects/Keywords: Operadors de Calderón-Zygmund; Calderón-Zygmund operators; Operadores de Calderón-Zygmund; Aplicacions quasiconformes; Quasiconformal mappings; Apliaciones casiconformes; Espais de Sobolev; Sobolev spaces; Espacios de Sobolev; Ciències Experimentals; 517

…application to *quasiconformal* *mappings*
Some tools . . . . . . . . . . . . . . . . . . .
A Fredholm… …application to *quasiconformal* *mappings*
Let µ P L8 be compactly supported in C with k : }µ}… …almost every z P C. Such a function f is said
to be a K-*quasiconformal*
mapping if it is a…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Prats Soler, M. (2015). Singular integral operators on sobolev spaces on domains and quasiconformal mappings. (Thesis). Universitat Autònoma de Barcelona. Retrieved from http://hdl.handle.net/10803/314193

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Prats Soler, Martí. “Singular integral operators on sobolev spaces on domains and quasiconformal mappings.” 2015. Thesis, Universitat Autònoma de Barcelona. Accessed November 29, 2020. http://hdl.handle.net/10803/314193.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Prats Soler, Martí. “Singular integral operators on sobolev spaces on domains and quasiconformal mappings.” 2015. Web. 29 Nov 2020.

Vancouver:

Prats Soler M. Singular integral operators on sobolev spaces on domains and quasiconformal mappings. [Internet] [Thesis]. Universitat Autònoma de Barcelona; 2015. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10803/314193.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Prats Soler M. Singular integral operators on sobolev spaces on domains and quasiconformal mappings. [Thesis]. Universitat Autònoma de Barcelona; 2015. Available from: http://hdl.handle.net/10803/314193

Not specified: Masters Thesis or Doctoral Dissertation