Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Quasiconformal )`

.
Showing records 1 – 21 of
21 total matches.

▼ Search Limiters

University of Illinois – Chicago

1.
Austin, Alex D.
Logarithmic Potentials and *Quasiconformal* Flows on the Heisenberg Group.

Degree: 2016, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/21284

► In a first contribution to the *quasiconformal* Jacobian problem outside the Euclidean setting, we show that if the total variation of the measure associated to…
(more)

Subjects/Keywords: quasiconformal Jacobian problem; logarithmic potential; Heisenberg group

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Austin, A. D. (2016). Logarithmic Potentials and Quasiconformal Flows on the Heisenberg Group. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/21284

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Austin, Alex D. “Logarithmic Potentials and Quasiconformal Flows on the Heisenberg Group.” 2016. Thesis, University of Illinois – Chicago. Accessed December 03, 2020. http://hdl.handle.net/10027/21284.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Austin, Alex D. “Logarithmic Potentials and Quasiconformal Flows on the Heisenberg Group.” 2016. Web. 03 Dec 2020.

Vancouver:

Austin AD. Logarithmic Potentials and Quasiconformal Flows on the Heisenberg Group. [Internet] [Thesis]. University of Illinois – Chicago; 2016. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10027/21284.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Austin AD. Logarithmic Potentials and Quasiconformal Flows on the Heisenberg Group. [Thesis]. University of Illinois – Chicago; 2016. Available from: http://hdl.handle.net/10027/21284

Not specified: Masters Thesis or Doctoral Dissertation

UCLA

2. Kinneberg, Kyle Edward. A coarse entropy-rigidity theorem and discrete length-volume inequalities.

Degree: Mathematics, 2014, UCLA

URL: http://www.escholarship.org/uc/item/3c04z060

► In [5], M. Bonk and B. Kleiner proved a rigidity theorem for expanding quasi-M"obius group actions on Ahlfors n-regular metric spaces with topological dimension n.…
(more)

Subjects/Keywords: Mathematics; Theoretical mathematics; Discrete geometry; Hyperbolic groups; Quasiconformal geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kinneberg, K. E. (2014). A coarse entropy-rigidity theorem and discrete length-volume inequalities. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/3c04z060

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kinneberg, Kyle Edward. “A coarse entropy-rigidity theorem and discrete length-volume inequalities.” 2014. Thesis, UCLA. Accessed December 03, 2020. http://www.escholarship.org/uc/item/3c04z060.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kinneberg, Kyle Edward. “A coarse entropy-rigidity theorem and discrete length-volume inequalities.” 2014. Web. 03 Dec 2020.

Vancouver:

Kinneberg KE. A coarse entropy-rigidity theorem and discrete length-volume inequalities. [Internet] [Thesis]. UCLA; 2014. [cited 2020 Dec 03]. Available from: http://www.escholarship.org/uc/item/3c04z060.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kinneberg KE. A coarse entropy-rigidity theorem and discrete length-volume inequalities. [Thesis]. UCLA; 2014. Available from: http://www.escholarship.org/uc/item/3c04z060

Not specified: Masters Thesis or Doctoral Dissertation

Penn State University

3. Govil, Karan. Algebraic Aspects of Higher Spin Symmetry.

Degree: 2015, Penn State University

URL: https://submit-etda.libraries.psu.edu/catalog/26000

► Massless conformal scalar fields in four-dimensional and six-dimensional Minkowski space-time correspond to minimal unitary representations of SO(4,2) (isomorphic to SU(2,2)) and SO(6,2) (isomorphic to SO*(8)),…
(more)

Subjects/Keywords: Higher spin algebra; AdS/CFT correspondence; Quasiconformal; Minimal representation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Govil, K. (2015). Algebraic Aspects of Higher Spin Symmetry. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/26000

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Govil, Karan. “Algebraic Aspects of Higher Spin Symmetry.” 2015. Thesis, Penn State University. Accessed December 03, 2020. https://submit-etda.libraries.psu.edu/catalog/26000.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Govil, Karan. “Algebraic Aspects of Higher Spin Symmetry.” 2015. Web. 03 Dec 2020.

Vancouver:

Govil K. Algebraic Aspects of Higher Spin Symmetry. [Internet] [Thesis]. Penn State University; 2015. [cited 2020 Dec 03]. Available from: https://submit-etda.libraries.psu.edu/catalog/26000.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Govil K. Algebraic Aspects of Higher Spin Symmetry. [Thesis]. Penn State University; 2015. Available from: https://submit-etda.libraries.psu.edu/catalog/26000

Not specified: Masters Thesis or Doctoral Dissertation

Boston College

4.
Vlamis, Nicholas George.
Identities on hyperbolic manifolds and *quasiconformal*
homogeneity of hyperbolic surfaces.

Degree: PhD, Mathematics, 2015, Boston College

URL: http://dlib.bc.edu/islandora/object/bc-ir:104137

► The first part of this dissertation is on the *quasiconformal* homogeneity of surfaces. In the vein of Bonfert-Taylor, Bridgeman, Canary, and Taylor we introduce the…
(more)

Subjects/Keywords: hyperbolic manifold; identities; mapping class group; orthospectrum; quasiconformal maps

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vlamis, N. G. (2015). Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces. (Doctoral Dissertation). Boston College. Retrieved from http://dlib.bc.edu/islandora/object/bc-ir:104137

Chicago Manual of Style (16^{th} Edition):

Vlamis, Nicholas George. “Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces.” 2015. Doctoral Dissertation, Boston College. Accessed December 03, 2020. http://dlib.bc.edu/islandora/object/bc-ir:104137.

MLA Handbook (7^{th} Edition):

Vlamis, Nicholas George. “Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces.” 2015. Web. 03 Dec 2020.

Vancouver:

Vlamis NG. Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces. [Internet] [Doctoral dissertation]. Boston College; 2015. [cited 2020 Dec 03]. Available from: http://dlib.bc.edu/islandora/object/bc-ir:104137.

Council of Science Editors:

Vlamis NG. Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces. [Doctoral Dissertation]. Boston College; 2015. Available from: http://dlib.bc.edu/islandora/object/bc-ir:104137

University of Illinois – Urbana-Champaign

5. Romney, Matthew. Metric geometry of the Grushin plane and generalizations.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/99345

► Given α>0, the α-Grushin plane is ℝ^{2} equipped with the sub-Riemannian metric generated by the vector fields X = \partial_{1} and Y = |x_{1}|^{α} \partial_{2}.…
(more)

Subjects/Keywords: Metric space; Bi-Lipschitz embedding; Sub-Riemannian geometry; Quasiconformal mapping

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Romney, M. (2017). Metric geometry of the Grushin plane and generalizations. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/99345

Chicago Manual of Style (16^{th} Edition):

Romney, Matthew. “Metric geometry of the Grushin plane and generalizations.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed December 03, 2020. http://hdl.handle.net/2142/99345.

MLA Handbook (7^{th} Edition):

Romney, Matthew. “Metric geometry of the Grushin plane and generalizations.” 2017. Web. 03 Dec 2020.

Vancouver:

Romney M. Metric geometry of the Grushin plane and generalizations. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/2142/99345.

Council of Science Editors:

Romney M. Metric geometry of the Grushin plane and generalizations. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/99345

6.
Ackermann, Colleen Teresa.
* Quasiconformal* mappings on planar surfaces.

Degree: PhD, Mathematics, 2016, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/90613

► This thesis discusses three different projects concerning *quasiconformal* mappings on planar surfaces. In the first two projects we show that a priori weaker conditions still…
(more)

Subjects/Keywords: quasiconformal mapping; Grushin plane

…homeomorphisms that take infinitesimal circles to infinitesimal circles. *Quasiconformal*
mappings relax… …*Quasiconformal* mappings take infinitesimal circles to infinitesimal ellipses of uniformly
bounded… …eccentricity, i.e., M/m ≤ K for some K ≥ 1.
*Quasiconformal* mappings were first discovered by Grötzsch… …Today we do not require
*quasiconformal* mappings to be differentiable. However, the analytic… …quasiconformality says we call an orientation-preserving homeomorphism K-*quasiconformal* if it is…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ackermann, C. T. (2016). Quasiconformal mappings on planar surfaces. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/90613

Chicago Manual of Style (16^{th} Edition):

Ackermann, Colleen Teresa. “Quasiconformal mappings on planar surfaces.” 2016. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed December 03, 2020. http://hdl.handle.net/2142/90613.

MLA Handbook (7^{th} Edition):

Ackermann, Colleen Teresa. “Quasiconformal mappings on planar surfaces.” 2016. Web. 03 Dec 2020.

Vancouver:

Ackermann CT. Quasiconformal mappings on planar surfaces. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2016. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/2142/90613.

Council of Science Editors:

Ackermann CT. Quasiconformal mappings on planar surfaces. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2016. Available from: http://hdl.handle.net/2142/90613

Massey University

7.
Dillon, Samuel Adam Kuakini.
Resolving decomposition by blowing up points and *quasiconformal* harmonic extensions.

Degree: PhD, Mathematics, 2012, Massey University

URL: http://hdl.handle.net/10179/4267

► In this thesis we consider two problems regarding mappings between various two-dimensional spaces with some constraint on their distortion. The first question concerns the use…
(more)

Subjects/Keywords: Mappings (Mathematics); Homeomorphism; Quasiconformal mappings; Differential equations; Decomposition resolution; Hyperbolic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dillon, S. A. K. (2012). Resolving decomposition by blowing up points and quasiconformal harmonic extensions. (Doctoral Dissertation). Massey University. Retrieved from http://hdl.handle.net/10179/4267

Chicago Manual of Style (16^{th} Edition):

Dillon, Samuel Adam Kuakini. “Resolving decomposition by blowing up points and quasiconformal harmonic extensions.” 2012. Doctoral Dissertation, Massey University. Accessed December 03, 2020. http://hdl.handle.net/10179/4267.

MLA Handbook (7^{th} Edition):

Dillon, Samuel Adam Kuakini. “Resolving decomposition by blowing up points and quasiconformal harmonic extensions.” 2012. Web. 03 Dec 2020.

Vancouver:

Dillon SAK. Resolving decomposition by blowing up points and quasiconformal harmonic extensions. [Internet] [Doctoral dissertation]. Massey University; 2012. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10179/4267.

Council of Science Editors:

Dillon SAK. Resolving decomposition by blowing up points and quasiconformal harmonic extensions. [Doctoral Dissertation]. Massey University; 2012. Available from: http://hdl.handle.net/10179/4267

Massey University

8. Yao, Cong. Minimisation of mean exponential distortions and Teichmüller theory.

Degree: PhD, Mathematics, 2019, Massey University

URL: http://hdl.handle.net/10179/15703

► This thesis studies the Cauchy boundary value problem of minimising exponential integral averages of mappings of ﬁnite distortion. Direct methods in calculus of variations provide…
(more)

Subjects/Keywords: Boundary value problems; Cauchy problem; Teichmüller spaces; Quasiconformal mappings

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yao, C. (2019). Minimisation of mean exponential distortions and Teichmüller theory. (Doctoral Dissertation). Massey University. Retrieved from http://hdl.handle.net/10179/15703

Chicago Manual of Style (16^{th} Edition):

Yao, Cong. “Minimisation of mean exponential distortions and Teichmüller theory.” 2019. Doctoral Dissertation, Massey University. Accessed December 03, 2020. http://hdl.handle.net/10179/15703.

MLA Handbook (7^{th} Edition):

Yao, Cong. “Minimisation of mean exponential distortions and Teichmüller theory.” 2019. Web. 03 Dec 2020.

Vancouver:

Yao C. Minimisation of mean exponential distortions and Teichmüller theory. [Internet] [Doctoral dissertation]. Massey University; 2019. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10179/15703.

Council of Science Editors:

Yao C. Minimisation of mean exponential distortions and Teichmüller theory. [Doctoral Dissertation]. Massey University; 2019. Available from: http://hdl.handle.net/10179/15703

University of Cincinnati

9.
Jones, Rebekah.
A characterization of *quasiconformal* maps in terms of sets
of finite perimeter.

Degree: PhD, Arts and Sciences: Mathematical Sciences, 2019, University of Cincinnati

URL: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1560867563841096

► In Euclidean space, it is well-known that *quasiconformal* maps are characterized by the quasi-preservation of the n-modulus of curves. This fact is also known in…
(more)

Subjects/Keywords: Mathematics; quasiconformal; finite perimeter; modulus of curves; modulus of surfaces; perimeter measure; metric measure space

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jones, R. (2019). A characterization of quasiconformal maps in terms of sets of finite perimeter. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1560867563841096

Chicago Manual of Style (16^{th} Edition):

Jones, Rebekah. “A characterization of quasiconformal maps in terms of sets of finite perimeter.” 2019. Doctoral Dissertation, University of Cincinnati. Accessed December 03, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1560867563841096.

MLA Handbook (7^{th} Edition):

Jones, Rebekah. “A characterization of quasiconformal maps in terms of sets of finite perimeter.” 2019. Web. 03 Dec 2020.

Vancouver:

Jones R. A characterization of quasiconformal maps in terms of sets of finite perimeter. [Internet] [Doctoral dissertation]. University of Cincinnati; 2019. [cited 2020 Dec 03]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1560867563841096.

Council of Science Editors:

Jones R. A characterization of quasiconformal maps in terms of sets of finite perimeter. [Doctoral Dissertation]. University of Cincinnati; 2019. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1560867563841096

University of Michigan

10. Wildrick, Kevin Michael. Quasisymmetric parameterizations of two -dimensional metric spaces.

Degree: PhD, Pure Sciences, 2007, University of Michigan

URL: http://hdl.handle.net/2027.42/126854

► The classical Uniformization Theorem states that every simply connected Riemann surface is conformally equivalent to one of the disk, the plane, and the sphere, each…
(more)

Subjects/Keywords: Quasiconformal Mappings; Quasisymmetric Parameterizations; Two-dimensional Metric Spaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wildrick, K. M. (2007). Quasisymmetric parameterizations of two -dimensional metric spaces. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126854

Chicago Manual of Style (16^{th} Edition):

Wildrick, Kevin Michael. “Quasisymmetric parameterizations of two -dimensional metric spaces.” 2007. Doctoral Dissertation, University of Michigan. Accessed December 03, 2020. http://hdl.handle.net/2027.42/126854.

MLA Handbook (7^{th} Edition):

Wildrick, Kevin Michael. “Quasisymmetric parameterizations of two -dimensional metric spaces.” 2007. Web. 03 Dec 2020.

Vancouver:

Wildrick KM. Quasisymmetric parameterizations of two -dimensional metric spaces. [Internet] [Doctoral dissertation]. University of Michigan; 2007. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/2027.42/126854.

Council of Science Editors:

Wildrick KM. Quasisymmetric parameterizations of two -dimensional metric spaces. [Doctoral Dissertation]. University of Michigan; 2007. Available from: http://hdl.handle.net/2027.42/126854

University of Michigan

11.
Martin, Gaven John.
The Geometry Of *Quasiconformal* Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic).

Degree: PhD, Pure Sciences, 1985, University of Michigan

URL: http://hdl.handle.net/2027.42/127813

► This thesis is a study of three topics, each of which describes an aspect of geometry relating to the general theory of *quasiconformal* mappings. The…
(more)

Subjects/Keywords: Geodesic; Geometry; Lipschitz; Mappings; Quasiconformal; Quasihyperbolic; Uniform

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Martin, G. J. (1985). The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/127813

Chicago Manual of Style (16^{th} Edition):

Martin, Gaven John. “The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic).” 1985. Doctoral Dissertation, University of Michigan. Accessed December 03, 2020. http://hdl.handle.net/2027.42/127813.

MLA Handbook (7^{th} Edition):

Martin, Gaven John. “The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic).” 1985. Web. 03 Dec 2020.

Vancouver:

Martin GJ. The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic). [Internet] [Doctoral dissertation]. University of Michigan; 1985. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/2027.42/127813.

Council of Science Editors:

Martin GJ. The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic). [Doctoral Dissertation]. University of Michigan; 1985. Available from: http://hdl.handle.net/2027.42/127813

University of Oklahoma

12. Bhatia, Kavita Ganeshoas. Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary.

Degree: PhD, Department of Mathematics, 1997, University of Oklahoma

URL: http://hdl.handle.net/11244/5535

► Let G_{ρ} denote the Kleinian group with presentation< T_{1}, T_{i}, E_{ρ}, E_{iρ}\mid[ T_{1}, T_{i}]=1, [ E_{ρ}, E_{iρ}]=1>.Let Ω(G_{ρ}) be its region of discontinuity, Λ(G_{ρ}) be…
(more)

Subjects/Keywords: Topology.; Kleinian groups.; Manifolds (Mathematics); Mathematics.; Quasiconformal mappings.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bhatia, K. G. (1997). Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/5535

Chicago Manual of Style (16^{th} Edition):

Bhatia, Kavita Ganeshoas. “Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary.” 1997. Doctoral Dissertation, University of Oklahoma. Accessed December 03, 2020. http://hdl.handle.net/11244/5535.

MLA Handbook (7^{th} Edition):

Bhatia, Kavita Ganeshoas. “Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary.” 1997. Web. 03 Dec 2020.

Vancouver:

Bhatia KG. Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary. [Internet] [Doctoral dissertation]. University of Oklahoma; 1997. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/11244/5535.

Council of Science Editors:

Bhatia KG. Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary. [Doctoral Dissertation]. University of Oklahoma; 1997. Available from: http://hdl.handle.net/11244/5535

Universiteit Utrecht

13. Nieraeth, B. Iwaniec's Conjecture on The Beurling-Ahlfors Transform.

Degree: 2016, Universiteit Utrecht

URL: http://dspace.library.uu.nl:8080/handle/1874/337691

► Inspired by Astala, Iwaniec, Prause and Saksman's partial result of Morrey's problem regarding rank-one convex and quasiconvex functions on the functionals from Burkholder's martingale theory,…
(more)

Subjects/Keywords: Iwaniec; Iwaniec's Conjecture; Beurling-Ahlfors transform; Hilbert transform; Riesz transform; Quasiconformal; Quasiconvex; Rank-one convex; Morrey's problem; Morrey's conjecture; Burkholder; Burkholder functional

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nieraeth, B. (2016). Iwaniec's Conjecture on The Beurling-Ahlfors Transform. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/337691

Chicago Manual of Style (16^{th} Edition):

Nieraeth, B. “Iwaniec's Conjecture on The Beurling-Ahlfors Transform.” 2016. Masters Thesis, Universiteit Utrecht. Accessed December 03, 2020. http://dspace.library.uu.nl:8080/handle/1874/337691.

MLA Handbook (7^{th} Edition):

Nieraeth, B. “Iwaniec's Conjecture on The Beurling-Ahlfors Transform.” 2016. Web. 03 Dec 2020.

Vancouver:

Nieraeth B. Iwaniec's Conjecture on The Beurling-Ahlfors Transform. [Internet] [Masters thesis]. Universiteit Utrecht; 2016. [cited 2020 Dec 03]. Available from: http://dspace.library.uu.nl:8080/handle/1874/337691.

Council of Science Editors:

Nieraeth B. Iwaniec's Conjecture on The Beurling-Ahlfors Transform. [Masters Thesis]. Universiteit Utrecht; 2016. Available from: http://dspace.library.uu.nl:8080/handle/1874/337691

14. Prywes, Eden. Quasiregularly Elliptic Manifolds.

Degree: Mathematics, 2019, UCLA

URL: http://www.escholarship.org/uc/item/7t3738qd

► The work in this dissertation is centered around the study of quasiregularly elliptic manifolds. These are manifolds that admit quasiregular maps from Euclidean space. The…
(more)

Subjects/Keywords: Mathematics; Branched Cover; Cohomology; Quasiconformal Geometry; Quasiregularly Elliptic

…is the class of *quasiconformal* maps.
They have been studied in both dimension 2 and in… …higher dimensions.
A K-*quasiconformal* map, for K > 1, is a homeomorphism f : Rd → Rd that is in… …on K. If K = 1, then f is conformal.
*Quasiconformal* maps were first introduced by Grötzsch… …x5B;Gro28] in dimension 2. The
study of *quasiconformal* and quasiregular maps in… …reference for n-dimensional *quasiconformal* maps is [V71] and for quasiregular maps is…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Prywes, E. (2019). Quasiregularly Elliptic Manifolds. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/7t3738qd

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Prywes, Eden. “Quasiregularly Elliptic Manifolds.” 2019. Thesis, UCLA. Accessed December 03, 2020. http://www.escholarship.org/uc/item/7t3738qd.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Prywes, Eden. “Quasiregularly Elliptic Manifolds.” 2019. Web. 03 Dec 2020.

Vancouver:

Prywes E. Quasiregularly Elliptic Manifolds. [Internet] [Thesis]. UCLA; 2019. [cited 2020 Dec 03]. Available from: http://www.escholarship.org/uc/item/7t3738qd.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Prywes E. Quasiregularly Elliptic Manifolds. [Thesis]. UCLA; 2019. Available from: http://www.escholarship.org/uc/item/7t3738qd

Not specified: Masters Thesis or Doctoral Dissertation

15.
Timsit, Robin.
Homéomorphismes quasiconformes extrémaux et différentielles quadratiques en géométrie CR sphérique : Extremal *quasiconformal* maps and quadratic differentials in spherical CR geometry.

Degree: Docteur es, Mathématiques, 2018, Sorbonne université

URL: http://www.theses.fr/2018SORUS602

►

Dans cette thèse, on s’intéresse à l’idée d’homéomorphismes de Teichmüller dans le cadre de la géométrie CR sphérique de dimension 3. On en considère alors… (more)

Subjects/Keywords: Homéomorphismes quasiconformes extrémaux; Différentielles quadratiques; Modules de familles de courbes; Groupe de Heisenberg; Géométrie CR sphérique; Variétés CR; Extremal quasiconformal maps; Quadratic differentials; Modulus of curve families; 516.36

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Timsit, R. (2018). Homéomorphismes quasiconformes extrémaux et différentielles quadratiques en géométrie CR sphérique : Extremal quasiconformal maps and quadratic differentials in spherical CR geometry. (Doctoral Dissertation). Sorbonne université. Retrieved from http://www.theses.fr/2018SORUS602

Chicago Manual of Style (16^{th} Edition):

Timsit, Robin. “Homéomorphismes quasiconformes extrémaux et différentielles quadratiques en géométrie CR sphérique : Extremal quasiconformal maps and quadratic differentials in spherical CR geometry.” 2018. Doctoral Dissertation, Sorbonne université. Accessed December 03, 2020. http://www.theses.fr/2018SORUS602.

MLA Handbook (7^{th} Edition):

Timsit, Robin. “Homéomorphismes quasiconformes extrémaux et différentielles quadratiques en géométrie CR sphérique : Extremal quasiconformal maps and quadratic differentials in spherical CR geometry.” 2018. Web. 03 Dec 2020.

Vancouver:

Timsit R. Homéomorphismes quasiconformes extrémaux et différentielles quadratiques en géométrie CR sphérique : Extremal quasiconformal maps and quadratic differentials in spherical CR geometry. [Internet] [Doctoral dissertation]. Sorbonne université; 2018. [cited 2020 Dec 03]. Available from: http://www.theses.fr/2018SORUS602.

Council of Science Editors:

Timsit R. Homéomorphismes quasiconformes extrémaux et différentielles quadratiques en géométrie CR sphérique : Extremal quasiconformal maps and quadratic differentials in spherical CR geometry. [Doctoral Dissertation]. Sorbonne université; 2018. Available from: http://www.theses.fr/2018SORUS602

Univerzitet u Beogradu

16. Knežević, Miljan V., 1973-. Хармонијска и квазиконформна пресликавања, квази-изометрије и кривина.

Degree: Matematički fakultet, 2016, Univerzitet u Beogradu

URL: https://fedorabg.bg.ac.rs/fedora/get/o:11781/bdef:Content/get

►

Matematika - Kompleksna analiza / Mathematics - Complex analysis

U ovoj tezi se razmatraju različite osobine običnih harmonijskih preslikavanja, kvazikonformnih preslikavanja i harmonijskih preslikavanja u… (more)

Subjects/Keywords: quasiconformal mapping; harmonic mapping; Riemann surface; universal covering; conformal metric; Gaussian curvature; hyperbolic density; hyperbolic length; hyperbolic distance; hyperbolic derivative; quadratic differential; quasiisometry; Lipschitz i co-Lipschitz mapping

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Knežević, Miljan V., 1. (2016). Хармонијска и квазиконформна пресликавања, квази-изометрије и кривина. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:11781/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Knežević, Miljan V., 1973-. “Хармонијска и квазиконформна пресликавања, квази-изометрије и кривина.” 2016. Thesis, Univerzitet u Beogradu. Accessed December 03, 2020. https://fedorabg.bg.ac.rs/fedora/get/o:11781/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Knežević, Miljan V., 1973-. “Хармонијска и квазиконформна пресликавања, квази-изометрије и кривина.” 2016. Web. 03 Dec 2020.

Vancouver:

Knežević, Miljan V. 1. Хармонијска и квазиконформна пресликавања, квази-изометрије и кривина. [Internet] [Thesis]. Univerzitet u Beogradu; 2016. [cited 2020 Dec 03]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11781/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Knežević, Miljan V. 1. Хармонијска и квазиконформна пресликавања, квази-изометрије и кривина. [Thesis]. Univerzitet u Beogradu; 2016. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11781/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

17. Platis, Ioannis. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.

Degree: 2000, University of Crete (UOC); Πανεπιστήμιο Κρήτης

URL: http://hdl.handle.net/10442/hedi/31904

► Μελετάται η γεωμετρία του χώρου των Quasi-fuchsian παραμορφώσεων QF(S) μιας επιφάνειας S. Η διατριβή χωρίζεται σε δύο μέρη. Στο πρώτο μέρος εξετάζεται η μιγαδική συμπλεκτική…
(more)

Subjects/Keywords: Ομάδες Klein; Quasiconformal απεικονίσεις; Riemann επιφάνειες; Teichmuller χώροι; Quasifuchsian χώροι; Μιγαδική συμπλεκτική γεωμετρία; Weil-Peterson γεωμετρία; Kleinian groups; Quasiconformal mappings; Riemann surfaces; Teichmuller space; Weil-Petersson geometry; Quasifuchsian space; Complex symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Platis, I. (2000). Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. (Thesis). University of Crete (UOC); Πανεπιστήμιο Κρήτης. Retrieved from http://hdl.handle.net/10442/hedi/31904

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Platis, Ioannis. “Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.” 2000. Thesis, University of Crete (UOC); Πανεπιστήμιο Κρήτης. Accessed December 03, 2020. http://hdl.handle.net/10442/hedi/31904.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Platis, Ioannis. “Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.” 2000. Web. 03 Dec 2020.

Vancouver:

Platis I. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. [Internet] [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10442/hedi/31904.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Platis I. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. Available from: http://hdl.handle.net/10442/hedi/31904

Not specified: Masters Thesis or Doctoral Dissertation

18. Lytle, George H. APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM.

Degree: 2019, University of Kentucky

URL: https://uknowledge.uky.edu/math_etds/61

► In 2014, Astala, Päivärinta, Reyes, and Siltanen conducted numerical experiments reconstructing a piecewise continuous conductivity. The algorithm of the shortcut method is based on the…
(more)

Subjects/Keywords: inverse problem; Calderón problem; Beltrami equation; Complex Geometric Optics solutions; quasiconformal mappings; Analysis; Partial Differential Equations

…theory of *quasiconformal* maps to conclude that
ϕ exists and is a homeomorphism. For our class…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lytle, G. H. (2019). APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/61

Chicago Manual of Style (16^{th} Edition):

Lytle, George H. “APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM.” 2019. Doctoral Dissertation, University of Kentucky. Accessed December 03, 2020. https://uknowledge.uky.edu/math_etds/61.

MLA Handbook (7^{th} Edition):

Lytle, George H. “APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM.” 2019. Web. 03 Dec 2020.

Vancouver:

Lytle GH. APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM. [Internet] [Doctoral dissertation]. University of Kentucky; 2019. [cited 2020 Dec 03]. Available from: https://uknowledge.uky.edu/math_etds/61.

Council of Science Editors:

Lytle GH. APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM. [Doctoral Dissertation]. University of Kentucky; 2019. Available from: https://uknowledge.uky.edu/math_etds/61

19.
Medwid, Mark Edward.
Rigidity of *Quasiconformal* Maps on Carnot Groups.

Degree: PhD, Mathematics, 2017, Bowling Green State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104

► *Quasiconformal* mappings were first utilized by Grotzsch in the 1920’s and then later named by Ahlfors in the 1930’s. The conformal mappings one studies in…
(more)

Subjects/Keywords: Mathematics; quasiconformal mappings; rigidity; Carnot groups; Lie groups; Lie algebras; quasisymmetric mappings; analysis on metric spaces

…*quasiconformal* analysis is used in several branches of mathematics, it is through geometric group… …theory that the author was first exposed to the study of
*quasiconformal* mappings. Details for… …author’s main result we need also develop some tools of basic *quasiconformal* analysis and
Pansu… …somewhat nice way.
This concept of “*quasiconformal* mapping” was first introduced in 1928 by H… …Grötzsch which
was later given the name “*quasiconformal*” in the famous work by Ahlfors (1935…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Medwid, M. E. (2017). Rigidity of Quasiconformal Maps on Carnot Groups. (Doctoral Dissertation). Bowling Green State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104

Chicago Manual of Style (16^{th} Edition):

Medwid, Mark Edward. “Rigidity of Quasiconformal Maps on Carnot Groups.” 2017. Doctoral Dissertation, Bowling Green State University. Accessed December 03, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104.

MLA Handbook (7^{th} Edition):

Medwid, Mark Edward. “Rigidity of Quasiconformal Maps on Carnot Groups.” 2017. Web. 03 Dec 2020.

Vancouver:

Medwid ME. Rigidity of Quasiconformal Maps on Carnot Groups. [Internet] [Doctoral dissertation]. Bowling Green State University; 2017. [cited 2020 Dec 03]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104.

Council of Science Editors:

Medwid ME. Rigidity of Quasiconformal Maps on Carnot Groups. [Doctoral Dissertation]. Bowling Green State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104

20.
Gardiner, Christopher James.
* Quasiconformal* maps on a 2-step Carnot group.

Degree: MA, Mathematics, 2017, Bowling Green State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1498487423057279

► In this paper, we find all the *quasiconformal* maps on a particular non-rigid 2-step Carnot group. In particular, all *quasiconformal* maps on this Carnot group…
(more)

Subjects/Keywords: Mathematics; Algebra; Linear algebra; Analysis; Calculus; Lie algebra; Carnot group; Quasiconformal; Quasisymmetric; biLipschitz; Pansu differentiability; graded isomorphism

…what *quasiconformal* mappings do to left cosets. Ultimately, this
helps us to identify the… …form of any *quasiconformal* mapping on n.
7
CHAPTER 2
MAPPINGS ON LIE ALGEBRAS
2.1 Lie… …are important to the discussion of the Pansu
differential of a *quasiconformal* map, but first… …Otherwise, A isn’t
a linear isomoprhism.)
9
2.3 *Quasiconformal* maps
Our overarching goal is… …to give the form of any *quasiconformal* map on n. To do so, we need
to make use of some…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gardiner, C. J. (2017). Quasiconformal maps on a 2-step Carnot group. (Masters Thesis). Bowling Green State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1498487423057279

Chicago Manual of Style (16^{th} Edition):

Gardiner, Christopher James. “Quasiconformal maps on a 2-step Carnot group.” 2017. Masters Thesis, Bowling Green State University. Accessed December 03, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1498487423057279.

MLA Handbook (7^{th} Edition):

Gardiner, Christopher James. “Quasiconformal maps on a 2-step Carnot group.” 2017. Web. 03 Dec 2020.

Vancouver:

Gardiner CJ. Quasiconformal maps on a 2-step Carnot group. [Internet] [Masters thesis]. Bowling Green State University; 2017. [cited 2020 Dec 03]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1498487423057279.

Council of Science Editors:

Gardiner CJ. Quasiconformal maps on a 2-step Carnot group. [Masters Thesis]. Bowling Green State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1498487423057279

21.
Prats Soler, Martí.
Singular integral operators on sobolev spaces on domains and *quasiconformal* mappings.

Degree: Departament de Matemàtiques, 2015, Universitat Autònoma de Barcelona

URL: http://hdl.handle.net/10803/314193

► In this dissertation some new results on the boundedness of Calderón-Zygmund operators on Sobolev spaces on domains in Rd. First a T(P)-theorem is obtained which…
(more)

Subjects/Keywords: Operadors de Calderón-Zygmund; Calderón-Zygmund operators; Operadores de Calderón-Zygmund; Aplicacions quasiconformes; Quasiconformal mappings; Apliaciones casiconformes; Espais de Sobolev; Sobolev spaces; Espacios de Sobolev; Ciències Experimentals; 517

…application to *quasiconformal* mappings
Some tools . . . . . . . . . . . . . . . . . . .
A Fredholm… …application to *quasiconformal* mappings
Let µ P L8 be compactly supported in C with k : }µ}… …almost every z P C. Such a function f is said
to be a K-*quasiconformal*
mapping if it is a…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Prats Soler, M. (2015). Singular integral operators on sobolev spaces on domains and quasiconformal mappings. (Thesis). Universitat Autònoma de Barcelona. Retrieved from http://hdl.handle.net/10803/314193

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Prats Soler, Martí. “Singular integral operators on sobolev spaces on domains and quasiconformal mappings.” 2015. Thesis, Universitat Autònoma de Barcelona. Accessed December 03, 2020. http://hdl.handle.net/10803/314193.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Prats Soler, Martí. “Singular integral operators on sobolev spaces on domains and quasiconformal mappings.” 2015. Web. 03 Dec 2020.

Vancouver:

Prats Soler M. Singular integral operators on sobolev spaces on domains and quasiconformal mappings. [Internet] [Thesis]. Universitat Autònoma de Barcelona; 2015. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10803/314193.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Prats Soler M. Singular integral operators on sobolev spaces on domains and quasiconformal mappings. [Thesis]. Universitat Autònoma de Barcelona; 2015. Available from: http://hdl.handle.net/10803/314193

Not specified: Masters Thesis or Doctoral Dissertation