Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Quasiconformal ). Showing records 1 – 21 of 21 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Illinois – Chicago

1. Austin, Alex D. Logarithmic Potentials and Quasiconformal Flows on the Heisenberg Group.

Degree: 2016, University of Illinois – Chicago

 In a first contribution to the quasiconformal Jacobian problem outside the Euclidean setting, we show that if the total variation of the measure associated to… (more)

Subjects/Keywords: quasiconformal Jacobian problem; logarithmic potential; Heisenberg group

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Austin, A. D. (2016). Logarithmic Potentials and Quasiconformal Flows on the Heisenberg Group. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/21284

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Austin, Alex D. “Logarithmic Potentials and Quasiconformal Flows on the Heisenberg Group.” 2016. Thesis, University of Illinois – Chicago. Accessed December 03, 2020. http://hdl.handle.net/10027/21284.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Austin, Alex D. “Logarithmic Potentials and Quasiconformal Flows on the Heisenberg Group.” 2016. Web. 03 Dec 2020.

Vancouver:

Austin AD. Logarithmic Potentials and Quasiconformal Flows on the Heisenberg Group. [Internet] [Thesis]. University of Illinois – Chicago; 2016. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10027/21284.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Austin AD. Logarithmic Potentials and Quasiconformal Flows on the Heisenberg Group. [Thesis]. University of Illinois – Chicago; 2016. Available from: http://hdl.handle.net/10027/21284

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


UCLA

2. Kinneberg, Kyle Edward. A coarse entropy-rigidity theorem and discrete length-volume inequalities.

Degree: Mathematics, 2014, UCLA

 In [5], M. Bonk and B. Kleiner proved a rigidity theorem for expanding quasi-M"obius group actions on Ahlfors n-regular metric spaces with topological dimension n.… (more)

Subjects/Keywords: Mathematics; Theoretical mathematics; Discrete geometry; Hyperbolic groups; Quasiconformal geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kinneberg, K. E. (2014). A coarse entropy-rigidity theorem and discrete length-volume inequalities. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/3c04z060

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kinneberg, Kyle Edward. “A coarse entropy-rigidity theorem and discrete length-volume inequalities.” 2014. Thesis, UCLA. Accessed December 03, 2020. http://www.escholarship.org/uc/item/3c04z060.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kinneberg, Kyle Edward. “A coarse entropy-rigidity theorem and discrete length-volume inequalities.” 2014. Web. 03 Dec 2020.

Vancouver:

Kinneberg KE. A coarse entropy-rigidity theorem and discrete length-volume inequalities. [Internet] [Thesis]. UCLA; 2014. [cited 2020 Dec 03]. Available from: http://www.escholarship.org/uc/item/3c04z060.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kinneberg KE. A coarse entropy-rigidity theorem and discrete length-volume inequalities. [Thesis]. UCLA; 2014. Available from: http://www.escholarship.org/uc/item/3c04z060

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

3. Govil, Karan. Algebraic Aspects of Higher Spin Symmetry.

Degree: 2015, Penn State University

 Massless conformal scalar fields in four-dimensional and six-dimensional Minkowski space-time correspond to minimal unitary representations of SO(4,2) (isomorphic to SU(2,2)) and SO(6,2) (isomorphic to SO*(8)),… (more)

Subjects/Keywords: Higher spin algebra; AdS/CFT correspondence; Quasiconformal; Minimal representation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Govil, K. (2015). Algebraic Aspects of Higher Spin Symmetry. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/26000

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Govil, Karan. “Algebraic Aspects of Higher Spin Symmetry.” 2015. Thesis, Penn State University. Accessed December 03, 2020. https://submit-etda.libraries.psu.edu/catalog/26000.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Govil, Karan. “Algebraic Aspects of Higher Spin Symmetry.” 2015. Web. 03 Dec 2020.

Vancouver:

Govil K. Algebraic Aspects of Higher Spin Symmetry. [Internet] [Thesis]. Penn State University; 2015. [cited 2020 Dec 03]. Available from: https://submit-etda.libraries.psu.edu/catalog/26000.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Govil K. Algebraic Aspects of Higher Spin Symmetry. [Thesis]. Penn State University; 2015. Available from: https://submit-etda.libraries.psu.edu/catalog/26000

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Boston College

4. Vlamis, Nicholas George. Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces.

Degree: PhD, Mathematics, 2015, Boston College

 The first part of this dissertation is on the quasiconformal homogeneity of surfaces. In the vein of Bonfert-Taylor, Bridgeman, Canary, and Taylor we introduce the… (more)

Subjects/Keywords: hyperbolic manifold; identities; mapping class group; orthospectrum; quasiconformal maps

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vlamis, N. G. (2015). Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces. (Doctoral Dissertation). Boston College. Retrieved from http://dlib.bc.edu/islandora/object/bc-ir:104137

Chicago Manual of Style (16th Edition):

Vlamis, Nicholas George. “Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces.” 2015. Doctoral Dissertation, Boston College. Accessed December 03, 2020. http://dlib.bc.edu/islandora/object/bc-ir:104137.

MLA Handbook (7th Edition):

Vlamis, Nicholas George. “Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces.” 2015. Web. 03 Dec 2020.

Vancouver:

Vlamis NG. Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces. [Internet] [Doctoral dissertation]. Boston College; 2015. [cited 2020 Dec 03]. Available from: http://dlib.bc.edu/islandora/object/bc-ir:104137.

Council of Science Editors:

Vlamis NG. Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces. [Doctoral Dissertation]. Boston College; 2015. Available from: http://dlib.bc.edu/islandora/object/bc-ir:104137


University of Illinois – Urbana-Champaign

5. Romney, Matthew. Metric geometry of the Grushin plane and generalizations.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

 Given α>0, the α-Grushin plane is ℝ2 equipped with the sub-Riemannian metric generated by the vector fields X = \partial1 and Y = |x1|α \partial2.… (more)

Subjects/Keywords: Metric space; Bi-Lipschitz embedding; Sub-Riemannian geometry; Quasiconformal mapping

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Romney, M. (2017). Metric geometry of the Grushin plane and generalizations. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/99345

Chicago Manual of Style (16th Edition):

Romney, Matthew. “Metric geometry of the Grushin plane and generalizations.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed December 03, 2020. http://hdl.handle.net/2142/99345.

MLA Handbook (7th Edition):

Romney, Matthew. “Metric geometry of the Grushin plane and generalizations.” 2017. Web. 03 Dec 2020.

Vancouver:

Romney M. Metric geometry of the Grushin plane and generalizations. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/2142/99345.

Council of Science Editors:

Romney M. Metric geometry of the Grushin plane and generalizations. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/99345

6. Ackermann, Colleen Teresa. Quasiconformal mappings on planar surfaces.

Degree: PhD, Mathematics, 2016, University of Illinois – Urbana-Champaign

 This thesis discusses three different projects concerning quasiconformal mappings on planar surfaces. In the first two projects we show that a priori weaker conditions still… (more)

Subjects/Keywords: quasiconformal mapping; Grushin plane

…homeomorphisms that take infinitesimal circles to infinitesimal circles. Quasiconformal mappings relax… …Quasiconformal mappings take infinitesimal circles to infinitesimal ellipses of uniformly bounded… …eccentricity, i.e., M/m ≤ K for some K ≥ 1. Quasiconformal mappings were first discovered by Grötzsch… …Today we do not require quasiconformal mappings to be differentiable. However, the analytic… …quasiconformality says we call an orientation-preserving homeomorphism K-quasiconformal if it is… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ackermann, C. T. (2016). Quasiconformal mappings on planar surfaces. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/90613

Chicago Manual of Style (16th Edition):

Ackermann, Colleen Teresa. “Quasiconformal mappings on planar surfaces.” 2016. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed December 03, 2020. http://hdl.handle.net/2142/90613.

MLA Handbook (7th Edition):

Ackermann, Colleen Teresa. “Quasiconformal mappings on planar surfaces.” 2016. Web. 03 Dec 2020.

Vancouver:

Ackermann CT. Quasiconformal mappings on planar surfaces. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2016. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/2142/90613.

Council of Science Editors:

Ackermann CT. Quasiconformal mappings on planar surfaces. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2016. Available from: http://hdl.handle.net/2142/90613


Massey University

7. Dillon, Samuel Adam Kuakini. Resolving decomposition by blowing up points and quasiconformal harmonic extensions.

Degree: PhD, Mathematics, 2012, Massey University

 In this thesis we consider two problems regarding mappings between various two-dimensional spaces with some constraint on their distortion. The first question concerns the use… (more)

Subjects/Keywords: Mappings (Mathematics); Homeomorphism; Quasiconformal mappings; Differential equations; Decomposition resolution; Hyperbolic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dillon, S. A. K. (2012). Resolving decomposition by blowing up points and quasiconformal harmonic extensions. (Doctoral Dissertation). Massey University. Retrieved from http://hdl.handle.net/10179/4267

Chicago Manual of Style (16th Edition):

Dillon, Samuel Adam Kuakini. “Resolving decomposition by blowing up points and quasiconformal harmonic extensions.” 2012. Doctoral Dissertation, Massey University. Accessed December 03, 2020. http://hdl.handle.net/10179/4267.

MLA Handbook (7th Edition):

Dillon, Samuel Adam Kuakini. “Resolving decomposition by blowing up points and quasiconformal harmonic extensions.” 2012. Web. 03 Dec 2020.

Vancouver:

Dillon SAK. Resolving decomposition by blowing up points and quasiconformal harmonic extensions. [Internet] [Doctoral dissertation]. Massey University; 2012. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10179/4267.

Council of Science Editors:

Dillon SAK. Resolving decomposition by blowing up points and quasiconformal harmonic extensions. [Doctoral Dissertation]. Massey University; 2012. Available from: http://hdl.handle.net/10179/4267


Massey University

8. Yao, Cong. Minimisation of mean exponential distortions and Teichmüller theory.

Degree: PhD, Mathematics, 2019, Massey University

 This thesis studies the Cauchy boundary value problem of minimising exponential integral averages of mappings of finite distortion. Direct methods in calculus of variations provide… (more)

Subjects/Keywords: Boundary value problems; Cauchy problem; Teichmüller spaces; Quasiconformal mappings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yao, C. (2019). Minimisation of mean exponential distortions and Teichmüller theory. (Doctoral Dissertation). Massey University. Retrieved from http://hdl.handle.net/10179/15703

Chicago Manual of Style (16th Edition):

Yao, Cong. “Minimisation of mean exponential distortions and Teichmüller theory.” 2019. Doctoral Dissertation, Massey University. Accessed December 03, 2020. http://hdl.handle.net/10179/15703.

MLA Handbook (7th Edition):

Yao, Cong. “Minimisation of mean exponential distortions and Teichmüller theory.” 2019. Web. 03 Dec 2020.

Vancouver:

Yao C. Minimisation of mean exponential distortions and Teichmüller theory. [Internet] [Doctoral dissertation]. Massey University; 2019. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10179/15703.

Council of Science Editors:

Yao C. Minimisation of mean exponential distortions and Teichmüller theory. [Doctoral Dissertation]. Massey University; 2019. Available from: http://hdl.handle.net/10179/15703


University of Cincinnati

9. Jones, Rebekah. A characterization of quasiconformal maps in terms of sets of finite perimeter.

Degree: PhD, Arts and Sciences: Mathematical Sciences, 2019, University of Cincinnati

 In Euclidean space, it is well-known that quasiconformal maps are characterized by the quasi-preservation of the n-modulus of curves. This fact is also known in… (more)

Subjects/Keywords: Mathematics; quasiconformal; finite perimeter; modulus of curves; modulus of surfaces; perimeter measure; metric measure space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jones, R. (2019). A characterization of quasiconformal maps in terms of sets of finite perimeter. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1560867563841096

Chicago Manual of Style (16th Edition):

Jones, Rebekah. “A characterization of quasiconformal maps in terms of sets of finite perimeter.” 2019. Doctoral Dissertation, University of Cincinnati. Accessed December 03, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1560867563841096.

MLA Handbook (7th Edition):

Jones, Rebekah. “A characterization of quasiconformal maps in terms of sets of finite perimeter.” 2019. Web. 03 Dec 2020.

Vancouver:

Jones R. A characterization of quasiconformal maps in terms of sets of finite perimeter. [Internet] [Doctoral dissertation]. University of Cincinnati; 2019. [cited 2020 Dec 03]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1560867563841096.

Council of Science Editors:

Jones R. A characterization of quasiconformal maps in terms of sets of finite perimeter. [Doctoral Dissertation]. University of Cincinnati; 2019. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1560867563841096


University of Michigan

10. Wildrick, Kevin Michael. Quasisymmetric parameterizations of two -dimensional metric spaces.

Degree: PhD, Pure Sciences, 2007, University of Michigan

 The classical Uniformization Theorem states that every simply connected Riemann surface is conformally equivalent to one of the disk, the plane, and the sphere, each… (more)

Subjects/Keywords: Quasiconformal Mappings; Quasisymmetric Parameterizations; Two-dimensional Metric Spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wildrick, K. M. (2007). Quasisymmetric parameterizations of two -dimensional metric spaces. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126854

Chicago Manual of Style (16th Edition):

Wildrick, Kevin Michael. “Quasisymmetric parameterizations of two -dimensional metric spaces.” 2007. Doctoral Dissertation, University of Michigan. Accessed December 03, 2020. http://hdl.handle.net/2027.42/126854.

MLA Handbook (7th Edition):

Wildrick, Kevin Michael. “Quasisymmetric parameterizations of two -dimensional metric spaces.” 2007. Web. 03 Dec 2020.

Vancouver:

Wildrick KM. Quasisymmetric parameterizations of two -dimensional metric spaces. [Internet] [Doctoral dissertation]. University of Michigan; 2007. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/2027.42/126854.

Council of Science Editors:

Wildrick KM. Quasisymmetric parameterizations of two -dimensional metric spaces. [Doctoral Dissertation]. University of Michigan; 2007. Available from: http://hdl.handle.net/2027.42/126854


University of Michigan

11. Martin, Gaven John. The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic).

Degree: PhD, Pure Sciences, 1985, University of Michigan

 This thesis is a study of three topics, each of which describes an aspect of geometry relating to the general theory of quasiconformal mappings. The… (more)

Subjects/Keywords: Geodesic; Geometry; Lipschitz; Mappings; Quasiconformal; Quasihyperbolic; Uniform

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martin, G. J. (1985). The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/127813

Chicago Manual of Style (16th Edition):

Martin, Gaven John. “The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic).” 1985. Doctoral Dissertation, University of Michigan. Accessed December 03, 2020. http://hdl.handle.net/2027.42/127813.

MLA Handbook (7th Edition):

Martin, Gaven John. “The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic).” 1985. Web. 03 Dec 2020.

Vancouver:

Martin GJ. The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic). [Internet] [Doctoral dissertation]. University of Michigan; 1985. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/2027.42/127813.

Council of Science Editors:

Martin GJ. The Geometry Of Quasiconformal Mappings (lipschitz, Geodesic, Uniform, Quasihyperbolic). [Doctoral Dissertation]. University of Michigan; 1985. Available from: http://hdl.handle.net/2027.42/127813


University of Oklahoma

12. Bhatia, Kavita Ganeshoas. Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary.

Degree: PhD, Department of Mathematics, 1997, University of Oklahoma

 Let Gρ denote the Kleinian group with presentation< T1, Ti, Eρ, E\mid[ T1, Ti]=1, [ Eρ, E]=1>.Let Ω(Gρ) be its region of discontinuity, Λ(Gρ) be… (more)

Subjects/Keywords: Topology.; Kleinian groups.; Manifolds (Mathematics); Mathematics.; Quasiconformal mappings.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bhatia, K. G. (1997). Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/5535

Chicago Manual of Style (16th Edition):

Bhatia, Kavita Ganeshoas. “Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary.” 1997. Doctoral Dissertation, University of Oklahoma. Accessed December 03, 2020. http://hdl.handle.net/11244/5535.

MLA Handbook (7th Edition):

Bhatia, Kavita Ganeshoas. “Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary.” 1997. Web. 03 Dec 2020.

Vancouver:

Bhatia KG. Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary. [Internet] [Doctoral dissertation]. University of Oklahoma; 1997. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/11244/5535.

Council of Science Editors:

Bhatia KG. Pleating coordinates for a slice of the deformation space of a hyperbolic 3-manifold with compressible boundary. [Doctoral Dissertation]. University of Oklahoma; 1997. Available from: http://hdl.handle.net/11244/5535


Universiteit Utrecht

13. Nieraeth, B. Iwaniec's Conjecture on The Beurling-Ahlfors Transform.

Degree: 2016, Universiteit Utrecht

 Inspired by Astala, Iwaniec, Prause and Saksman's partial result of Morrey's problem regarding rank-one convex and quasiconvex functions on the functionals from Burkholder's martingale theory,… (more)

Subjects/Keywords: Iwaniec; Iwaniec's Conjecture; Beurling-Ahlfors transform; Hilbert transform; Riesz transform; Quasiconformal; Quasiconvex; Rank-one convex; Morrey's problem; Morrey's conjecture; Burkholder; Burkholder functional

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nieraeth, B. (2016). Iwaniec's Conjecture on The Beurling-Ahlfors Transform. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/337691

Chicago Manual of Style (16th Edition):

Nieraeth, B. “Iwaniec's Conjecture on The Beurling-Ahlfors Transform.” 2016. Masters Thesis, Universiteit Utrecht. Accessed December 03, 2020. http://dspace.library.uu.nl:8080/handle/1874/337691.

MLA Handbook (7th Edition):

Nieraeth, B. “Iwaniec's Conjecture on The Beurling-Ahlfors Transform.” 2016. Web. 03 Dec 2020.

Vancouver:

Nieraeth B. Iwaniec's Conjecture on The Beurling-Ahlfors Transform. [Internet] [Masters thesis]. Universiteit Utrecht; 2016. [cited 2020 Dec 03]. Available from: http://dspace.library.uu.nl:8080/handle/1874/337691.

Council of Science Editors:

Nieraeth B. Iwaniec's Conjecture on The Beurling-Ahlfors Transform. [Masters Thesis]. Universiteit Utrecht; 2016. Available from: http://dspace.library.uu.nl:8080/handle/1874/337691

14. Prywes, Eden. Quasiregularly Elliptic Manifolds.

Degree: Mathematics, 2019, UCLA

 The work in this dissertation is centered around the study of quasiregularly elliptic manifolds. These are manifolds that admit quasiregular maps from Euclidean space. The… (more)

Subjects/Keywords: Mathematics; Branched Cover; Cohomology; Quasiconformal Geometry; Quasiregularly Elliptic

…is the class of quasiconformal maps. They have been studied in both dimension 2 and in… …higher dimensions. A K-quasiconformal map, for K > 1, is a homeomorphism f : Rd → Rd that is in… …on K. If K = 1, then f is conformal. Quasiconformal maps were first introduced by Grötzsch… …x5B;Gro28] in dimension 2. The study of quasiconformal and quasiregular maps in… …reference for n-dimensional quasiconformal maps is [V71] and for quasiregular maps is… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Prywes, E. (2019). Quasiregularly Elliptic Manifolds. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/7t3738qd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Prywes, Eden. “Quasiregularly Elliptic Manifolds.” 2019. Thesis, UCLA. Accessed December 03, 2020. http://www.escholarship.org/uc/item/7t3738qd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Prywes, Eden. “Quasiregularly Elliptic Manifolds.” 2019. Web. 03 Dec 2020.

Vancouver:

Prywes E. Quasiregularly Elliptic Manifolds. [Internet] [Thesis]. UCLA; 2019. [cited 2020 Dec 03]. Available from: http://www.escholarship.org/uc/item/7t3738qd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Prywes E. Quasiregularly Elliptic Manifolds. [Thesis]. UCLA; 2019. Available from: http://www.escholarship.org/uc/item/7t3738qd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

15. Timsit, Robin. Homéomorphismes quasiconformes extrémaux et différentielles quadratiques en géométrie CR sphérique : Extremal quasiconformal maps and quadratic differentials in spherical CR geometry.

Degree: Docteur es, Mathématiques, 2018, Sorbonne université

Dans cette thèse, on s’intéresse à l’idée d’homéomorphismes de Teichmüller dans le cadre de la géométrie CR sphérique de dimension 3. On en considère alors… (more)

Subjects/Keywords: Homéomorphismes quasiconformes extrémaux; Différentielles quadratiques; Modules de familles de courbes; Groupe de Heisenberg; Géométrie CR sphérique; Variétés CR; Extremal quasiconformal maps; Quadratic differentials; Modulus of curve families; 516.36

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Timsit, R. (2018). Homéomorphismes quasiconformes extrémaux et différentielles quadratiques en géométrie CR sphérique : Extremal quasiconformal maps and quadratic differentials in spherical CR geometry. (Doctoral Dissertation). Sorbonne université. Retrieved from http://www.theses.fr/2018SORUS602

Chicago Manual of Style (16th Edition):

Timsit, Robin. “Homéomorphismes quasiconformes extrémaux et différentielles quadratiques en géométrie CR sphérique : Extremal quasiconformal maps and quadratic differentials in spherical CR geometry.” 2018. Doctoral Dissertation, Sorbonne université. Accessed December 03, 2020. http://www.theses.fr/2018SORUS602.

MLA Handbook (7th Edition):

Timsit, Robin. “Homéomorphismes quasiconformes extrémaux et différentielles quadratiques en géométrie CR sphérique : Extremal quasiconformal maps and quadratic differentials in spherical CR geometry.” 2018. Web. 03 Dec 2020.

Vancouver:

Timsit R. Homéomorphismes quasiconformes extrémaux et différentielles quadratiques en géométrie CR sphérique : Extremal quasiconformal maps and quadratic differentials in spherical CR geometry. [Internet] [Doctoral dissertation]. Sorbonne université; 2018. [cited 2020 Dec 03]. Available from: http://www.theses.fr/2018SORUS602.

Council of Science Editors:

Timsit R. Homéomorphismes quasiconformes extrémaux et différentielles quadratiques en géométrie CR sphérique : Extremal quasiconformal maps and quadratic differentials in spherical CR geometry. [Doctoral Dissertation]. Sorbonne université; 2018. Available from: http://www.theses.fr/2018SORUS602


Univerzitet u Beogradu

16. Knežević, Miljan V., 1973-. Хармонијска и квазиконформна пресликавања, квази-изометрије и кривина.

Degree: Matematički fakultet, 2016, Univerzitet u Beogradu

Matematika - Kompleksna analiza / Mathematics - Complex analysis

U ovoj tezi se razmatraju različite osobine običnih harmonijskih preslikavanja, kvazikonformnih preslikavanja i harmonijskih preslikavanja u… (more)

Subjects/Keywords: quasiconformal mapping; harmonic mapping; Riemann surface; universal covering; conformal metric; Gaussian curvature; hyperbolic density; hyperbolic length; hyperbolic distance; hyperbolic derivative; quadratic differential; quasiisometry; Lipschitz i co-Lipschitz mapping

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Knežević, Miljan V., 1. (2016). Хармонијска и квазиконформна пресликавања, квази-изометрије и кривина. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:11781/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Knežević, Miljan V., 1973-. “Хармонијска и квазиконформна пресликавања, квази-изометрије и кривина.” 2016. Thesis, Univerzitet u Beogradu. Accessed December 03, 2020. https://fedorabg.bg.ac.rs/fedora/get/o:11781/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Knežević, Miljan V., 1973-. “Хармонијска и квазиконформна пресликавања, квази-изометрије и кривина.” 2016. Web. 03 Dec 2020.

Vancouver:

Knežević, Miljan V. 1. Хармонијска и квазиконформна пресликавања, квази-изометрије и кривина. [Internet] [Thesis]. Univerzitet u Beogradu; 2016. [cited 2020 Dec 03]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11781/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Knežević, Miljan V. 1. Хармонијска и квазиконформна пресликавања, квази-изометрије и кривина. [Thesis]. Univerzitet u Beogradu; 2016. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11781/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

17. Platis, Ioannis. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.

Degree: 2000, University of Crete (UOC); Πανεπιστήμιο Κρήτης

 Μελετάται η γεωμετρία του χώρου των Quasi-fuchsian παραμορφώσεων QF(S) μιας επιφάνειας S. Η διατριβή χωρίζεται σε δύο μέρη. Στο πρώτο μέρος εξετάζεται η μιγαδική συμπλεκτική… (more)

Subjects/Keywords: Ομάδες Klein; Quasiconformal απεικονίσεις; Riemann επιφάνειες; Teichmuller χώροι; Quasifuchsian χώροι; Μιγαδική συμπλεκτική γεωμετρία; Weil-Peterson γεωμετρία; Kleinian groups; Quasiconformal mappings; Riemann surfaces; Teichmuller space; Weil-Petersson geometry; Quasifuchsian space; Complex symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Platis, I. (2000). Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. (Thesis). University of Crete (UOC); Πανεπιστήμιο Κρήτης. Retrieved from http://hdl.handle.net/10442/hedi/31904

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Platis, Ioannis. “Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.” 2000. Thesis, University of Crete (UOC); Πανεπιστήμιο Κρήτης. Accessed December 03, 2020. http://hdl.handle.net/10442/hedi/31904.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Platis, Ioannis. “Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.” 2000. Web. 03 Dec 2020.

Vancouver:

Platis I. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. [Internet] [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10442/hedi/31904.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Platis I. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. Available from: http://hdl.handle.net/10442/hedi/31904

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

18. Lytle, George H. APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM.

Degree: 2019, University of Kentucky

 In 2014, Astala, Päivärinta, Reyes, and Siltanen conducted numerical experiments reconstructing a piecewise continuous conductivity. The algorithm of the shortcut method is based on the… (more)

Subjects/Keywords: inverse problem; Calderón problem; Beltrami equation; Complex Geometric Optics solutions; quasiconformal mappings; Analysis; Partial Differential Equations

…theory of quasiconformal maps to conclude that ϕ exists and is a homeomorphism. For our class… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lytle, G. H. (2019). APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/61

Chicago Manual of Style (16th Edition):

Lytle, George H. “APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM.” 2019. Doctoral Dissertation, University of Kentucky. Accessed December 03, 2020. https://uknowledge.uky.edu/math_etds/61.

MLA Handbook (7th Edition):

Lytle, George H. “APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM.” 2019. Web. 03 Dec 2020.

Vancouver:

Lytle GH. APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM. [Internet] [Doctoral dissertation]. University of Kentucky; 2019. [cited 2020 Dec 03]. Available from: https://uknowledge.uky.edu/math_etds/61.

Council of Science Editors:

Lytle GH. APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM. [Doctoral Dissertation]. University of Kentucky; 2019. Available from: https://uknowledge.uky.edu/math_etds/61

19. Medwid, Mark Edward. Rigidity of Quasiconformal Maps on Carnot Groups.

Degree: PhD, Mathematics, 2017, Bowling Green State University

Quasiconformal mappings were first utilized by Grotzsch in the 1920’s and then later named by Ahlfors in the 1930’s. The conformal mappings one studies in… (more)

Subjects/Keywords: Mathematics; quasiconformal mappings; rigidity; Carnot groups; Lie groups; Lie algebras; quasisymmetric mappings; analysis on metric spaces

quasiconformal analysis is used in several branches of mathematics, it is through geometric group… …theory that the author was first exposed to the study of quasiconformal mappings. Details for… …author’s main result we need also develop some tools of basic quasiconformal analysis and Pansu… …somewhat nice way. This concept of “quasiconformal mapping” was first introduced in 1928 by H… …Grötzsch which was later given the name “quasiconformal” in the famous work by Ahlfors (1935… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Medwid, M. E. (2017). Rigidity of Quasiconformal Maps on Carnot Groups. (Doctoral Dissertation). Bowling Green State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104

Chicago Manual of Style (16th Edition):

Medwid, Mark Edward. “Rigidity of Quasiconformal Maps on Carnot Groups.” 2017. Doctoral Dissertation, Bowling Green State University. Accessed December 03, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104.

MLA Handbook (7th Edition):

Medwid, Mark Edward. “Rigidity of Quasiconformal Maps on Carnot Groups.” 2017. Web. 03 Dec 2020.

Vancouver:

Medwid ME. Rigidity of Quasiconformal Maps on Carnot Groups. [Internet] [Doctoral dissertation]. Bowling Green State University; 2017. [cited 2020 Dec 03]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104.

Council of Science Editors:

Medwid ME. Rigidity of Quasiconformal Maps on Carnot Groups. [Doctoral Dissertation]. Bowling Green State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104

20. Gardiner, Christopher James. Quasiconformal maps on a 2-step Carnot group.

Degree: MA, Mathematics, 2017, Bowling Green State University

 In this paper, we find all the quasiconformal maps on a particular non-rigid 2-step Carnot group. In particular, all quasiconformal maps on this Carnot group… (more)

Subjects/Keywords: Mathematics; Algebra; Linear algebra; Analysis; Calculus; Lie algebra; Carnot group; Quasiconformal; Quasisymmetric; biLipschitz; Pansu differentiability; graded isomorphism

…what quasiconformal mappings do to left cosets. Ultimately, this helps us to identify the… …form of any quasiconformal mapping on n. 7 CHAPTER 2 MAPPINGS ON LIE ALGEBRAS 2.1 Lie… …are important to the discussion of the Pansu differential of a quasiconformal map, but first… …Otherwise, A isn’t a linear isomoprhism.) 9 2.3 Quasiconformal maps Our overarching goal is… …to give the form of any quasiconformal map on n. To do so, we need to make use of some… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gardiner, C. J. (2017). Quasiconformal maps on a 2-step Carnot group. (Masters Thesis). Bowling Green State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1498487423057279

Chicago Manual of Style (16th Edition):

Gardiner, Christopher James. “Quasiconformal maps on a 2-step Carnot group.” 2017. Masters Thesis, Bowling Green State University. Accessed December 03, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1498487423057279.

MLA Handbook (7th Edition):

Gardiner, Christopher James. “Quasiconformal maps on a 2-step Carnot group.” 2017. Web. 03 Dec 2020.

Vancouver:

Gardiner CJ. Quasiconformal maps on a 2-step Carnot group. [Internet] [Masters thesis]. Bowling Green State University; 2017. [cited 2020 Dec 03]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1498487423057279.

Council of Science Editors:

Gardiner CJ. Quasiconformal maps on a 2-step Carnot group. [Masters Thesis]. Bowling Green State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1498487423057279

21. Prats Soler, Martí. Singular integral operators on sobolev spaces on domains and quasiconformal mappings.

Degree: Departament de Matemàtiques, 2015, Universitat Autònoma de Barcelona

 In this dissertation some new results on the boundedness of Calderón-Zygmund operators on Sobolev spaces on domains in Rd. First a T(P)-theorem is obtained which… (more)

Subjects/Keywords: Operadors de Calderón-Zygmund; Calderón-Zygmund operators; Operadores de Calderón-Zygmund; Aplicacions quasiconformes; Quasiconformal mappings; Apliaciones casiconformes; Espais de Sobolev; Sobolev spaces; Espacios de Sobolev; Ciències Experimentals; 517

…application to quasiconformal mappings Some tools . . . . . . . . . . . . . . . . . . . A Fredholm… …application to quasiconformal mappings Let µ P L8 be compactly supported in C with k : }µ}… …almost every z P C. Such a function f is said to be a K-quasiconformal mapping if it is a… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Prats Soler, M. (2015). Singular integral operators on sobolev spaces on domains and quasiconformal mappings. (Thesis). Universitat Autònoma de Barcelona. Retrieved from http://hdl.handle.net/10803/314193

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Prats Soler, Martí. “Singular integral operators on sobolev spaces on domains and quasiconformal mappings.” 2015. Thesis, Universitat Autònoma de Barcelona. Accessed December 03, 2020. http://hdl.handle.net/10803/314193.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Prats Soler, Martí. “Singular integral operators on sobolev spaces on domains and quasiconformal mappings.” 2015. Web. 03 Dec 2020.

Vancouver:

Prats Soler M. Singular integral operators on sobolev spaces on domains and quasiconformal mappings. [Internet] [Thesis]. Universitat Autònoma de Barcelona; 2015. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10803/314193.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Prats Soler M. Singular integral operators on sobolev spaces on domains and quasiconformal mappings. [Thesis]. Universitat Autònoma de Barcelona; 2015. Available from: http://hdl.handle.net/10803/314193

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.