Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Quadratic fields). Showing records 1 – 30 of 35 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

▼ Search Limiters

1. Hamby, Paula J. Enumeration of quadratic forms over totally real fields.

Degree: 2012, NC Docks

 Let F be a real quadratic field with OF its ring of integers. Let f be a quadratic form over F with discriminant D. Using… (more)

Subjects/Keywords: Forms, Quadratic; Quadratic fields; Algebraic number theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hamby, P. J. (2012). Enumeration of quadratic forms over totally real fields. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/uncg/f/Hamby_uncg_0154M_11096.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hamby, Paula J. “Enumeration of quadratic forms over totally real fields.” 2012. Thesis, NC Docks. Accessed July 15, 2020. http://libres.uncg.edu/ir/uncg/f/Hamby_uncg_0154M_11096.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hamby, Paula J. “Enumeration of quadratic forms over totally real fields.” 2012. Web. 15 Jul 2020.

Vancouver:

Hamby PJ. Enumeration of quadratic forms over totally real fields. [Internet] [Thesis]. NC Docks; 2012. [cited 2020 Jul 15]. Available from: http://libres.uncg.edu/ir/uncg/f/Hamby_uncg_0154M_11096.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hamby PJ. Enumeration of quadratic forms over totally real fields. [Thesis]. NC Docks; 2012. Available from: http://libres.uncg.edu/ir/uncg/f/Hamby_uncg_0154M_11096.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Arizona

2. Marsh, Donald Burr, 1926-. A study of some extensions of a quadratic field .

Degree: 1948, University of Arizona

Subjects/Keywords: Algebraic fields.; Quadratic fields.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marsh, Donald Burr, 1. (1948). A study of some extensions of a quadratic field . (Masters Thesis). University of Arizona. Retrieved from http://hdl.handle.net/10150/319183

Chicago Manual of Style (16th Edition):

Marsh, Donald Burr, 1926-. “A study of some extensions of a quadratic field .” 1948. Masters Thesis, University of Arizona. Accessed July 15, 2020. http://hdl.handle.net/10150/319183.

MLA Handbook (7th Edition):

Marsh, Donald Burr, 1926-. “A study of some extensions of a quadratic field .” 1948. Web. 15 Jul 2020.

Vancouver:

Marsh, Donald Burr 1. A study of some extensions of a quadratic field . [Internet] [Masters thesis]. University of Arizona; 1948. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10150/319183.

Council of Science Editors:

Marsh, Donald Burr 1. A study of some extensions of a quadratic field . [Masters Thesis]. University of Arizona; 1948. Available from: http://hdl.handle.net/10150/319183


University of North Texas

3. Jacobs, G. Tony. Reduced Ideals and Periodic Sequences in Pure Cubic Fields.

Degree: 2015, University of North Texas

 The “infrastructure” of quadratic fields is a body of theory developed by Dan Shanks, Richard Mollin and others, in which they relate “reduced ideals” in… (more)

Subjects/Keywords: continued fractions; cubic fields; Diophantine approximation; Quadratic fields.; Algebraic fields.; Diophantine approximation.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jacobs, G. T. (2015). Reduced Ideals and Periodic Sequences in Pure Cubic Fields. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc804842/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jacobs, G Tony. “Reduced Ideals and Periodic Sequences in Pure Cubic Fields.” 2015. Thesis, University of North Texas. Accessed July 15, 2020. https://digital.library.unt.edu/ark:/67531/metadc804842/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jacobs, G Tony. “Reduced Ideals and Periodic Sequences in Pure Cubic Fields.” 2015. Web. 15 Jul 2020.

Vancouver:

Jacobs GT. Reduced Ideals and Periodic Sequences in Pure Cubic Fields. [Internet] [Thesis]. University of North Texas; 2015. [cited 2020 Jul 15]. Available from: https://digital.library.unt.edu/ark:/67531/metadc804842/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jacobs GT. Reduced Ideals and Periodic Sequences in Pure Cubic Fields. [Thesis]. University of North Texas; 2015. Available from: https://digital.library.unt.edu/ark:/67531/metadc804842/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Toronto

4. Dahl, Alexander Oswald. On Moments of Class Numbers of Real Quadratic Fields.

Degree: 2010, University of Toronto

Class numbers of algebraic number fields are central invariants. Once the underlying field has an infinite unit group they behave very irregularly due to a… (more)

Subjects/Keywords: analytic number theory; real quadratic fields; binary quadratic forms; class group moments; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dahl, A. O. (2010). On Moments of Class Numbers of Real Quadratic Fields. (Masters Thesis). University of Toronto. Retrieved from http://hdl.handle.net/1807/24553

Chicago Manual of Style (16th Edition):

Dahl, Alexander Oswald. “On Moments of Class Numbers of Real Quadratic Fields.” 2010. Masters Thesis, University of Toronto. Accessed July 15, 2020. http://hdl.handle.net/1807/24553.

MLA Handbook (7th Edition):

Dahl, Alexander Oswald. “On Moments of Class Numbers of Real Quadratic Fields.” 2010. Web. 15 Jul 2020.

Vancouver:

Dahl AO. On Moments of Class Numbers of Real Quadratic Fields. [Internet] [Masters thesis]. University of Toronto; 2010. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/1807/24553.

Council of Science Editors:

Dahl AO. On Moments of Class Numbers of Real Quadratic Fields. [Masters Thesis]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/24553


The Ohio State University

5. Brink, James Robert. The class field tower for imaginary quadratic number fields of type (3,3).

Degree: PhD, Graduate School, 1984, The Ohio State University

Subjects/Keywords: Mathematics; Quadratic fields; Hilbert schemes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brink, J. R. (1984). The class field tower for imaginary quadratic number fields of type (3,3). (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256826305243

Chicago Manual of Style (16th Edition):

Brink, James Robert. “The class field tower for imaginary quadratic number fields of type (3,3).” 1984. Doctoral Dissertation, The Ohio State University. Accessed July 15, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256826305243.

MLA Handbook (7th Edition):

Brink, James Robert. “The class field tower for imaginary quadratic number fields of type (3,3).” 1984. Web. 15 Jul 2020.

Vancouver:

Brink JR. The class field tower for imaginary quadratic number fields of type (3,3). [Internet] [Doctoral dissertation]. The Ohio State University; 1984. [cited 2020 Jul 15]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256826305243.

Council of Science Editors:

Brink JR. The class field tower for imaginary quadratic number fields of type (3,3). [Doctoral Dissertation]. The Ohio State University; 1984. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256826305243


Brigham Young University

6. Priddis, Nathan C. Some Congruence Properties of Pell's Equation.

Degree: MS, 2009, Brigham Young University

In this thesis I will outline the impact of Pell's equation on various branches of number theory, as well as some of the history. I will also discuss some recently discovered properties of the solutions of Pell's equation.

Subjects/Keywords: Pell's equation; Quadratic fields; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Priddis, N. C. (2009). Some Congruence Properties of Pell's Equation. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2797&context=etd

Chicago Manual of Style (16th Edition):

Priddis, Nathan C. “Some Congruence Properties of Pell's Equation.” 2009. Masters Thesis, Brigham Young University. Accessed July 15, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2797&context=etd.

MLA Handbook (7th Edition):

Priddis, Nathan C. “Some Congruence Properties of Pell's Equation.” 2009. Web. 15 Jul 2020.

Vancouver:

Priddis NC. Some Congruence Properties of Pell's Equation. [Internet] [Masters thesis]. Brigham Young University; 2009. [cited 2020 Jul 15]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2797&context=etd.

Council of Science Editors:

Priddis NC. Some Congruence Properties of Pell's Equation. [Masters Thesis]. Brigham Young University; 2009. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2797&context=etd


McGill University

7. Chapdelaine, Hugo. Elliptic units in ray class fields of real quadratic number fields.

Degree: PhD, Department of Mathematics and Statistics., 2007, McGill University

 Let K be a real quadratic number field. Let p be a prime which is inert in K. We denote the completion of K at… (more)

Subjects/Keywords: Quadratic fields.; Eisenstein series.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chapdelaine, H. (2007). Elliptic units in ray class fields of real quadratic number fields. (Doctoral Dissertation). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile102967.pdf

Chicago Manual of Style (16th Edition):

Chapdelaine, Hugo. “Elliptic units in ray class fields of real quadratic number fields.” 2007. Doctoral Dissertation, McGill University. Accessed July 15, 2020. http://digitool.library.mcgill.ca/thesisfile102967.pdf.

MLA Handbook (7th Edition):

Chapdelaine, Hugo. “Elliptic units in ray class fields of real quadratic number fields.” 2007. Web. 15 Jul 2020.

Vancouver:

Chapdelaine H. Elliptic units in ray class fields of real quadratic number fields. [Internet] [Doctoral dissertation]. McGill University; 2007. [cited 2020 Jul 15]. Available from: http://digitool.library.mcgill.ca/thesisfile102967.pdf.

Council of Science Editors:

Chapdelaine H. Elliptic units in ray class fields of real quadratic number fields. [Doctoral Dissertation]. McGill University; 2007. Available from: http://digitool.library.mcgill.ca/thesisfile102967.pdf


University of North Carolina – Greensboro

8. Everhart, Lance M. On generators of Hilbert modular groups of totally real number fields.

Degree: 2016, University of North Carolina – Greensboro

 In this paper we report the beginnings of the computations and tabulations of the generators of \PSL2(\OK), where \OK is the maximal order of a… (more)

Subjects/Keywords: Hilbert modules; Modular groups; Quadratic fields; Numbers, Real

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Everhart, L. M. (2016). On generators of Hilbert modular groups of totally real number fields. (Masters Thesis). University of North Carolina – Greensboro. Retrieved from http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=21341

Chicago Manual of Style (16th Edition):

Everhart, Lance M. “On generators of Hilbert modular groups of totally real number fields.” 2016. Masters Thesis, University of North Carolina – Greensboro. Accessed July 15, 2020. http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=21341.

MLA Handbook (7th Edition):

Everhart, Lance M. “On generators of Hilbert modular groups of totally real number fields.” 2016. Web. 15 Jul 2020.

Vancouver:

Everhart LM. On generators of Hilbert modular groups of totally real number fields. [Internet] [Masters thesis]. University of North Carolina – Greensboro; 2016. [cited 2020 Jul 15]. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=21341.

Council of Science Editors:

Everhart LM. On generators of Hilbert modular groups of totally real number fields. [Masters Thesis]. University of North Carolina – Greensboro; 2016. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=21341


Columbia University

9. Lee, Pak Hin. p-adic L-functions for non-critical adjoint L-values.

Degree: 2019, Columbia University

 Let K be an imaginary quadratic field, with associated quadratic character α. We construct an analytic p-adic L-function interpolating the special values L(1, ad(f) ⊗… (more)

Subjects/Keywords: Mathematics; Forms, Modular; p-adic numbers; Cohomology operations; Quadratic fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, P. H. (2019). p-adic L-functions for non-critical adjoint L-values. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/d8-rvn9-r814

Chicago Manual of Style (16th Edition):

Lee, Pak Hin. “p-adic L-functions for non-critical adjoint L-values.” 2019. Doctoral Dissertation, Columbia University. Accessed July 15, 2020. https://doi.org/10.7916/d8-rvn9-r814.

MLA Handbook (7th Edition):

Lee, Pak Hin. “p-adic L-functions for non-critical adjoint L-values.” 2019. Web. 15 Jul 2020.

Vancouver:

Lee PH. p-adic L-functions for non-critical adjoint L-values. [Internet] [Doctoral dissertation]. Columbia University; 2019. [cited 2020 Jul 15]. Available from: https://doi.org/10.7916/d8-rvn9-r814.

Council of Science Editors:

Lee PH. p-adic L-functions for non-critical adjoint L-values. [Doctoral Dissertation]. Columbia University; 2019. Available from: https://doi.org/10.7916/d8-rvn9-r814


Michigan State University

10. Englund, Timothy F. (Timothy Frederick). Quadratic representations for groups of Lie type over fields of characteristic two.

Degree: PhD, Department of Mathemataics, 1997, Michigan State University

Subjects/Keywords: Lie groups; Quadratic fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Englund, T. F. (. F. (1997). Quadratic representations for groups of Lie type over fields of characteristic two. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:30055

Chicago Manual of Style (16th Edition):

Englund, Timothy F (Timothy Frederick). “Quadratic representations for groups of Lie type over fields of characteristic two.” 1997. Doctoral Dissertation, Michigan State University. Accessed July 15, 2020. http://etd.lib.msu.edu/islandora/object/etd:30055.

MLA Handbook (7th Edition):

Englund, Timothy F (Timothy Frederick). “Quadratic representations for groups of Lie type over fields of characteristic two.” 1997. Web. 15 Jul 2020.

Vancouver:

Englund TF(F. Quadratic representations for groups of Lie type over fields of characteristic two. [Internet] [Doctoral dissertation]. Michigan State University; 1997. [cited 2020 Jul 15]. Available from: http://etd.lib.msu.edu/islandora/object/etd:30055.

Council of Science Editors:

Englund TF(F. Quadratic representations for groups of Lie type over fields of characteristic two. [Doctoral Dissertation]. Michigan State University; 1997. Available from: http://etd.lib.msu.edu/islandora/object/etd:30055

11. Everhart, Lance M. On generators of Hilbert modular groups of totally real number fields.

Degree: 2016, NC Docks

 In this paper we report the beginnings of the computations and tabulations of the generators of \PSL2(\OK), where \OK is the maximal order of a… (more)

Subjects/Keywords: Hilbert modules; Modular groups; Quadratic fields; Numbers, Real

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Everhart, L. M. (2016). On generators of Hilbert modular groups of totally real number fields. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/uncg/f/Everhart_uncg_0154M_11992.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Everhart, Lance M. “On generators of Hilbert modular groups of totally real number fields.” 2016. Thesis, NC Docks. Accessed July 15, 2020. http://libres.uncg.edu/ir/uncg/f/Everhart_uncg_0154M_11992.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Everhart, Lance M. “On generators of Hilbert modular groups of totally real number fields.” 2016. Web. 15 Jul 2020.

Vancouver:

Everhart LM. On generators of Hilbert modular groups of totally real number fields. [Internet] [Thesis]. NC Docks; 2016. [cited 2020 Jul 15]. Available from: http://libres.uncg.edu/ir/uncg/f/Everhart_uncg_0154M_11992.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Everhart LM. On generators of Hilbert modular groups of totally real number fields. [Thesis]. NC Docks; 2016. Available from: http://libres.uncg.edu/ir/uncg/f/Everhart_uncg_0154M_11992.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

12. Hamby, Paula J. Enumeration of quadratic forms over totally real fields.

Degree: 2012, University of North Carolina – Greensboro

 Let F be a real quadratic field with OF its ring of integers. Let f be a quadratic form over F with discriminant D. Using… (more)

Subjects/Keywords: Forms, Quadratic; Quadratic fields; Algebraic number theory

…forms over totally real number fields. 4 1.2 Reduction Theory of Binary Quadratic Forms… …quadratic fields. 30 CHAPTER V ENUMERATING FORMS In the last chapter, we showed that there are… …over real quadratic fields. Then that means that if we fix a discriminant D and a totally… …where x1 , x2 ∈ OF . Definition I.4. The discriminant D of a binary quadratic form, f… …7. Two F-integral binary quadratic forms f and g are equivalent, denoted f ∼ g, if there… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hamby, P. J. (2012). Enumeration of quadratic forms over totally real fields. (Masters Thesis). University of North Carolina – Greensboro. Retrieved from http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=9421

Chicago Manual of Style (16th Edition):

Hamby, Paula J. “Enumeration of quadratic forms over totally real fields.” 2012. Masters Thesis, University of North Carolina – Greensboro. Accessed July 15, 2020. http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=9421.

MLA Handbook (7th Edition):

Hamby, Paula J. “Enumeration of quadratic forms over totally real fields.” 2012. Web. 15 Jul 2020.

Vancouver:

Hamby PJ. Enumeration of quadratic forms over totally real fields. [Internet] [Masters thesis]. University of North Carolina – Greensboro; 2012. [cited 2020 Jul 15]. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=9421.

Council of Science Editors:

Hamby PJ. Enumeration of quadratic forms over totally real fields. [Masters Thesis]. University of North Carolina – Greensboro; 2012. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=9421

13. Moro, Eliton Mendonça [UNESP]. Códigos de bloco espaço-temporais via corpos quadráticos.

Degree: 2017, Universidade Estadual Paulista

Os sistemas de comunicação com Múltiplas Entradas e Múltiplas Saídas (MIMO), são sistemas constituídos por estruturas que utilizam várias antenas, tanto no transmissor como no… (more)

Subjects/Keywords: Determinante mínimo; Corpos quadráticos; Códigos de bloco; Minimum determinant; Quadratic fields; Block codes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moro, E. M. [. (2017). Códigos de bloco espaço-temporais via corpos quadráticos. (Thesis). Universidade Estadual Paulista. Retrieved from http://hdl.handle.net/11449/148757

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Moro, Eliton Mendonça [UNESP]. “Códigos de bloco espaço-temporais via corpos quadráticos.” 2017. Thesis, Universidade Estadual Paulista. Accessed July 15, 2020. http://hdl.handle.net/11449/148757.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Moro, Eliton Mendonça [UNESP]. “Códigos de bloco espaço-temporais via corpos quadráticos.” 2017. Web. 15 Jul 2020.

Vancouver:

Moro EM[. Códigos de bloco espaço-temporais via corpos quadráticos. [Internet] [Thesis]. Universidade Estadual Paulista; 2017. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/11449/148757.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Moro EM[. Códigos de bloco espaço-temporais via corpos quadráticos. [Thesis]. Universidade Estadual Paulista; 2017. Available from: http://hdl.handle.net/11449/148757

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


RMIT University

14. Magowe, K. Blind localization of radio emitters in wireless communications.

Degree: 2017, RMIT University

 The proliferation of wireless services is expected to increase the demand for radio spectrum in the foreseeable future. Given the limitations of the radio spectrum,… (more)

Subjects/Keywords: Fields of Research; Blind Localization; Performance Analysis; Statistical Signal Processing; Cognitive Radios; Quadratic Forms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Magowe, K. (2017). Blind localization of radio emitters in wireless communications. (Thesis). RMIT University. Retrieved from http://researchbank.rmit.edu.au/view/rmit:162211

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Magowe, K. “Blind localization of radio emitters in wireless communications.” 2017. Thesis, RMIT University. Accessed July 15, 2020. http://researchbank.rmit.edu.au/view/rmit:162211.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Magowe, K. “Blind localization of radio emitters in wireless communications.” 2017. Web. 15 Jul 2020.

Vancouver:

Magowe K. Blind localization of radio emitters in wireless communications. [Internet] [Thesis]. RMIT University; 2017. [cited 2020 Jul 15]. Available from: http://researchbank.rmit.edu.au/view/rmit:162211.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Magowe K. Blind localization of radio emitters in wireless communications. [Thesis]. RMIT University; 2017. Available from: http://researchbank.rmit.edu.au/view/rmit:162211

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade Estadual de Campinas

15. Angelo Papa Neto. Rigid elements, valuations and structure of Witt rings.

Degree: Instituto de Matemática, Estatística e Computação Científica, 2007, Universidade Estadual de Campinas

An ordered field is an algebraic structure like the field of real numbers. However, while the field of real numbers have only one ordering, an… (more)

Subjects/Keywords: Formas quadraticas; Formally real fields; Witt rings; Aneis de; Quadratic forms; Witt; Corpos formalmente reais

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Neto, A. P. (2007). Rigid elements, valuations and structure of Witt rings. (Thesis). Universidade Estadual de Campinas. Retrieved from http://libdigi.unicamp.br/document/?code=vtls000415821

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Neto, Angelo Papa. “Rigid elements, valuations and structure of Witt rings.” 2007. Thesis, Universidade Estadual de Campinas. Accessed July 15, 2020. http://libdigi.unicamp.br/document/?code=vtls000415821.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Neto, Angelo Papa. “Rigid elements, valuations and structure of Witt rings.” 2007. Web. 15 Jul 2020.

Vancouver:

Neto AP. Rigid elements, valuations and structure of Witt rings. [Internet] [Thesis]. Universidade Estadual de Campinas; 2007. [cited 2020 Jul 15]. Available from: http://libdigi.unicamp.br/document/?code=vtls000415821.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Neto AP. Rigid elements, valuations and structure of Witt rings. [Thesis]. Universidade Estadual de Campinas; 2007. Available from: http://libdigi.unicamp.br/document/?code=vtls000415821

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

16. Hamilton, James C. Ideals in Quadratic Number Fields.

Degree: 1971, North Texas State University

 The purpose of this thesis is to investigate the properties of ideals in quadratic number fields, A field F is said to be an algebraic… (more)

Subjects/Keywords: theory of ideals; quadratic number fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hamilton, J. C. (1971). Ideals in Quadratic Number Fields. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc131365/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hamilton, James C. “Ideals in Quadratic Number Fields.” 1971. Thesis, North Texas State University. Accessed July 15, 2020. https://digital.library.unt.edu/ark:/67531/metadc131365/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hamilton, James C. “Ideals in Quadratic Number Fields.” 1971. Web. 15 Jul 2020.

Vancouver:

Hamilton JC. Ideals in Quadratic Number Fields. [Internet] [Thesis]. North Texas State University; 1971. [cited 2020 Jul 15]. Available from: https://digital.library.unt.edu/ark:/67531/metadc131365/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hamilton JC. Ideals in Quadratic Number Fields. [Thesis]. North Texas State University; 1971. Available from: https://digital.library.unt.edu/ark:/67531/metadc131365/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Stellenbosch University

17. Razakarinoro, Faratiana Brice. Explicit bound on Siegel zeros of imaginary quadratic fields.

Degree: MSc, Mathematical Sciences, 2019, Stellenbosch University

ENGLISH ABSTRACT: Please refer to full text for abstract.

AFRIKAANSE OPSOMMING: Raadpleeg asseblief volteks vir opsomming.

Masters

Advisors/Committee Members: Ralaivaosaona, Dimbinaina, Stellenbosch University. Faculty of Science. Dept. of Mathematical Sciences..

Subjects/Keywords: Riemann Hypothesis; Quadratic fields; Siegel domains; Dirichlet problem; L-functions; Siegel zeros; UCTD

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Razakarinoro, F. B. (2019). Explicit bound on Siegel zeros of imaginary quadratic fields. (Masters Thesis). Stellenbosch University. Retrieved from http://hdl.handle.net/10019.1/107160

Chicago Manual of Style (16th Edition):

Razakarinoro, Faratiana Brice. “Explicit bound on Siegel zeros of imaginary quadratic fields.” 2019. Masters Thesis, Stellenbosch University. Accessed July 15, 2020. http://hdl.handle.net/10019.1/107160.

MLA Handbook (7th Edition):

Razakarinoro, Faratiana Brice. “Explicit bound on Siegel zeros of imaginary quadratic fields.” 2019. Web. 15 Jul 2020.

Vancouver:

Razakarinoro FB. Explicit bound on Siegel zeros of imaginary quadratic fields. [Internet] [Masters thesis]. Stellenbosch University; 2019. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10019.1/107160.

Council of Science Editors:

Razakarinoro FB. Explicit bound on Siegel zeros of imaginary quadratic fields. [Masters Thesis]. Stellenbosch University; 2019. Available from: http://hdl.handle.net/10019.1/107160


University of Arizona

18. Nymann, James Eugene, 1938-. IDEAL STRUCTURE OF RELATIVE QUADRATIC FIELDS ARISING FROM FIXED POINTS OFTHE HILBERT MODULAR GROUP .

Degree: 1965, University of Arizona

Subjects/Keywords: Riemann surfaces.; Hilbert modules.; Quadratic fields.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nymann, James Eugene, 1. (1965). IDEAL STRUCTURE OF RELATIVE QUADRATIC FIELDS ARISING FROM FIXED POINTS OFTHE HILBERT MODULAR GROUP . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/284618

Chicago Manual of Style (16th Edition):

Nymann, James Eugene, 1938-. “IDEAL STRUCTURE OF RELATIVE QUADRATIC FIELDS ARISING FROM FIXED POINTS OFTHE HILBERT MODULAR GROUP .” 1965. Doctoral Dissertation, University of Arizona. Accessed July 15, 2020. http://hdl.handle.net/10150/284618.

MLA Handbook (7th Edition):

Nymann, James Eugene, 1938-. “IDEAL STRUCTURE OF RELATIVE QUADRATIC FIELDS ARISING FROM FIXED POINTS OFTHE HILBERT MODULAR GROUP .” 1965. Web. 15 Jul 2020.

Vancouver:

Nymann, James Eugene 1. IDEAL STRUCTURE OF RELATIVE QUADRATIC FIELDS ARISING FROM FIXED POINTS OFTHE HILBERT MODULAR GROUP . [Internet] [Doctoral dissertation]. University of Arizona; 1965. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10150/284618.

Council of Science Editors:

Nymann, James Eugene 1. IDEAL STRUCTURE OF RELATIVE QUADRATIC FIELDS ARISING FROM FIXED POINTS OFTHE HILBERT MODULAR GROUP . [Doctoral Dissertation]. University of Arizona; 1965. Available from: http://hdl.handle.net/10150/284618


Colorado School of Mines

19. Appapogu, Rahul Dev. Autonomous navigation in GPS denied environments using MPC and LQR with potential field based obstacle avoidance.

Degree: MS(M.S.), Mechanical Engineering, 2019, Colorado School of Mines

 Workers in mining industry are posed with hazardous environments due to the nature of the work inside a mine. Gas leaks, explosions, rock falls, entrapment,… (more)

Subjects/Keywords: Linear quadratic regulator; Obstacle avoidance; Autonomous navigation; Potential fields; Model predictive control

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Appapogu, R. D. (2019). Autonomous navigation in GPS denied environments using MPC and LQR with potential field based obstacle avoidance. (Masters Thesis). Colorado School of Mines. Retrieved from http://hdl.handle.net/11124/172896

Chicago Manual of Style (16th Edition):

Appapogu, Rahul Dev. “Autonomous navigation in GPS denied environments using MPC and LQR with potential field based obstacle avoidance.” 2019. Masters Thesis, Colorado School of Mines. Accessed July 15, 2020. http://hdl.handle.net/11124/172896.

MLA Handbook (7th Edition):

Appapogu, Rahul Dev. “Autonomous navigation in GPS denied environments using MPC and LQR with potential field based obstacle avoidance.” 2019. Web. 15 Jul 2020.

Vancouver:

Appapogu RD. Autonomous navigation in GPS denied environments using MPC and LQR with potential field based obstacle avoidance. [Internet] [Masters thesis]. Colorado School of Mines; 2019. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/11124/172896.

Council of Science Editors:

Appapogu RD. Autonomous navigation in GPS denied environments using MPC and LQR with potential field based obstacle avoidance. [Masters Thesis]. Colorado School of Mines; 2019. Available from: http://hdl.handle.net/11124/172896

20. Castellano, Giancarlo. The Hasse-Minkowski theorem for global fields.

Degree: 2017, University of Vienna

Das Hauptziel der vorliegenden Arbeit ist es, den Beweis des Satzes von Hasse-Minkowski zu präsentieren: Dabei handelt es sich um ein berühmtes Resultat aus der… (more)

Subjects/Keywords: 31.14 Zahlentheorie; 31.24 Körper, Polynome; 31.23 Ideale, Ringe, Moduln, Algebren; Hasse-MinkowskiTheorie / globale Körper; Hasse-Minkowski Theorem / quadratic forms over global fields / quadratic forms over algebraic number fields / quadratic forms / global fields / algebraic number fields / local-global principle / number theory / Hilbert symbol / Hasse symbol / invariants / invariants of quadratic spaces / algebraic number theory / valuation theory / local fields / non-archimedean / p-adic numbers / quadratic forms over local fields

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Castellano, G. (2017). The Hasse-Minkowski theorem for global fields. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/47316/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Castellano, Giancarlo. “The Hasse-Minkowski theorem for global fields.” 2017. Thesis, University of Vienna. Accessed July 15, 2020. http://othes.univie.ac.at/47316/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Castellano, Giancarlo. “The Hasse-Minkowski theorem for global fields.” 2017. Web. 15 Jul 2020.

Vancouver:

Castellano G. The Hasse-Minkowski theorem for global fields. [Internet] [Thesis]. University of Vienna; 2017. [cited 2020 Jul 15]. Available from: http://othes.univie.ac.at/47316/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Castellano G. The Hasse-Minkowski theorem for global fields. [Thesis]. University of Vienna; 2017. Available from: http://othes.univie.ac.at/47316/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Arizona

21. Miller, Justin Thomson. On p-adic Continued Fractions and Quadratic Irrationals .

Degree: 2007, University of Arizona

 In this dissertation we investigate prior definitions for p-adic continued fractions and introduce some new definitions. We introduce a continued fraction algorithm for quadratic irrationals,… (more)

Subjects/Keywords: continued fractions; p-adic fields; local fields; quadratic irrationals

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Miller, J. T. (2007). On p-adic Continued Fractions and Quadratic Irrationals . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/194074

Chicago Manual of Style (16th Edition):

Miller, Justin Thomson. “On p-adic Continued Fractions and Quadratic Irrationals .” 2007. Doctoral Dissertation, University of Arizona. Accessed July 15, 2020. http://hdl.handle.net/10150/194074.

MLA Handbook (7th Edition):

Miller, Justin Thomson. “On p-adic Continued Fractions and Quadratic Irrationals .” 2007. Web. 15 Jul 2020.

Vancouver:

Miller JT. On p-adic Continued Fractions and Quadratic Irrationals . [Internet] [Doctoral dissertation]. University of Arizona; 2007. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10150/194074.

Council of Science Editors:

Miller JT. On p-adic Continued Fractions and Quadratic Irrationals . [Doctoral Dissertation]. University of Arizona; 2007. Available from: http://hdl.handle.net/10150/194074

22. Kucuksakalli, Omer. Class Numbers of Ray Class Fields of Imaginary Quadratic Fields.

Degree: PhD, Mathematics, 2009, U of Massachusetts : PhD

  Let K be an imaginary quadratic field with class number one and let [Special characters omitted.] be a degree one prime ideal of norm… (more)

Subjects/Keywords: Class numbers; Complex multiplication; Elliptic curves; Quadratic fields; Ray class fields; Imaginary quadratic fields; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kucuksakalli, O. (2009). Class Numbers of Ray Class Fields of Imaginary Quadratic Fields. (Doctoral Dissertation). U of Massachusetts : PhD. Retrieved from https://scholarworks.umass.edu/open_access_dissertations/71

Chicago Manual of Style (16th Edition):

Kucuksakalli, Omer. “Class Numbers of Ray Class Fields of Imaginary Quadratic Fields.” 2009. Doctoral Dissertation, U of Massachusetts : PhD. Accessed July 15, 2020. https://scholarworks.umass.edu/open_access_dissertations/71.

MLA Handbook (7th Edition):

Kucuksakalli, Omer. “Class Numbers of Ray Class Fields of Imaginary Quadratic Fields.” 2009. Web. 15 Jul 2020.

Vancouver:

Kucuksakalli O. Class Numbers of Ray Class Fields of Imaginary Quadratic Fields. [Internet] [Doctoral dissertation]. U of Massachusetts : PhD; 2009. [cited 2020 Jul 15]. Available from: https://scholarworks.umass.edu/open_access_dissertations/71.

Council of Science Editors:

Kucuksakalli O. Class Numbers of Ray Class Fields of Imaginary Quadratic Fields. [Doctoral Dissertation]. U of Massachusetts : PhD; 2009. Available from: https://scholarworks.umass.edu/open_access_dissertations/71


Louisiana State University

23. Kim, Jeonghun. Classifying quadratic number fields up to Arf equivalence.

Degree: PhD, Applied Mathematics, 2006, Louisiana State University

 Two number fields K and L are said to be Arf equivalent if there exists a bijection T : ­ΩK → Ω­L of places of… (more)

Subjects/Keywords: Arf equivalence; local root numbers; quadratic number fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kim, J. (2006). Classifying quadratic number fields up to Arf equivalence. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07052006-110113 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3198

Chicago Manual of Style (16th Edition):

Kim, Jeonghun. “Classifying quadratic number fields up to Arf equivalence.” 2006. Doctoral Dissertation, Louisiana State University. Accessed July 15, 2020. etd-07052006-110113 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3198.

MLA Handbook (7th Edition):

Kim, Jeonghun. “Classifying quadratic number fields up to Arf equivalence.” 2006. Web. 15 Jul 2020.

Vancouver:

Kim J. Classifying quadratic number fields up to Arf equivalence. [Internet] [Doctoral dissertation]. Louisiana State University; 2006. [cited 2020 Jul 15]. Available from: etd-07052006-110113 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3198.

Council of Science Editors:

Kim J. Classifying quadratic number fields up to Arf equivalence. [Doctoral Dissertation]. Louisiana State University; 2006. Available from: etd-07052006-110113 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3198


California State University – San Bernardino

24. Beyronneau, Robert Lewis. The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples.

Degree: MAin Mathematics, Mathematics, 2005, California State University – San Bernardino

This project centers around finding specific examples of quintic polynomials that were and were not solvable. This helped to devise a method for finding examples of solvable and unsolvable quintics.

Subjects/Keywords: Polynomials; Algebra; Galois theory; Algebraic fields; Quadratic differentials; Algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Beyronneau, R. L. (2005). The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd-project/2700

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Beyronneau, Robert Lewis. “The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples.” 2005. Thesis, California State University – San Bernardino. Accessed July 15, 2020. https://scholarworks.lib.csusb.edu/etd-project/2700.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Beyronneau, Robert Lewis. “The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples.” 2005. Web. 15 Jul 2020.

Vancouver:

Beyronneau RL. The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples. [Internet] [Thesis]. California State University – San Bernardino; 2005. [cited 2020 Jul 15]. Available from: https://scholarworks.lib.csusb.edu/etd-project/2700.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Beyronneau RL. The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples. [Thesis]. California State University – San Bernardino; 2005. Available from: https://scholarworks.lib.csusb.edu/etd-project/2700

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Arizona State University

25. Duplessis, Francis. Topics in Cosmology and Gravitation.

Degree: Physics, 2017, Arizona State University

 Two ideas that extends on the theory of General Relativity are introduced and then the phenomenology they can offer is explored. The first idea shows… (more)

Subjects/Keywords: Theoretical physics; Physics; Alternative to inflation; Blazar Halos; Intergalactic Magnetic Fields; Matter Bounce; Pure Quadratic Gravity; Wormholes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Duplessis, F. (2017). Topics in Cosmology and Gravitation. (Doctoral Dissertation). Arizona State University. Retrieved from http://repository.asu.edu/items/44090

Chicago Manual of Style (16th Edition):

Duplessis, Francis. “Topics in Cosmology and Gravitation.” 2017. Doctoral Dissertation, Arizona State University. Accessed July 15, 2020. http://repository.asu.edu/items/44090.

MLA Handbook (7th Edition):

Duplessis, Francis. “Topics in Cosmology and Gravitation.” 2017. Web. 15 Jul 2020.

Vancouver:

Duplessis F. Topics in Cosmology and Gravitation. [Internet] [Doctoral dissertation]. Arizona State University; 2017. [cited 2020 Jul 15]. Available from: http://repository.asu.edu/items/44090.

Council of Science Editors:

Duplessis F. Topics in Cosmology and Gravitation. [Doctoral Dissertation]. Arizona State University; 2017. Available from: http://repository.asu.edu/items/44090


University of Missouri – Columbia

26. Koh, Doowon, 1972-. Extension theorems in vector spaces over finite fields.

Degree: 2008, University of Missouri – Columbia

 We study the L[superscript p] - L[superscript r] boundedness of the extension operator associated with algebraic varieties such as nondegenerate quadratic surfaces, paraboloids, and cones… (more)

Subjects/Keywords: Fourier analysis; Vector spaces; Quadratic fields; Paraboloid; Finite fields (Algebra); Field extensions (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Koh, Doowon, 1. (2008). Extension theorems in vector spaces over finite fields. (Thesis). University of Missouri – Columbia. Retrieved from https://doi.org/10.32469/10355/9097

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Koh, Doowon, 1972-. “Extension theorems in vector spaces over finite fields.” 2008. Thesis, University of Missouri – Columbia. Accessed July 15, 2020. https://doi.org/10.32469/10355/9097.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Koh, Doowon, 1972-. “Extension theorems in vector spaces over finite fields.” 2008. Web. 15 Jul 2020.

Vancouver:

Koh, Doowon 1. Extension theorems in vector spaces over finite fields. [Internet] [Thesis]. University of Missouri – Columbia; 2008. [cited 2020 Jul 15]. Available from: https://doi.org/10.32469/10355/9097.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Koh, Doowon 1. Extension theorems in vector spaces over finite fields. [Thesis]. University of Missouri – Columbia; 2008. Available from: https://doi.org/10.32469/10355/9097

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Missouri – Columbia

27. Koh, Doowon, 1972-. Extension theorems in vector spaces over finite fields.

Degree: 2008, University of Missouri – Columbia

 We study the L[superscript p] - L[superscript r] boundedness of the extension operator associated with algebraic varieties such as nondegenerate quadratic surfaces, paraboloids, and cones… (more)

Subjects/Keywords: Fourier analysis; Vector spaces; Quadratic fields; Paraboloid; Finite fields (Algebra); Field extensions (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Koh, Doowon, 1. (2008). Extension theorems in vector spaces over finite fields. (Thesis). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/9097

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Koh, Doowon, 1972-. “Extension theorems in vector spaces over finite fields.” 2008. Thesis, University of Missouri – Columbia. Accessed July 15, 2020. http://hdl.handle.net/10355/9097.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Koh, Doowon, 1972-. “Extension theorems in vector spaces over finite fields.” 2008. Web. 15 Jul 2020.

Vancouver:

Koh, Doowon 1. Extension theorems in vector spaces over finite fields. [Internet] [Thesis]. University of Missouri – Columbia; 2008. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10355/9097.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Koh, Doowon 1. Extension theorems in vector spaces over finite fields. [Thesis]. University of Missouri – Columbia; 2008. Available from: http://hdl.handle.net/10355/9097

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

28. Peruzzi, Daniela. Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2.

Degree: Mestrado, Matemática, 2009, University of São Paulo

Um dos principais problemas na teoria qualitativa das equações diferenciais em dimensão dois é apresentar, para uma dada família de sistemas diferenciais, uma classificação topológica… (more)

Subjects/Keywords: Campo de vetores quadráticos; Equivalência topológica; Integral primeira racional; Phase portrait; Quadratic vector fields; Rational first integral; Retratos de fase; Topological equivalence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Peruzzi, D. (2009). Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02092009-165147/ ;

Chicago Manual of Style (16th Edition):

Peruzzi, Daniela. “Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2.” 2009. Masters Thesis, University of São Paulo. Accessed July 15, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02092009-165147/ ;.

MLA Handbook (7th Edition):

Peruzzi, Daniela. “Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2.” 2009. Web. 15 Jul 2020.

Vancouver:

Peruzzi D. Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2. [Internet] [Masters thesis]. University of São Paulo; 2009. [cited 2020 Jul 15]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02092009-165147/ ;.

Council of Science Editors:

Peruzzi D. Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2. [Masters Thesis]. University of São Paulo; 2009. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02092009-165147/ ;


Virginia Tech

29. Miller, Nicole Renee. The Structure of the Class Group of Imaginary Quadratic Fields.

Degree: MS, Mathematics, 2005, Virginia Tech

 Let Q(√{-d}) be an imaginary quadratic field with discriminant Δ. We use the isomorphism between the ideal class groups of the field and the equivalence… (more)

Subjects/Keywords: 7-rank; 5-rank; Positive Definite Forms; Genera; Class Group; Binary Quadratic Fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Miller, N. R. (2005). The Structure of the Class Group of Imaginary Quadratic Fields. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/32572

Chicago Manual of Style (16th Edition):

Miller, Nicole Renee. “The Structure of the Class Group of Imaginary Quadratic Fields.” 2005. Masters Thesis, Virginia Tech. Accessed July 15, 2020. http://hdl.handle.net/10919/32572.

MLA Handbook (7th Edition):

Miller, Nicole Renee. “The Structure of the Class Group of Imaginary Quadratic Fields.” 2005. Web. 15 Jul 2020.

Vancouver:

Miller NR. The Structure of the Class Group of Imaginary Quadratic Fields. [Internet] [Masters thesis]. Virginia Tech; 2005. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10919/32572.

Council of Science Editors:

Miller NR. The Structure of the Class Group of Imaginary Quadratic Fields. [Masters Thesis]. Virginia Tech; 2005. Available from: http://hdl.handle.net/10919/32572


California State University – San Bernardino

30. Rezola, Nolberto. Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number Field.

Degree: MAin Mathematics, Mathematics, 2015, California State University – San Bernardino

  The ring of integers is a very interesting ring, it has the amazing property that each of its elements may be expressed uniquely, up… (more)

Subjects/Keywords: imaginary quadratic number field; unique prime ideal factorization; Dedekind domain; Algebraic integers; Rings; Fields; Ideals; Integral over; R-modules; finitely generated set; UFD; PID.; Algebra; Number Theory; Other Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rezola, N. (2015). Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number Field. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd/205

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rezola, Nolberto. “Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number Field.” 2015. Thesis, California State University – San Bernardino. Accessed July 15, 2020. https://scholarworks.lib.csusb.edu/etd/205.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rezola, Nolberto. “Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number Field.” 2015. Web. 15 Jul 2020.

Vancouver:

Rezola N. Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number Field. [Internet] [Thesis]. California State University – San Bernardino; 2015. [cited 2020 Jul 15]. Available from: https://scholarworks.lib.csusb.edu/etd/205.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rezola N. Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number Field. [Thesis]. California State University – San Bernardino; 2015. Available from: https://scholarworks.lib.csusb.edu/etd/205

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2]

.