Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Quadratic fields)`

.
Showing records 1 – 30 of
35 total matches.

▼ Search Limiters

1.
Hamby, Paula J.
Enumeration of *quadratic* forms over totally real * fields*.

Degree: 2012, NC Docks

URL: http://libres.uncg.edu/ir/uncg/f/Hamby_uncg_0154M_11096.pdf

► Let F be a real *quadratic* field with OF its ring of integers. Let f be a *quadratic* form over F with discriminant D. Using…
(more)

Subjects/Keywords: Forms, Quadratic; Quadratic fields; Algebraic number theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hamby, P. J. (2012). Enumeration of quadratic forms over totally real fields. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/uncg/f/Hamby_uncg_0154M_11096.pdf

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Hamby, Paula J. “Enumeration of quadratic forms over totally real fields.” 2012. Thesis, NC Docks. Accessed July 15, 2020. http://libres.uncg.edu/ir/uncg/f/Hamby_uncg_0154M_11096.pdf.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Hamby, Paula J. “Enumeration of quadratic forms over totally real fields.” 2012. Web. 15 Jul 2020.

Vancouver:

Hamby PJ. Enumeration of quadratic forms over totally real fields. [Internet] [Thesis]. NC Docks; 2012. [cited 2020 Jul 15]. Available from: http://libres.uncg.edu/ir/uncg/f/Hamby_uncg_0154M_11096.pdf.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hamby PJ. Enumeration of quadratic forms over totally real fields. [Thesis]. NC Docks; 2012. Available from: http://libres.uncg.edu/ir/uncg/f/Hamby_uncg_0154M_11096.pdf

Not specified: Masters Thesis or Doctoral Dissertation

University of Arizona

2.
Marsh, Donald Burr, 1926-.
A study of some extensions of a *quadratic* field
.

Degree: 1948, University of Arizona

URL: http://hdl.handle.net/10150/319183

Subjects/Keywords: Algebraic fields.; Quadratic fields.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Marsh, Donald Burr, 1. (1948). A study of some extensions of a quadratic field . (Masters Thesis). University of Arizona. Retrieved from http://hdl.handle.net/10150/319183

Chicago Manual of Style (16^{th} Edition):

Marsh, Donald Burr, 1926-. “A study of some extensions of a quadratic field .” 1948. Masters Thesis, University of Arizona. Accessed July 15, 2020. http://hdl.handle.net/10150/319183.

MLA Handbook (7^{th} Edition):

Marsh, Donald Burr, 1926-. “A study of some extensions of a quadratic field .” 1948. Web. 15 Jul 2020.

Vancouver:

Marsh, Donald Burr 1. A study of some extensions of a quadratic field . [Internet] [Masters thesis]. University of Arizona; 1948. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10150/319183.

Council of Science Editors:

Marsh, Donald Burr 1. A study of some extensions of a quadratic field . [Masters Thesis]. University of Arizona; 1948. Available from: http://hdl.handle.net/10150/319183

University of North Texas

3.
Jacobs, G. Tony.
Reduced Ideals and Periodic Sequences in Pure Cubic * Fields*.

Degree: 2015, University of North Texas

URL: https://digital.library.unt.edu/ark:/67531/metadc804842/

► The “infrastructure” of *quadratic* *fields* is a body of theory developed by Dan Shanks, Richard Mollin and others, in which they relate “reduced ideals” in…
(more)

Subjects/Keywords: continued fractions; cubic fields; Diophantine approximation; Quadratic fields.; Algebraic fields.; Diophantine approximation.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jacobs, G. T. (2015). Reduced Ideals and Periodic Sequences in Pure Cubic Fields. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc804842/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Jacobs, G Tony. “Reduced Ideals and Periodic Sequences in Pure Cubic Fields.” 2015. Thesis, University of North Texas. Accessed July 15, 2020. https://digital.library.unt.edu/ark:/67531/metadc804842/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Jacobs, G Tony. “Reduced Ideals and Periodic Sequences in Pure Cubic Fields.” 2015. Web. 15 Jul 2020.

Vancouver:

Jacobs GT. Reduced Ideals and Periodic Sequences in Pure Cubic Fields. [Internet] [Thesis]. University of North Texas; 2015. [cited 2020 Jul 15]. Available from: https://digital.library.unt.edu/ark:/67531/metadc804842/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jacobs GT. Reduced Ideals and Periodic Sequences in Pure Cubic Fields. [Thesis]. University of North Texas; 2015. Available from: https://digital.library.unt.edu/ark:/67531/metadc804842/

Not specified: Masters Thesis or Doctoral Dissertation

University of Toronto

4.
Dahl, Alexander Oswald.
On Moments of Class Numbers of Real *Quadratic* * Fields*.

Degree: 2010, University of Toronto

URL: http://hdl.handle.net/1807/24553

►

Class numbers of algebraic number *fields* are central invariants. Once the underlying field has an infinite unit group they behave very irregularly due to a…
(more)

Subjects/Keywords: analytic number theory; real quadratic fields; binary quadratic forms; class group moments; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dahl, A. O. (2010). On Moments of Class Numbers of Real Quadratic Fields. (Masters Thesis). University of Toronto. Retrieved from http://hdl.handle.net/1807/24553

Chicago Manual of Style (16^{th} Edition):

Dahl, Alexander Oswald. “On Moments of Class Numbers of Real Quadratic Fields.” 2010. Masters Thesis, University of Toronto. Accessed July 15, 2020. http://hdl.handle.net/1807/24553.

MLA Handbook (7^{th} Edition):

Dahl, Alexander Oswald. “On Moments of Class Numbers of Real Quadratic Fields.” 2010. Web. 15 Jul 2020.

Vancouver:

Dahl AO. On Moments of Class Numbers of Real Quadratic Fields. [Internet] [Masters thesis]. University of Toronto; 2010. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/1807/24553.

Council of Science Editors:

Dahl AO. On Moments of Class Numbers of Real Quadratic Fields. [Masters Thesis]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/24553

The Ohio State University

5.
Brink, James Robert.
The class field tower for imaginary *quadratic* number *fields*
of type (3,3).

Degree: PhD, Graduate School, 1984, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256826305243

Subjects/Keywords: Mathematics; Quadratic fields; Hilbert schemes

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Brink, J. R. (1984). The class field tower for imaginary quadratic number fields of type (3,3). (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256826305243

Chicago Manual of Style (16^{th} Edition):

Brink, James Robert. “The class field tower for imaginary quadratic number fields of type (3,3).” 1984. Doctoral Dissertation, The Ohio State University. Accessed July 15, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256826305243.

MLA Handbook (7^{th} Edition):

Brink, James Robert. “The class field tower for imaginary quadratic number fields of type (3,3).” 1984. Web. 15 Jul 2020.

Vancouver:

Brink JR. The class field tower for imaginary quadratic number fields of type (3,3). [Internet] [Doctoral dissertation]. The Ohio State University; 1984. [cited 2020 Jul 15]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256826305243.

Council of Science Editors:

Brink JR. The class field tower for imaginary quadratic number fields of type (3,3). [Doctoral Dissertation]. The Ohio State University; 1984. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256826305243

Brigham Young University

6. Priddis, Nathan C. Some Congruence Properties of Pell's Equation.

Degree: MS, 2009, Brigham Young University

URL: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2797&context=etd

In this thesis I will outline the impact of Pell's equation on various branches of number theory, as well as some of the history. I will also discuss some recently discovered properties of the solutions of Pell's equation.

Subjects/Keywords: Pell's equation; Quadratic fields; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Priddis, N. C. (2009). Some Congruence Properties of Pell's Equation. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2797&context=etd

Chicago Manual of Style (16^{th} Edition):

Priddis, Nathan C. “Some Congruence Properties of Pell's Equation.” 2009. Masters Thesis, Brigham Young University. Accessed July 15, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2797&context=etd.

MLA Handbook (7^{th} Edition):

Priddis, Nathan C. “Some Congruence Properties of Pell's Equation.” 2009. Web. 15 Jul 2020.

Vancouver:

Priddis NC. Some Congruence Properties of Pell's Equation. [Internet] [Masters thesis]. Brigham Young University; 2009. [cited 2020 Jul 15]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2797&context=etd.

Council of Science Editors:

Priddis NC. Some Congruence Properties of Pell's Equation. [Masters Thesis]. Brigham Young University; 2009. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2797&context=etd

McGill University

7.
Chapdelaine, Hugo.
Elliptic units in ray class *fields* of real *quadratic* number * fields*.

Degree: PhD, Department of Mathematics and Statistics., 2007, McGill University

URL: http://digitool.library.mcgill.ca/thesisfile102967.pdf

► Let K be a real *quadratic* number field. Let p be a prime which is inert in K. We denote the completion of K at…
(more)

Subjects/Keywords: Quadratic fields.; Eisenstein series.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chapdelaine, H. (2007). Elliptic units in ray class fields of real quadratic number fields. (Doctoral Dissertation). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile102967.pdf

Chicago Manual of Style (16^{th} Edition):

Chapdelaine, Hugo. “Elliptic units in ray class fields of real quadratic number fields.” 2007. Doctoral Dissertation, McGill University. Accessed July 15, 2020. http://digitool.library.mcgill.ca/thesisfile102967.pdf.

MLA Handbook (7^{th} Edition):

Chapdelaine, Hugo. “Elliptic units in ray class fields of real quadratic number fields.” 2007. Web. 15 Jul 2020.

Vancouver:

Chapdelaine H. Elliptic units in ray class fields of real quadratic number fields. [Internet] [Doctoral dissertation]. McGill University; 2007. [cited 2020 Jul 15]. Available from: http://digitool.library.mcgill.ca/thesisfile102967.pdf.

Council of Science Editors:

Chapdelaine H. Elliptic units in ray class fields of real quadratic number fields. [Doctoral Dissertation]. McGill University; 2007. Available from: http://digitool.library.mcgill.ca/thesisfile102967.pdf

University of North Carolina – Greensboro

8.
Everhart, Lance M.
On generators of Hilbert modular groups of totally real
number * fields*.

Degree: 2016, University of North Carolina – Greensboro

URL: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=21341

► In this paper we report the beginnings of the computations and tabulations of the generators of \PSL_{2}(\OK), where \OK is the maximal order of a…
(more)

Subjects/Keywords: Hilbert modules; Modular groups; Quadratic fields; Numbers, Real

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Everhart, L. M. (2016). On generators of Hilbert modular groups of totally real number fields. (Masters Thesis). University of North Carolina – Greensboro. Retrieved from http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=21341

Chicago Manual of Style (16^{th} Edition):

Everhart, Lance M. “On generators of Hilbert modular groups of totally real number fields.” 2016. Masters Thesis, University of North Carolina – Greensboro. Accessed July 15, 2020. http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=21341.

MLA Handbook (7^{th} Edition):

Everhart, Lance M. “On generators of Hilbert modular groups of totally real number fields.” 2016. Web. 15 Jul 2020.

Vancouver:

Everhart LM. On generators of Hilbert modular groups of totally real number fields. [Internet] [Masters thesis]. University of North Carolina – Greensboro; 2016. [cited 2020 Jul 15]. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=21341.

Council of Science Editors:

Everhart LM. On generators of Hilbert modular groups of totally real number fields. [Masters Thesis]. University of North Carolina – Greensboro; 2016. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=21341

Columbia University

9. Lee, Pak Hin. p-adic L-functions for non-critical adjoint L-values.

Degree: 2019, Columbia University

URL: https://doi.org/10.7916/d8-rvn9-r814

► Let K be an imaginary *quadratic* field, with associated *quadratic* character α. We construct an analytic p-adic L-function interpolating the special values L(1, ad(f) ⊗…
(more)

Subjects/Keywords: Mathematics; Forms, Modular; p-adic numbers; Cohomology operations; Quadratic fields

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, P. H. (2019). p-adic L-functions for non-critical adjoint L-values. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/d8-rvn9-r814

Chicago Manual of Style (16^{th} Edition):

Lee, Pak Hin. “p-adic L-functions for non-critical adjoint L-values.” 2019. Doctoral Dissertation, Columbia University. Accessed July 15, 2020. https://doi.org/10.7916/d8-rvn9-r814.

MLA Handbook (7^{th} Edition):

Lee, Pak Hin. “p-adic L-functions for non-critical adjoint L-values.” 2019. Web. 15 Jul 2020.

Vancouver:

Lee PH. p-adic L-functions for non-critical adjoint L-values. [Internet] [Doctoral dissertation]. Columbia University; 2019. [cited 2020 Jul 15]. Available from: https://doi.org/10.7916/d8-rvn9-r814.

Council of Science Editors:

Lee PH. p-adic L-functions for non-critical adjoint L-values. [Doctoral Dissertation]. Columbia University; 2019. Available from: https://doi.org/10.7916/d8-rvn9-r814

Michigan State University

10.
Englund, Timothy F. (Timothy Frederick).
* Quadratic* representations for groups of Lie type over

Degree: PhD, Department of Mathemataics, 1997, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:30055

Subjects/Keywords: Lie groups; Quadratic fields

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Englund, T. F. (. F. (1997). Quadratic representations for groups of Lie type over fields of characteristic two. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:30055

Chicago Manual of Style (16^{th} Edition):

Englund, Timothy F (Timothy Frederick). “Quadratic representations for groups of Lie type over fields of characteristic two.” 1997. Doctoral Dissertation, Michigan State University. Accessed July 15, 2020. http://etd.lib.msu.edu/islandora/object/etd:30055.

MLA Handbook (7^{th} Edition):

Englund, Timothy F (Timothy Frederick). “Quadratic representations for groups of Lie type over fields of characteristic two.” 1997. Web. 15 Jul 2020.

Vancouver:

Englund TF(F. Quadratic representations for groups of Lie type over fields of characteristic two. [Internet] [Doctoral dissertation]. Michigan State University; 1997. [cited 2020 Jul 15]. Available from: http://etd.lib.msu.edu/islandora/object/etd:30055.

Council of Science Editors:

Englund TF(F. Quadratic representations for groups of Lie type over fields of characteristic two. [Doctoral Dissertation]. Michigan State University; 1997. Available from: http://etd.lib.msu.edu/islandora/object/etd:30055

11.
Everhart, Lance M.
On generators of Hilbert modular groups of totally real number * fields*.

Degree: 2016, NC Docks

URL: http://libres.uncg.edu/ir/uncg/f/Everhart_uncg_0154M_11992.pdf

► In this paper we report the beginnings of the computations and tabulations of the generators of \PSL_{2}(\OK), where \OK is the maximal order of a…
(more)

Subjects/Keywords: Hilbert modules; Modular groups; Quadratic fields; Numbers, Real

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Everhart, L. M. (2016). On generators of Hilbert modular groups of totally real number fields. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/uncg/f/Everhart_uncg_0154M_11992.pdf

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Everhart, Lance M. “On generators of Hilbert modular groups of totally real number fields.” 2016. Thesis, NC Docks. Accessed July 15, 2020. http://libres.uncg.edu/ir/uncg/f/Everhart_uncg_0154M_11992.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Everhart, Lance M. “On generators of Hilbert modular groups of totally real number fields.” 2016. Web. 15 Jul 2020.

Vancouver:

Everhart LM. On generators of Hilbert modular groups of totally real number fields. [Internet] [Thesis]. NC Docks; 2016. [cited 2020 Jul 15]. Available from: http://libres.uncg.edu/ir/uncg/f/Everhart_uncg_0154M_11992.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Everhart LM. On generators of Hilbert modular groups of totally real number fields. [Thesis]. NC Docks; 2016. Available from: http://libres.uncg.edu/ir/uncg/f/Everhart_uncg_0154M_11992.pdf

Not specified: Masters Thesis or Doctoral Dissertation

12.
Hamby, Paula J.
Enumeration of *quadratic* forms over totally real
* fields*.

Degree: 2012, University of North Carolina – Greensboro

URL: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=9421

► Let F be a real *quadratic* field with OF its ring of integers. Let f be a *quadratic* form over F with discriminant D. Using…
(more)

Subjects/Keywords: Forms, Quadratic; Quadratic fields; Algebraic number theory

…forms over totally real number
*fields*.
4
1.2
Reduction Theory of Binary *Quadratic* Forms… …*quadratic* *fields*.
30
CHAPTER V
ENUMERATING FORMS
In the last chapter, we showed that there are… …over real *quadratic* *fields*. Then
that means that if we fix a discriminant D and a totally… …where x1 , x2 ∈ OF .
Definition I.4. The discriminant D of a binary *quadratic* form, f… …7. Two F-integral binary *quadratic* forms f and g are equivalent, denoted f ∼ g, if there…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hamby, P. J. (2012). Enumeration of quadratic forms over totally real fields. (Masters Thesis). University of North Carolina – Greensboro. Retrieved from http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=9421

Chicago Manual of Style (16^{th} Edition):

Hamby, Paula J. “Enumeration of quadratic forms over totally real fields.” 2012. Masters Thesis, University of North Carolina – Greensboro. Accessed July 15, 2020. http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=9421.

MLA Handbook (7^{th} Edition):

Hamby, Paula J. “Enumeration of quadratic forms over totally real fields.” 2012. Web. 15 Jul 2020.

Vancouver:

Hamby PJ. Enumeration of quadratic forms over totally real fields. [Internet] [Masters thesis]. University of North Carolina – Greensboro; 2012. [cited 2020 Jul 15]. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=9421.

Council of Science Editors:

Hamby PJ. Enumeration of quadratic forms over totally real fields. [Masters Thesis]. University of North Carolina – Greensboro; 2012. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=9421

13. Moro, Eliton Mendonça [UNESP]. Códigos de bloco espaço-temporais via corpos quadráticos.

Degree: 2017, Universidade Estadual Paulista

URL: http://hdl.handle.net/11449/148757

►

Os sistemas de comunicação com Múltiplas Entradas e Múltiplas Saídas (MIMO), são sistemas constituídos por estruturas que utilizam várias antenas, tanto no transmissor como no… (more)

Subjects/Keywords: Determinante mínimo; Corpos quadráticos; Códigos de bloco; Minimum determinant; Quadratic fields; Block codes

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Moro, E. M. [. (2017). Códigos de bloco espaço-temporais via corpos quadráticos. (Thesis). Universidade Estadual Paulista. Retrieved from http://hdl.handle.net/11449/148757

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Moro, Eliton Mendonça [UNESP]. “Códigos de bloco espaço-temporais via corpos quadráticos.” 2017. Thesis, Universidade Estadual Paulista. Accessed July 15, 2020. http://hdl.handle.net/11449/148757.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Moro, Eliton Mendonça [UNESP]. “Códigos de bloco espaço-temporais via corpos quadráticos.” 2017. Web. 15 Jul 2020.

Vancouver:

Moro EM[. Códigos de bloco espaço-temporais via corpos quadráticos. [Internet] [Thesis]. Universidade Estadual Paulista; 2017. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/11449/148757.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Moro EM[. Códigos de bloco espaço-temporais via corpos quadráticos. [Thesis]. Universidade Estadual Paulista; 2017. Available from: http://hdl.handle.net/11449/148757

Not specified: Masters Thesis or Doctoral Dissertation

RMIT University

14. Magowe, K. Blind localization of radio emitters in wireless communications.

Degree: 2017, RMIT University

URL: http://researchbank.rmit.edu.au/view/rmit:162211

► The proliferation of wireless services is expected to increase the demand for radio spectrum in the foreseeable future. Given the limitations of the radio spectrum,…
(more)

Subjects/Keywords: Fields of Research; Blind Localization; Performance Analysis; Statistical Signal Processing; Cognitive Radios; Quadratic Forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Magowe, K. (2017). Blind localization of radio emitters in wireless communications. (Thesis). RMIT University. Retrieved from http://researchbank.rmit.edu.au/view/rmit:162211

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Magowe, K. “Blind localization of radio emitters in wireless communications.” 2017. Thesis, RMIT University. Accessed July 15, 2020. http://researchbank.rmit.edu.au/view/rmit:162211.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Magowe, K. “Blind localization of radio emitters in wireless communications.” 2017. Web. 15 Jul 2020.

Vancouver:

Magowe K. Blind localization of radio emitters in wireless communications. [Internet] [Thesis]. RMIT University; 2017. [cited 2020 Jul 15]. Available from: http://researchbank.rmit.edu.au/view/rmit:162211.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Magowe K. Blind localization of radio emitters in wireless communications. [Thesis]. RMIT University; 2017. Available from: http://researchbank.rmit.edu.au/view/rmit:162211

Not specified: Masters Thesis or Doctoral Dissertation

Universidade Estadual de Campinas

15. Angelo Papa Neto. Rigid elements, valuations and structure of Witt rings.

Degree: Instituto de Matemática, Estatística e Computação Científica, 2007, Universidade Estadual de Campinas

URL: http://libdigi.unicamp.br/document/?code=vtls000415821

►

An ordered field is an algebraic structure like the field of real numbers. However, while the field of real numbers have only one ordering, an… (more)

Subjects/Keywords: Formas quadraticas; Formally real fields; Witt rings; Aneis de; Quadratic forms; Witt; Corpos formalmente reais

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Neto, A. P. (2007). Rigid elements, valuations and structure of Witt rings. (Thesis). Universidade Estadual de Campinas. Retrieved from http://libdigi.unicamp.br/document/?code=vtls000415821

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Neto, Angelo Papa. “Rigid elements, valuations and structure of Witt rings.” 2007. Thesis, Universidade Estadual de Campinas. Accessed July 15, 2020. http://libdigi.unicamp.br/document/?code=vtls000415821.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Neto, Angelo Papa. “Rigid elements, valuations and structure of Witt rings.” 2007. Web. 15 Jul 2020.

Vancouver:

Neto AP. Rigid elements, valuations and structure of Witt rings. [Internet] [Thesis]. Universidade Estadual de Campinas; 2007. [cited 2020 Jul 15]. Available from: http://libdigi.unicamp.br/document/?code=vtls000415821.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Neto AP. Rigid elements, valuations and structure of Witt rings. [Thesis]. Universidade Estadual de Campinas; 2007. Available from: http://libdigi.unicamp.br/document/?code=vtls000415821

Not specified: Masters Thesis or Doctoral Dissertation

16.
Hamilton, James C.
Ideals in *Quadratic* Number * Fields*.

Degree: 1971, North Texas State University

URL: https://digital.library.unt.edu/ark:/67531/metadc131365/

► The purpose of this thesis is to investigate the properties of ideals in *quadratic* number *fields*, A field F is said to be an algebraic…
(more)

Subjects/Keywords: theory of ideals; quadratic number fields

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hamilton, J. C. (1971). Ideals in Quadratic Number Fields. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc131365/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Hamilton, James C. “Ideals in Quadratic Number Fields.” 1971. Thesis, North Texas State University. Accessed July 15, 2020. https://digital.library.unt.edu/ark:/67531/metadc131365/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Hamilton, James C. “Ideals in Quadratic Number Fields.” 1971. Web. 15 Jul 2020.

Vancouver:

Hamilton JC. Ideals in Quadratic Number Fields. [Internet] [Thesis]. North Texas State University; 1971. [cited 2020 Jul 15]. Available from: https://digital.library.unt.edu/ark:/67531/metadc131365/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hamilton JC. Ideals in Quadratic Number Fields. [Thesis]. North Texas State University; 1971. Available from: https://digital.library.unt.edu/ark:/67531/metadc131365/

Not specified: Masters Thesis or Doctoral Dissertation

Stellenbosch University

17.
Razakarinoro, Faratiana Brice.
Explicit bound on Siegel zeros of imaginary *quadratic* * fields*.

Degree: MSc, Mathematical Sciences, 2019, Stellenbosch University

URL: http://hdl.handle.net/10019.1/107160

ENGLISH ABSTRACT: Please refer to full text for abstract.

AFRIKAANSE OPSOMMING: Raadpleeg asseblief volteks vir opsomming.

Masters

Subjects/Keywords: Riemann Hypothesis; Quadratic fields; Siegel domains; Dirichlet problem; L-functions; Siegel zeros; UCTD

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Razakarinoro, F. B. (2019). Explicit bound on Siegel zeros of imaginary quadratic fields. (Masters Thesis). Stellenbosch University. Retrieved from http://hdl.handle.net/10019.1/107160

Chicago Manual of Style (16^{th} Edition):

Razakarinoro, Faratiana Brice. “Explicit bound on Siegel zeros of imaginary quadratic fields.” 2019. Masters Thesis, Stellenbosch University. Accessed July 15, 2020. http://hdl.handle.net/10019.1/107160.

MLA Handbook (7^{th} Edition):

Razakarinoro, Faratiana Brice. “Explicit bound on Siegel zeros of imaginary quadratic fields.” 2019. Web. 15 Jul 2020.

Vancouver:

Razakarinoro FB. Explicit bound on Siegel zeros of imaginary quadratic fields. [Internet] [Masters thesis]. Stellenbosch University; 2019. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10019.1/107160.

Council of Science Editors:

Razakarinoro FB. Explicit bound on Siegel zeros of imaginary quadratic fields. [Masters Thesis]. Stellenbosch University; 2019. Available from: http://hdl.handle.net/10019.1/107160

University of Arizona

18.
Nymann, James Eugene, 1938-.
IDEAL STRUCTURE OF RELATIVE *QUADRATIC* *FIELDS* ARISING FROM FIXED POINTS OFTHE HILBERT MODULAR GROUP
.

Degree: 1965, University of Arizona

URL: http://hdl.handle.net/10150/284618

Subjects/Keywords: Riemann surfaces.; Hilbert modules.; Quadratic fields.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nymann, James Eugene, 1. (1965). IDEAL STRUCTURE OF RELATIVE QUADRATIC FIELDS ARISING FROM FIXED POINTS OFTHE HILBERT MODULAR GROUP . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/284618

Chicago Manual of Style (16^{th} Edition):

Nymann, James Eugene, 1938-. “IDEAL STRUCTURE OF RELATIVE QUADRATIC FIELDS ARISING FROM FIXED POINTS OFTHE HILBERT MODULAR GROUP .” 1965. Doctoral Dissertation, University of Arizona. Accessed July 15, 2020. http://hdl.handle.net/10150/284618.

MLA Handbook (7^{th} Edition):

Nymann, James Eugene, 1938-. “IDEAL STRUCTURE OF RELATIVE QUADRATIC FIELDS ARISING FROM FIXED POINTS OFTHE HILBERT MODULAR GROUP .” 1965. Web. 15 Jul 2020.

Vancouver:

Nymann, James Eugene 1. IDEAL STRUCTURE OF RELATIVE QUADRATIC FIELDS ARISING FROM FIXED POINTS OFTHE HILBERT MODULAR GROUP . [Internet] [Doctoral dissertation]. University of Arizona; 1965. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10150/284618.

Council of Science Editors:

Nymann, James Eugene 1. IDEAL STRUCTURE OF RELATIVE QUADRATIC FIELDS ARISING FROM FIXED POINTS OFTHE HILBERT MODULAR GROUP . [Doctoral Dissertation]. University of Arizona; 1965. Available from: http://hdl.handle.net/10150/284618

Colorado School of Mines

19. Appapogu, Rahul Dev. Autonomous navigation in GPS denied environments using MPC and LQR with potential field based obstacle avoidance.

Degree: MS(M.S.), Mechanical Engineering, 2019, Colorado School of Mines

URL: http://hdl.handle.net/11124/172896

► Workers in mining industry are posed with hazardous environments due to the nature of the work inside a mine. Gas leaks, explosions, rock falls, entrapment,…
(more)

Subjects/Keywords: Linear quadratic regulator; Obstacle avoidance; Autonomous navigation; Potential fields; Model predictive control

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Appapogu, R. D. (2019). Autonomous navigation in GPS denied environments using MPC and LQR with potential field based obstacle avoidance. (Masters Thesis). Colorado School of Mines. Retrieved from http://hdl.handle.net/11124/172896

Chicago Manual of Style (16^{th} Edition):

Appapogu, Rahul Dev. “Autonomous navigation in GPS denied environments using MPC and LQR with potential field based obstacle avoidance.” 2019. Masters Thesis, Colorado School of Mines. Accessed July 15, 2020. http://hdl.handle.net/11124/172896.

MLA Handbook (7^{th} Edition):

Appapogu, Rahul Dev. “Autonomous navigation in GPS denied environments using MPC and LQR with potential field based obstacle avoidance.” 2019. Web. 15 Jul 2020.

Vancouver:

Appapogu RD. Autonomous navigation in GPS denied environments using MPC and LQR with potential field based obstacle avoidance. [Internet] [Masters thesis]. Colorado School of Mines; 2019. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/11124/172896.

Council of Science Editors:

Appapogu RD. Autonomous navigation in GPS denied environments using MPC and LQR with potential field based obstacle avoidance. [Masters Thesis]. Colorado School of Mines; 2019. Available from: http://hdl.handle.net/11124/172896

20.
Castellano, Giancarlo.
The Hasse-Minkowski theorem for global * fields*.

Degree: 2017, University of Vienna

URL: http://othes.univie.ac.at/47316/

►

Das Hauptziel der vorliegenden Arbeit ist es, den Beweis des Satzes von Hasse-Minkowski zu präsentieren: Dabei handelt es sich um ein berühmtes Resultat aus der… (more)

Subjects/Keywords: 31.14 Zahlentheorie; 31.24 Körper, Polynome; 31.23 Ideale, Ringe, Moduln, Algebren; Hasse-MinkowskiTheorie / globale Körper; Hasse-Minkowski Theorem / quadratic forms over global fields / quadratic forms over algebraic number fields / quadratic forms / global fields / algebraic number fields / local-global principle / number theory / Hilbert symbol / Hasse symbol / invariants / invariants of quadratic spaces / algebraic number theory / valuation theory / local fields / non-archimedean / p-adic numbers / quadratic forms over local fields

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Castellano, G. (2017). The Hasse-Minkowski theorem for global fields. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/47316/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Castellano, Giancarlo. “The Hasse-Minkowski theorem for global fields.” 2017. Thesis, University of Vienna. Accessed July 15, 2020. http://othes.univie.ac.at/47316/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Castellano, Giancarlo. “The Hasse-Minkowski theorem for global fields.” 2017. Web. 15 Jul 2020.

Vancouver:

Castellano G. The Hasse-Minkowski theorem for global fields. [Internet] [Thesis]. University of Vienna; 2017. [cited 2020 Jul 15]. Available from: http://othes.univie.ac.at/47316/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Castellano G. The Hasse-Minkowski theorem for global fields. [Thesis]. University of Vienna; 2017. Available from: http://othes.univie.ac.at/47316/

Not specified: Masters Thesis or Doctoral Dissertation

University of Arizona

21.
Miller, Justin Thomson.
On p-adic Continued Fractions and *Quadratic* Irrationals
.

Degree: 2007, University of Arizona

URL: http://hdl.handle.net/10150/194074

► In this dissertation we investigate prior definitions for p-adic continued fractions and introduce some new definitions. We introduce a continued fraction algorithm for *quadratic* irrationals,…
(more)

Subjects/Keywords: continued fractions; p-adic fields; local fields; quadratic irrationals

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Miller, J. T. (2007). On p-adic Continued Fractions and Quadratic Irrationals . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/194074

Chicago Manual of Style (16^{th} Edition):

Miller, Justin Thomson. “On p-adic Continued Fractions and Quadratic Irrationals .” 2007. Doctoral Dissertation, University of Arizona. Accessed July 15, 2020. http://hdl.handle.net/10150/194074.

MLA Handbook (7^{th} Edition):

Miller, Justin Thomson. “On p-adic Continued Fractions and Quadratic Irrationals .” 2007. Web. 15 Jul 2020.

Vancouver:

Miller JT. On p-adic Continued Fractions and Quadratic Irrationals . [Internet] [Doctoral dissertation]. University of Arizona; 2007. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10150/194074.

Council of Science Editors:

Miller JT. On p-adic Continued Fractions and Quadratic Irrationals . [Doctoral Dissertation]. University of Arizona; 2007. Available from: http://hdl.handle.net/10150/194074

22.
Kucuksakalli, Omer.
Class Numbers of Ray Class *Fields* of Imaginary *Quadratic* * Fields*.

Degree: PhD, Mathematics, 2009, U of Massachusetts : PhD

URL: https://scholarworks.umass.edu/open_access_dissertations/71

► Let K be an imaginary *quadratic* field with class number one and let [Special characters omitted.] be a degree one prime ideal of norm…
(more)

Subjects/Keywords: Class numbers; Complex multiplication; Elliptic curves; Quadratic fields; Ray class fields; Imaginary quadratic fields; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kucuksakalli, O. (2009). Class Numbers of Ray Class Fields of Imaginary Quadratic Fields. (Doctoral Dissertation). U of Massachusetts : PhD. Retrieved from https://scholarworks.umass.edu/open_access_dissertations/71

Chicago Manual of Style (16^{th} Edition):

Kucuksakalli, Omer. “Class Numbers of Ray Class Fields of Imaginary Quadratic Fields.” 2009. Doctoral Dissertation, U of Massachusetts : PhD. Accessed July 15, 2020. https://scholarworks.umass.edu/open_access_dissertations/71.

MLA Handbook (7^{th} Edition):

Kucuksakalli, Omer. “Class Numbers of Ray Class Fields of Imaginary Quadratic Fields.” 2009. Web. 15 Jul 2020.

Vancouver:

Kucuksakalli O. Class Numbers of Ray Class Fields of Imaginary Quadratic Fields. [Internet] [Doctoral dissertation]. U of Massachusetts : PhD; 2009. [cited 2020 Jul 15]. Available from: https://scholarworks.umass.edu/open_access_dissertations/71.

Council of Science Editors:

Kucuksakalli O. Class Numbers of Ray Class Fields of Imaginary Quadratic Fields. [Doctoral Dissertation]. U of Massachusetts : PhD; 2009. Available from: https://scholarworks.umass.edu/open_access_dissertations/71

Louisiana State University

23.
Kim, Jeonghun.
Classifying *quadratic* number *fields* up to Arf equivalence.

Degree: PhD, Applied Mathematics, 2006, Louisiana State University

URL: etd-07052006-110113 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3198

► Two number *fields* K and L are said to be Arf equivalent if there exists a bijection T : Ω_{K} → Ω_{L} of places of…
(more)

Subjects/Keywords: Arf equivalence; local root numbers; quadratic number fields

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kim, J. (2006). Classifying quadratic number fields up to Arf equivalence. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07052006-110113 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3198

Chicago Manual of Style (16^{th} Edition):

Kim, Jeonghun. “Classifying quadratic number fields up to Arf equivalence.” 2006. Doctoral Dissertation, Louisiana State University. Accessed July 15, 2020. etd-07052006-110113 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3198.

MLA Handbook (7^{th} Edition):

Kim, Jeonghun. “Classifying quadratic number fields up to Arf equivalence.” 2006. Web. 15 Jul 2020.

Vancouver:

Kim J. Classifying quadratic number fields up to Arf equivalence. [Internet] [Doctoral dissertation]. Louisiana State University; 2006. [cited 2020 Jul 15]. Available from: etd-07052006-110113 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3198.

Council of Science Editors:

Kim J. Classifying quadratic number fields up to Arf equivalence. [Doctoral Dissertation]. Louisiana State University; 2006. Available from: etd-07052006-110113 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3198

California State University – San Bernardino

24. Beyronneau, Robert Lewis. The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples.

Degree: MAin Mathematics, Mathematics, 2005, California State University – San Bernardino

URL: https://scholarworks.lib.csusb.edu/etd-project/2700

This project centers around finding specific examples of quintic polynomials that were and were not solvable. This helped to devise a method for finding examples of solvable and unsolvable quintics.

Subjects/Keywords: Polynomials; Algebra; Galois theory; Algebraic fields; Quadratic differentials; Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Beyronneau, R. L. (2005). The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd-project/2700

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Beyronneau, Robert Lewis. “The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples.” 2005. Thesis, California State University – San Bernardino. Accessed July 15, 2020. https://scholarworks.lib.csusb.edu/etd-project/2700.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Beyronneau, Robert Lewis. “The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples.” 2005. Web. 15 Jul 2020.

Vancouver:

Beyronneau RL. The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples. [Internet] [Thesis]. California State University – San Bernardino; 2005. [cited 2020 Jul 15]. Available from: https://scholarworks.lib.csusb.edu/etd-project/2700.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Beyronneau RL. The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples. [Thesis]. California State University – San Bernardino; 2005. Available from: https://scholarworks.lib.csusb.edu/etd-project/2700

Not specified: Masters Thesis or Doctoral Dissertation

Arizona State University

25. Duplessis, Francis. Topics in Cosmology and Gravitation.

Degree: Physics, 2017, Arizona State University

URL: http://repository.asu.edu/items/44090

► Two ideas that extends on the theory of General Relativity are introduced and then the phenomenology they can offer is explored. The first idea shows…
(more)

Subjects/Keywords: Theoretical physics; Physics; Alternative to inflation; Blazar Halos; Intergalactic Magnetic Fields; Matter Bounce; Pure Quadratic Gravity; Wormholes

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Duplessis, F. (2017). Topics in Cosmology and Gravitation. (Doctoral Dissertation). Arizona State University. Retrieved from http://repository.asu.edu/items/44090

Chicago Manual of Style (16^{th} Edition):

Duplessis, Francis. “Topics in Cosmology and Gravitation.” 2017. Doctoral Dissertation, Arizona State University. Accessed July 15, 2020. http://repository.asu.edu/items/44090.

MLA Handbook (7^{th} Edition):

Duplessis, Francis. “Topics in Cosmology and Gravitation.” 2017. Web. 15 Jul 2020.

Vancouver:

Duplessis F. Topics in Cosmology and Gravitation. [Internet] [Doctoral dissertation]. Arizona State University; 2017. [cited 2020 Jul 15]. Available from: http://repository.asu.edu/items/44090.

Council of Science Editors:

Duplessis F. Topics in Cosmology and Gravitation. [Doctoral Dissertation]. Arizona State University; 2017. Available from: http://repository.asu.edu/items/44090

University of Missouri – Columbia

26.
Koh, Doowon, 1972-.
Extension theorems in vector spaces over finite * fields*.

Degree: 2008, University of Missouri – Columbia

URL: https://doi.org/10.32469/10355/9097

► We study the L[superscript p] - L[superscript r] boundedness of the extension operator associated with algebraic varieties such as nondegenerate *quadratic* surfaces, paraboloids, and cones…
(more)

Subjects/Keywords: Fourier analysis; Vector spaces; Quadratic fields; Paraboloid; Finite fields (Algebra); Field extensions (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Koh, Doowon, 1. (2008). Extension theorems in vector spaces over finite fields. (Thesis). University of Missouri – Columbia. Retrieved from https://doi.org/10.32469/10355/9097

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Koh, Doowon, 1972-. “Extension theorems in vector spaces over finite fields.” 2008. Thesis, University of Missouri – Columbia. Accessed July 15, 2020. https://doi.org/10.32469/10355/9097.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Koh, Doowon, 1972-. “Extension theorems in vector spaces over finite fields.” 2008. Web. 15 Jul 2020.

Vancouver:

Koh, Doowon 1. Extension theorems in vector spaces over finite fields. [Internet] [Thesis]. University of Missouri – Columbia; 2008. [cited 2020 Jul 15]. Available from: https://doi.org/10.32469/10355/9097.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Koh, Doowon 1. Extension theorems in vector spaces over finite fields. [Thesis]. University of Missouri – Columbia; 2008. Available from: https://doi.org/10.32469/10355/9097

Not specified: Masters Thesis or Doctoral Dissertation

University of Missouri – Columbia

27.
Koh, Doowon, 1972-.
Extension theorems in vector spaces over finite * fields*.

Degree: 2008, University of Missouri – Columbia

URL: http://hdl.handle.net/10355/9097

► We study the L[superscript p] - L[superscript r] boundedness of the extension operator associated with algebraic varieties such as nondegenerate *quadratic* surfaces, paraboloids, and cones…
(more)

Subjects/Keywords: Fourier analysis; Vector spaces; Quadratic fields; Paraboloid; Finite fields (Algebra); Field extensions (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Koh, Doowon, 1. (2008). Extension theorems in vector spaces over finite fields. (Thesis). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/9097

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Koh, Doowon, 1972-. “Extension theorems in vector spaces over finite fields.” 2008. Thesis, University of Missouri – Columbia. Accessed July 15, 2020. http://hdl.handle.net/10355/9097.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Koh, Doowon, 1972-. “Extension theorems in vector spaces over finite fields.” 2008. Web. 15 Jul 2020.

Vancouver:

Koh, Doowon 1. Extension theorems in vector spaces over finite fields. [Internet] [Thesis]. University of Missouri – Columbia; 2008. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10355/9097.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Koh, Doowon 1. Extension theorems in vector spaces over finite fields. [Thesis]. University of Missouri – Columbia; 2008. Available from: http://hdl.handle.net/10355/9097

Not specified: Masters Thesis or Doctoral Dissertation

28. Peruzzi, Daniela. Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2.

Degree: Mestrado, Matemática, 2009, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02092009-165147/ ;

►

Um dos principais problemas na teoria qualitativa das equações diferenciais em dimensão dois é apresentar, para uma dada família de sistemas diferenciais, uma classificação topológica… (more)

Subjects/Keywords: Campo de vetores quadráticos; Equivalência topológica; Integral primeira racional; Phase portrait; Quadratic vector fields; Rational first integral; Retratos de fase; Topological equivalence

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Peruzzi, D. (2009). Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02092009-165147/ ;

Chicago Manual of Style (16^{th} Edition):

Peruzzi, Daniela. “Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2.” 2009. Masters Thesis, University of São Paulo. Accessed July 15, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02092009-165147/ ;.

MLA Handbook (7^{th} Edition):

Peruzzi, Daniela. “Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2.” 2009. Web. 15 Jul 2020.

Vancouver:

Peruzzi D. Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2. [Internet] [Masters thesis]. University of São Paulo; 2009. [cited 2020 Jul 15]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02092009-165147/ ;.

Council of Science Editors:

Peruzzi D. Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2. [Masters Thesis]. University of São Paulo; 2009. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02092009-165147/ ;

Virginia Tech

29.
Miller, Nicole Renee.
The Structure of the Class Group of Imaginary *Quadratic* * Fields*.

Degree: MS, Mathematics, 2005, Virginia Tech

URL: http://hdl.handle.net/10919/32572

► Let Q(√{-d}) be an imaginary *quadratic* field with discriminant Δ. We use the isomorphism between the ideal class groups of the field and the equivalence…
(more)

Subjects/Keywords: 7-rank; 5-rank; Positive Definite Forms; Genera; Class Group; Binary Quadratic Fields

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Miller, N. R. (2005). The Structure of the Class Group of Imaginary Quadratic Fields. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/32572

Chicago Manual of Style (16^{th} Edition):

Miller, Nicole Renee. “The Structure of the Class Group of Imaginary Quadratic Fields.” 2005. Masters Thesis, Virginia Tech. Accessed July 15, 2020. http://hdl.handle.net/10919/32572.

MLA Handbook (7^{th} Edition):

Miller, Nicole Renee. “The Structure of the Class Group of Imaginary Quadratic Fields.” 2005. Web. 15 Jul 2020.

Vancouver:

Miller NR. The Structure of the Class Group of Imaginary Quadratic Fields. [Internet] [Masters thesis]. Virginia Tech; 2005. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10919/32572.

Council of Science Editors:

Miller NR. The Structure of the Class Group of Imaginary Quadratic Fields. [Masters Thesis]. Virginia Tech; 2005. Available from: http://hdl.handle.net/10919/32572

California State University – San Bernardino

30.
Rezola, Nolberto.
Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary *Quadratic* Number Field.

Degree: MAin Mathematics, Mathematics, 2015, California State University – San Bernardino

URL: https://scholarworks.lib.csusb.edu/etd/205

► The ring of integers is a very interesting ring, it has the amazing property that each of its elements may be expressed uniquely, up…
(more)

Subjects/Keywords: imaginary quadratic number field; unique prime ideal factorization; Dedekind domain; Algebraic integers; Rings; Fields; Ideals; Integral over; R-modules; finitely generated set; UFD; PID.; Algebra; Number Theory; Other Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rezola, N. (2015). Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number Field. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd/205

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Rezola, Nolberto. “Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number Field.” 2015. Thesis, California State University – San Bernardino. Accessed July 15, 2020. https://scholarworks.lib.csusb.edu/etd/205.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Rezola, Nolberto. “Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number Field.” 2015. Web. 15 Jul 2020.

Vancouver:

Rezola N. Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number Field. [Internet] [Thesis]. California State University – San Bernardino; 2015. [cited 2020 Jul 15]. Available from: https://scholarworks.lib.csusb.edu/etd/205.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rezola N. Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number Field. [Thesis]. California State University – San Bernardino; 2015. Available from: https://scholarworks.lib.csusb.edu/etd/205

Not specified: Masters Thesis or Doctoral Dissertation