Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(QUANTENKOHOMOLOGIE ALGEBRAISCHE TOPOLOGIE ). Showing records 1 – 30 of 495 total matches.

[1] [2] [3] [4] [5] … [17]

Search Limiters

Last 2 Years | English Only

Department

Levels

Languages

Country

▼ Search Limiters


University of Vienna

1. Grüning, Julius. Lens spaces.

Degree: 2015, University of Vienna

Diese Masterarbeit beschäftigt sich mit Linsenräumen. Ein Linsenraum entsteht als Quotientenraum einer Wirkung einer endlichen zyklischen Gruppe auf eine Sphäre ungerader Dimension. Es werden einige verschiedene Konstruktionen von Linsenräumen besprochen. Außerdem werden die bekannten Homotopie- wie Homöomorphie-Klassifikationsresultate vorgestellt und bewiesen.

Subjects/Keywords: 31.61 Algebraische Topologie; Linsenräume / Linsenraum / algebraische Topologie / Homotopie / Homologie / Homöomorphie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Grüning, J. (2015). Lens spaces. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/40559/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Grüning, Julius. “Lens spaces.” 2015. Thesis, University of Vienna. Accessed May 06, 2021. http://othes.univie.ac.at/40559/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Grüning, Julius. “Lens spaces.” 2015. Web. 06 May 2021.

Vancouver:

Grüning J. Lens spaces. [Internet] [Thesis]. University of Vienna; 2015. [cited 2021 May 06]. Available from: http://othes.univie.ac.at/40559/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Grüning J. Lens spaces. [Thesis]. University of Vienna; 2015. Available from: http://othes.univie.ac.at/40559/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

2. Haug, Luis. On Lagrangian quantum homology and Lagrangian cobordisms.

Degree: 2014, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); LAGRANGE-MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); BORDISMUS + KOBORDISMUS (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); LAGRANGE MANIFOLDS (DIFFERENTIAL GEOMETRY); QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); BORDISM + COBORDISM (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haug, L. (2014). On Lagrangian quantum homology and Lagrangian cobordisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/154582

Chicago Manual of Style (16th Edition):

Haug, Luis. “On Lagrangian quantum homology and Lagrangian cobordisms.” 2014. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/154582.

MLA Handbook (7th Edition):

Haug, Luis. “On Lagrangian quantum homology and Lagrangian cobordisms.” 2014. Web. 06 May 2021.

Vancouver:

Haug L. On Lagrangian quantum homology and Lagrangian cobordisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/154582.

Council of Science Editors:

Haug L. On Lagrangian quantum homology and Lagrangian cobordisms. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/154582


ETH Zürich

3. Oberdieck, Georg. The enumerative geometry of the Hilbert schemes of points of a K3 surface.

Degree: 2015, ETH Zürich

Subjects/Keywords: HILBERTSCHEMEN (ALGEBRAISCHE GEOMETRIE); K3-FLÄCHEN + ENRIQUES-FLÄCHEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); HILBERT SCHEMES (ALGEBRAIC GEOMETRY); K3 SURFACES + ENRIQUES SURFACES (ALGEBRAIC GEOMETRY); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oberdieck, G. (2015). The enumerative geometry of the Hilbert schemes of points of a K3 surface. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155291

Chicago Manual of Style (16th Edition):

Oberdieck, Georg. “The enumerative geometry of the Hilbert schemes of points of a K3 surface.” 2015. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/155291.

MLA Handbook (7th Edition):

Oberdieck, Georg. “The enumerative geometry of the Hilbert schemes of points of a K3 surface.” 2015. Web. 06 May 2021.

Vancouver:

Oberdieck G. The enumerative geometry of the Hilbert schemes of points of a K3 surface. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/155291.

Council of Science Editors:

Oberdieck G. The enumerative geometry of the Hilbert schemes of points of a K3 surface. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/155291


Ruhr Universität Bochum

4. Hengelbrock, Harald. Symmetries in Quantum Schubert Calculus.

Degree: 2003, Ruhr Universität Bochum

 Die Arbeit befasst sich mit dem Quantenkohomologiering von Grassmannschen Varietäten. Ich definiere eine Involution auf dem Quantenkohomologiering, welche mit komplexer Konjugation auf dessen Spektrum zusammenhängt,… (more)

Subjects/Keywords: Quantenkohomologie; Symmetrisches Polynom; Graßmann-Mannigfaltigkeit; Algebraische Kombinatorik; Fahnenmannigfaltigkeit

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hengelbrock, H. (2003). Symmetries in Quantum Schubert Calculus. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-7275

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hengelbrock, Harald. “Symmetries in Quantum Schubert Calculus.” 2003. Thesis, Ruhr Universität Bochum. Accessed May 06, 2021. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-7275.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hengelbrock, Harald. “Symmetries in Quantum Schubert Calculus.” 2003. Web. 06 May 2021.

Vancouver:

Hengelbrock H. Symmetries in Quantum Schubert Calculus. [Internet] [Thesis]. Ruhr Universität Bochum; 2003. [cited 2021 May 06]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-7275.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hengelbrock H. Symmetries in Quantum Schubert Calculus. [Thesis]. Ruhr Universität Bochum; 2003. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-7275

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

5. Ziltener, Fabian. Symplectic vortices on the complex plane and quantum cohomology.

Degree: 2006, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); KOMPAKTE LIE-GRUPPEN UND KOMPAKTE LIE-ALGEBREN; QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); COMPACT LIE GROUPS AND COMPACT LIE ALGEBRAS; QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ziltener, F. (2006). Symplectic vortices on the complex plane and quantum cohomology. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/149209

Chicago Manual of Style (16th Edition):

Ziltener, Fabian. “Symplectic vortices on the complex plane and quantum cohomology.” 2006. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/149209.

MLA Handbook (7th Edition):

Ziltener, Fabian. “Symplectic vortices on the complex plane and quantum cohomology.” 2006. Web. 06 May 2021.

Vancouver:

Ziltener F. Symplectic vortices on the complex plane and quantum cohomology. [Internet] [Doctoral dissertation]. ETH Zürich; 2006. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/149209.

Council of Science Editors:

Ziltener F. Symplectic vortices on the complex plane and quantum cohomology. [Doctoral Dissertation]. ETH Zürich; 2006. Available from: http://hdl.handle.net/20.500.11850/149209


Ruhr Universität Bochum

6. Möllers, Jan-David. K(1)-local complex E∞-orientations.

Degree: 2010, Ruhr Universität Bochum

 In dieser Dissertation werden K(1)-lokale komplexe E_unendlich Orientierungen und H_unendlich Orientierungen untersucht (E_unendlich Abbildungen vom komplexen Kobordismenspektrum in ein K(1)-lokales E_unendlich Spektrum). Das Hauptresultat liefert… (more)

Subjects/Keywords: Algebraische Topologie; Stabile Homotopietheorie; Dimension unendlich; Bernoullische Zahl

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Möllers, J. (2010). K(1)-local complex E∞-orientations. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Möllers, Jan-David. “K(1)-local complex E∞-orientations.” 2010. Thesis, Ruhr Universität Bochum. Accessed May 06, 2021. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Möllers, Jan-David. “K(1)-local complex E∞-orientations.” 2010. Web. 06 May 2021.

Vancouver:

Möllers J. K(1)-local complex E∞-orientations. [Internet] [Thesis]. Ruhr Universität Bochum; 2010. [cited 2021 May 06]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Möllers J. K(1)-local complex E∞-orientations. [Thesis]. Ruhr Universität Bochum; 2010. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Vienna

7. Kröncke, Klaus. Comparison theorems in Riemannian geometry.

Degree: 2010, University of Vienna

Im ersten Kapitel führen wir zunächst Grundkonzepte der Krümmung ein. Danach fassen wir die wichtigsten Resultate aus der Überlagerungstheorie zusammen. Zuletzt beschreiben wir Mannigfaltigkeiten konstanter… (more)

Subjects/Keywords: 31.52 Differentialgeometrie; 31.55 Globale Analysis; 31.61 Algebraische Topologie; Globale Riemannsche Geometrie; Global Riemannian Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kröncke, K. (2010). Comparison theorems in Riemannian geometry. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/10736/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kröncke, Klaus. “Comparison theorems in Riemannian geometry.” 2010. Thesis, University of Vienna. Accessed May 06, 2021. http://othes.univie.ac.at/10736/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kröncke, Klaus. “Comparison theorems in Riemannian geometry.” 2010. Web. 06 May 2021.

Vancouver:

Kröncke K. Comparison theorems in Riemannian geometry. [Internet] [Thesis]. University of Vienna; 2010. [cited 2021 May 06]. Available from: http://othes.univie.ac.at/10736/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kröncke K. Comparison theorems in Riemannian geometry. [Thesis]. University of Vienna; 2010. Available from: http://othes.univie.ac.at/10736/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Heijne, Bas Leonard. Elliptic delsarte surfaces.

Degree: 2011, NARCIS

 Een elliptische kromme is een kromme waarop een optelling gedefinieerd is. Een elliptisch oppervlak is vervolgens een oppervlak dat bestaat uit is opgebouwd uit oneindig… (more)

Subjects/Keywords: proefschriften (vorm); elliptische oppervlakten; ellipsen (wiskunde); algebraische topologie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Heijne, B. L. (2011). Elliptic delsarte surfaces. (Doctoral Dissertation). NARCIS. Retrieved from https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; 288d2504-8a96-40bd-8a99-46d143073d85 ; 11370/288d2504-8a96-40bd-8a99-46d143073d85 ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html

Chicago Manual of Style (16th Edition):

Heijne, Bas Leonard. “Elliptic delsarte surfaces.” 2011. Doctoral Dissertation, NARCIS. Accessed May 06, 2021. https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; 288d2504-8a96-40bd-8a99-46d143073d85 ; 11370/288d2504-8a96-40bd-8a99-46d143073d85 ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html.

MLA Handbook (7th Edition):

Heijne, Bas Leonard. “Elliptic delsarte surfaces.” 2011. Web. 06 May 2021.

Vancouver:

Heijne BL. Elliptic delsarte surfaces. [Internet] [Doctoral dissertation]. NARCIS; 2011. [cited 2021 May 06]. Available from: https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; 288d2504-8a96-40bd-8a99-46d143073d85 ; 11370/288d2504-8a96-40bd-8a99-46d143073d85 ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html.

Council of Science Editors:

Heijne BL. Elliptic delsarte surfaces. [Doctoral Dissertation]. NARCIS; 2011. Available from: https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; 288d2504-8a96-40bd-8a99-46d143073d85 ; 11370/288d2504-8a96-40bd-8a99-46d143073d85 ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html


University of Vienna

9. Wellisch, Manuel. Knotentheorie und Spoke Diagrams.

Degree: 2017, University of Vienna

 E. Harasko hat mit der Einführung der Spoke Diagrams und den Reidemeister-Bewegungen für Spoke Diagrams eine neue und effektive Methode geschaffen Knoten zu vereinfachen (siehe… (more)

Subjects/Keywords: 31.61 Algebraische Topologie; 31.69 Topologie: Sonstiges; 31.99 Mathematik: Sonstiges; 31.00 Mathematik: Allgemeines; Knoten / Knotentheorie / Spoke Diagrams / Reidemeister / Harasko / Wellisch / Spokes; knots / knot theory / spoke diagrams / Reidemeister / Harasko / Wellisch / spokes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wellisch, M. (2017). Knotentheorie und Spoke Diagrams. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/47004/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wellisch, Manuel. “Knotentheorie und Spoke Diagrams.” 2017. Thesis, University of Vienna. Accessed May 06, 2021. http://othes.univie.ac.at/47004/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wellisch, Manuel. “Knotentheorie und Spoke Diagrams.” 2017. Web. 06 May 2021.

Vancouver:

Wellisch M. Knotentheorie und Spoke Diagrams. [Internet] [Thesis]. University of Vienna; 2017. [cited 2021 May 06]. Available from: http://othes.univie.ac.at/47004/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wellisch M. Knotentheorie und Spoke Diagrams. [Thesis]. University of Vienna; 2017. Available from: http://othes.univie.ac.at/47004/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

10. Thöni, Werner. Aequivariante Homotopie und Cohomologie.

Degree: 1964, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); KOHOMOLOGIE-OPERATIONEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); COHOMOLOGY OPERATIONS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Thöni, W. (1964). Aequivariante Homotopie und Cohomologie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/132448

Chicago Manual of Style (16th Edition):

Thöni, Werner. “Aequivariante Homotopie und Cohomologie.” 1964. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/132448.

MLA Handbook (7th Edition):

Thöni, Werner. “Aequivariante Homotopie und Cohomologie.” 1964. Web. 06 May 2021.

Vancouver:

Thöni W. Aequivariante Homotopie und Cohomologie. [Internet] [Doctoral dissertation]. ETH Zürich; 1964. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/132448.

Council of Science Editors:

Thöni W. Aequivariante Homotopie und Cohomologie. [Doctoral Dissertation]. ETH Zürich; 1964. Available from: http://hdl.handle.net/20.500.11850/132448


ETH Zürich

11. Meier, Werner. Beiträge zur algebraischen Homotopietheorie der Moduln.

Degree: 1962, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Meier, W. (1962). Beiträge zur algebraischen Homotopietheorie der Moduln. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131688

Chicago Manual of Style (16th Edition):

Meier, Werner. “Beiträge zur algebraischen Homotopietheorie der Moduln.” 1962. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/131688.

MLA Handbook (7th Edition):

Meier, Werner. “Beiträge zur algebraischen Homotopietheorie der Moduln.” 1962. Web. 06 May 2021.

Vancouver:

Meier W. Beiträge zur algebraischen Homotopietheorie der Moduln. [Internet] [Doctoral dissertation]. ETH Zürich; 1962. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/131688.

Council of Science Editors:

Meier W. Beiträge zur algebraischen Homotopietheorie der Moduln. [Doctoral Dissertation]. ETH Zürich; 1962. Available from: http://hdl.handle.net/20.500.11850/131688


ETH Zürich

12. Fatt, Milton Jacob. On the homotopical approach to algebraic topology and the Hurewicz theorem.

Degree: 1963, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fatt, M. J. (1963). On the homotopical approach to algebraic topology and the Hurewicz theorem. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131384

Chicago Manual of Style (16th Edition):

Fatt, Milton Jacob. “On the homotopical approach to algebraic topology and the Hurewicz theorem.” 1963. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/131384.

MLA Handbook (7th Edition):

Fatt, Milton Jacob. “On the homotopical approach to algebraic topology and the Hurewicz theorem.” 1963. Web. 06 May 2021.

Vancouver:

Fatt MJ. On the homotopical approach to algebraic topology and the Hurewicz theorem. [Internet] [Doctoral dissertation]. ETH Zürich; 1963. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/131384.

Council of Science Editors:

Fatt MJ. On the homotopical approach to algebraic topology and the Hurewicz theorem. [Doctoral Dissertation]. ETH Zürich; 1963. Available from: http://hdl.handle.net/20.500.11850/131384


ETH Zürich

13. Eckmann, Beno. Zur Homotopietheorie gefaserter Räume.

Degree: 1941, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Eckmann, B. (1941). Zur Homotopietheorie gefaserter Räume. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133370

Chicago Manual of Style (16th Edition):

Eckmann, Beno. “Zur Homotopietheorie gefaserter Räume.” 1941. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/133370.

MLA Handbook (7th Edition):

Eckmann, Beno. “Zur Homotopietheorie gefaserter Räume.” 1941. Web. 06 May 2021.

Vancouver:

Eckmann B. Zur Homotopietheorie gefaserter Räume. [Internet] [Doctoral dissertation]. ETH Zürich; 1941. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/133370.

Council of Science Editors:

Eckmann B. Zur Homotopietheorie gefaserter Räume. [Doctoral Dissertation]. ETH Zürich; 1941. Available from: http://hdl.handle.net/20.500.11850/133370


ETH Zürich

14. Gysin, Werner. Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten.

Degree: 1941, ETH Zürich

Subjects/Keywords: HOMOLOGIETHEORIE + DUALITÄTSTHEOREME (ALGEBRAISCHE TOPOLOGIE); KOMPLEXE (ALGEBRAISCHE TOPOLOGIE); HOMOLOGY THEORY + DUALITY THEOREMS (ALGEBRAIC TOPOLOGY); COMPLEXES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gysin, W. (1941). Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133473

Chicago Manual of Style (16th Edition):

Gysin, Werner. “Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten.” 1941. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/133473.

MLA Handbook (7th Edition):

Gysin, Werner. “Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten.” 1941. Web. 06 May 2021.

Vancouver:

Gysin W. Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten. [Internet] [Doctoral dissertation]. ETH Zürich; 1941. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/133473.

Council of Science Editors:

Gysin W. Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten. [Doctoral Dissertation]. ETH Zürich; 1941. Available from: http://hdl.handle.net/20.500.11850/133473


ETH Zürich

15. Curjel, Caspar Robert. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.

Degree: 1961, ETH Zürich

Subjects/Keywords: HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Curjel, C. R. (1961). Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135022

Chicago Manual of Style (16th Edition):

Curjel, Caspar Robert. “Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.” 1961. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/135022.

MLA Handbook (7th Edition):

Curjel, Caspar Robert. “Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.” 1961. Web. 06 May 2021.

Vancouver:

Curjel CR. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1961. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/135022.

Council of Science Editors:

Curjel CR. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. [Doctoral Dissertation]. ETH Zürich; 1961. Available from: http://hdl.handle.net/20.500.11850/135022


ETH Zürich

16. Stamm, Emil. Ueber die Homotopiegruppen gewisser Faserungen.

Degree: 1964, ETH Zürich

Subjects/Keywords: FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stamm, E. (1964). Ueber die Homotopiegruppen gewisser Faserungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131691

Chicago Manual of Style (16th Edition):

Stamm, Emil. “Ueber die Homotopiegruppen gewisser Faserungen.” 1964. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/131691.

MLA Handbook (7th Edition):

Stamm, Emil. “Ueber die Homotopiegruppen gewisser Faserungen.” 1964. Web. 06 May 2021.

Vancouver:

Stamm E. Ueber die Homotopiegruppen gewisser Faserungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1964. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/131691.

Council of Science Editors:

Stamm E. Ueber die Homotopiegruppen gewisser Faserungen. [Doctoral Dissertation]. ETH Zürich; 1964. Available from: http://hdl.handle.net/20.500.11850/131691


University of Vienna

17. Haiden, Fabian. Refined combinatorial torsion.

Degree: 2010, University of Vienna

Wir untersuchen eine Variante der Reidemeister- und Whitehead-Torsion von CW-Komplexen und glatten Mannigfaltigkeiten von V. Turaev. Die notwendigen algebraischen Hilfsmittel werden dabei in Analogie zu… (more)

Subjects/Keywords: 31.61 Algebraische Topologie; 31.65 Mannigfaltigkeiten, Zellkomplexe; 31.27 Kategorientheorie; monoidale Kategorie / 2-Gruppe / algebraische K-Theorie / Determinantenlinie / Quasiisomorphismus / Whitehead-Gruppe / Whitehead-Torsion / Reidemeister-Torsion / Morse-Theorie / Scheibenbündel; monoidal category / 2-group / algebraic K-theory / determinant line / quasi-isomorphism / Whitehead group / Whitehead torsion / Reidemeister torsion / Morse-theory / disc bundle

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haiden, F. (2010). Refined combinatorial torsion. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/9916/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Haiden, Fabian. “Refined combinatorial torsion.” 2010. Thesis, University of Vienna. Accessed May 06, 2021. http://othes.univie.ac.at/9916/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Haiden, Fabian. “Refined combinatorial torsion.” 2010. Web. 06 May 2021.

Vancouver:

Haiden F. Refined combinatorial torsion. [Internet] [Thesis]. University of Vienna; 2010. [cited 2021 May 06]. Available from: http://othes.univie.ac.at/9916/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Haiden F. Refined combinatorial torsion. [Thesis]. University of Vienna; 2010. Available from: http://othes.univie.ac.at/9916/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

18. Rovelli, Luca. Explicit equivariant compactification and Riemann-Roch for algebraic groups.

Degree: 2002, ETH Zürich

Subjects/Keywords: RIEMANN-ROCH-THEOREM FÜR ALGEBRAISCHE VARIETÄTEN (ALGEBRAISCHE GEOMETRIE); KOMPAKTIFIZIERUNGEN (TOPOLOGIE); ABELSCHE GRUPPEN (ALGEBRA); ALGEBRAISCHE GRUPPEN (ALGEBRAISCHE GEOMETRIE); FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); RIEMANN-ROCH THEOREM FOR ALGEBRAIC VARIETIES (ALGEBRAIC GEOMETRY); COMPACTIFICATIONS (TOPOLOGY); ABELIAN GROUPS (ALGEBRA); ALGEBRAIC GROUPS (ALGEBRAIC GEOMETRY); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rovelli, L. (2002). Explicit equivariant compactification and Riemann-Roch for algebraic groups. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/146972

Chicago Manual of Style (16th Edition):

Rovelli, Luca. “Explicit equivariant compactification and Riemann-Roch for algebraic groups.” 2002. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/146972.

MLA Handbook (7th Edition):

Rovelli, Luca. “Explicit equivariant compactification and Riemann-Roch for algebraic groups.” 2002. Web. 06 May 2021.

Vancouver:

Rovelli L. Explicit equivariant compactification and Riemann-Roch for algebraic groups. [Internet] [Doctoral dissertation]. ETH Zürich; 2002. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/146972.

Council of Science Editors:

Rovelli L. Explicit equivariant compactification and Riemann-Roch for algebraic groups. [Doctoral Dissertation]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/146972


ETH Zürich

19. Specker, Ernst P. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.

Degree: 1949, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); DREIDIMENSIONALE MANNIGFALTIGKEITEN (TOPOLOGIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); THREE-DIMENSIONAL MANIFOLDS (TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Specker, E. P. (1949). Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133460

Chicago Manual of Style (16th Edition):

Specker, Ernst P. “Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.” 1949. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/133460.

MLA Handbook (7th Edition):

Specker, Ernst P. “Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.” 1949. Web. 06 May 2021.

Vancouver:

Specker EP. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. [Internet] [Doctoral dissertation]. ETH Zürich; 1949. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/133460.

Council of Science Editors:

Specker EP. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. [Doctoral Dissertation]. ETH Zürich; 1949. Available from: http://hdl.handle.net/20.500.11850/133460


ETH Zürich

20. Janda, Felix. Relations in the tautological ring.

Degree: 2015, ETH Zürich

Subjects/Keywords: MODULRÄUME (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE ZYKLEN (ALGEBRAISCHE GEOMETRIE); RINGTHEORIE (ALGEBRA); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); MODULI SPACES (ALGEBRAIC GEOMETRY); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); ALGEBRAIC CYCLES (ALGEBRAIC GEOMETRY); RING THEORY (ALGEBRA); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Janda, F. (2015). Relations in the tautological ring. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155246

Chicago Manual of Style (16th Edition):

Janda, Felix. “Relations in the tautological ring.” 2015. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/155246.

MLA Handbook (7th Edition):

Janda, Felix. “Relations in the tautological ring.” 2015. Web. 06 May 2021.

Vancouver:

Janda F. Relations in the tautological ring. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/155246.

Council of Science Editors:

Janda F. Relations in the tautological ring. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/155246


ETH Zürich

21. Ebersold, Johannes Michael. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.

Degree: 1955, ETH Zürich

Subjects/Keywords: FIXPUNKTE UND KOINZIDENZEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); FIXED POINTS AND COINCIDENCE POINTS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ebersold, J. M. (1955). Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/132667

Chicago Manual of Style (16th Edition):

Ebersold, Johannes Michael. “Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.” 1955. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/132667.

MLA Handbook (7th Edition):

Ebersold, Johannes Michael. “Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.” 1955. Web. 06 May 2021.

Vancouver:

Ebersold JM. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. [Internet] [Doctoral dissertation]. ETH Zürich; 1955. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/132667.

Council of Science Editors:

Ebersold JM. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. [Doctoral Dissertation]. ETH Zürich; 1955. Available from: http://hdl.handle.net/20.500.11850/132667


ETH Zürich

22. Brändli, Emil Rudolf. Beiträge zur Theorie des Cohomologieringes.

Degree: 1948, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN UND KOHOMOLOGIEGRUPPEN SIMPLIZIALER MENGEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); KOHOMOLOGIE-OPERATIONEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGY AND COHOMOLOGY GROUPS OF SIMPLICIAL SETS (ALGEBRAIC TOPOLOGY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); COHOMOLOGY OPERATIONS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brändli, E. R. (1948). Beiträge zur Theorie des Cohomologieringes. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135213

Chicago Manual of Style (16th Edition):

Brändli, Emil Rudolf. “Beiträge zur Theorie des Cohomologieringes.” 1948. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/135213.

MLA Handbook (7th Edition):

Brändli, Emil Rudolf. “Beiträge zur Theorie des Cohomologieringes.” 1948. Web. 06 May 2021.

Vancouver:

Brändli ER. Beiträge zur Theorie des Cohomologieringes. [Internet] [Doctoral dissertation]. ETH Zürich; 1948. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/135213.

Council of Science Editors:

Brändli ER. Beiträge zur Theorie des Cohomologieringes. [Doctoral Dissertation]. ETH Zürich; 1948. Available from: http://hdl.handle.net/20.500.11850/135213


ETH Zürich

23. Kundert, Esayas. Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente.

Degree: 1951, ETH Zürich

Subjects/Keywords: FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); SCHNITT-THEORIE (ALGEBRAISCHE GEOMETRIE); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); INTERSECTION THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kundert, E. (1951). Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131941

Chicago Manual of Style (16th Edition):

Kundert, Esayas. “Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente.” 1951. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/131941.

MLA Handbook (7th Edition):

Kundert, Esayas. “Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente.” 1951. Web. 06 May 2021.

Vancouver:

Kundert E. Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente. [Internet] [Doctoral dissertation]. ETH Zürich; 1951. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/131941.

Council of Science Editors:

Kundert E. Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente. [Doctoral Dissertation]. ETH Zürich; 1951. Available from: http://hdl.handle.net/20.500.11850/131941


ETH Zürich

24. Michelle Karlsson. Characteristic classes and bounded cohomology.

Degree: 2004, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SIMPLIZIALE KOMPLEXE + SIMPLIZIALE SCHEMEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); SIMPLICIAL COMPLEXES + SIMPLICIAL SCHEMES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Karlsson, M. (2004). Characteristic classes and bounded cohomology. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/148350

Chicago Manual of Style (16th Edition):

Karlsson, Michelle. “Characteristic classes and bounded cohomology.” 2004. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/148350.

MLA Handbook (7th Edition):

Karlsson, Michelle. “Characteristic classes and bounded cohomology.” 2004. Web. 06 May 2021.

Vancouver:

Karlsson M. Characteristic classes and bounded cohomology. [Internet] [Doctoral dissertation]. ETH Zürich; 2004. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/148350.

Council of Science Editors:

Karlsson M. Characteristic classes and bounded cohomology. [Doctoral Dissertation]. ETH Zürich; 2004. Available from: http://hdl.handle.net/20.500.11850/148350


ETH Zürich

25. Huber, Thomas. Rotation quasimorphisms for surfaces.

Degree: 2013, ETH Zürich

Subjects/Keywords: RÄUME KONSTANTER KRÜMMUNG (DIFFERENTIALGEOMETRIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SPACES OF CONSTANT CURVATURE (DIFFERENTIAL GEOMETRY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huber, T. (2013). Rotation quasimorphisms for surfaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153998

Chicago Manual of Style (16th Edition):

Huber, Thomas. “Rotation quasimorphisms for surfaces.” 2013. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/153998.

MLA Handbook (7th Edition):

Huber, Thomas. “Rotation quasimorphisms for surfaces.” 2013. Web. 06 May 2021.

Vancouver:

Huber T. Rotation quasimorphisms for surfaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2013. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/153998.

Council of Science Editors:

Huber T. Rotation quasimorphisms for surfaces. [Doctoral Dissertation]. ETH Zürich; 2013. Available from: http://hdl.handle.net/20.500.11850/153998


University of Vienna

26. Bojko, Arkadij. Stability conditions on quivers and semistable non-commutative curve counting.

Degree: 2018, University of Vienna

Der Begriff von Stabilitätkondizionen auf triangulierten Kategorien wurde von T. Bridgeland in "Stability conditions on triangulated categories" eingeführt. Zusätzlich haben wir mit den nicht-kommutativen Kurven,… (more)

Subjects/Keywords: 31.27 Kategorientheorie; 31.12 Kombinatorik, Graphentheorie; 31.29 Algebra: Sonstiges; 31.50 Geometrie: Allgemeines; 31.23 Ideale, Ringe, Moduln, Algebren; 31.60 Topologie: Allgemeines; 31.25 Lineare Algebra, multilineare Algebra; 31.61 Algebraische Topologie; triangulierte Kategorien / derivierte Kategorien / Stabilitätbedingungen / Stabilitätkondizionen / nicht-kommutative / Kurven / semistabil / Representationen von Köchern; triangulated categories / derived categories / stability conditions / non-commutative curve counting / non-commutative / semistable / representations of quivers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bojko, A. (2018). Stability conditions on quivers and semistable non-commutative curve counting. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/52820/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bojko, Arkadij. “Stability conditions on quivers and semistable non-commutative curve counting.” 2018. Thesis, University of Vienna. Accessed May 06, 2021. http://othes.univie.ac.at/52820/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bojko, Arkadij. “Stability conditions on quivers and semistable non-commutative curve counting.” 2018. Web. 06 May 2021.

Vancouver:

Bojko A. Stability conditions on quivers and semistable non-commutative curve counting. [Internet] [Thesis]. University of Vienna; 2018. [cited 2021 May 06]. Available from: http://othes.univie.ac.at/52820/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bojko A. Stability conditions on quivers and semistable non-commutative curve counting. [Thesis]. University of Vienna; 2018. Available from: http://othes.univie.ac.at/52820/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Vienna

27. Vukadin, Ognjen. Arithmetic groups acting on quaternion hyperbolic spaces.

Degree: 2009, University of Vienna

In dieser Arbeit werden geometrische Methoden (, , , ) zur Konstruktion von Kohomologieklassen in lokal symmetrischen Räumen angewandt, um den Fall von arithmetisch definierten… (more)

Subjects/Keywords: 31.14 Zahlentheorie; 31.61 Algebraische Topologie; 31.30 Topologische Gruppen, Liegruppen; Arithmetische Gruppen / Kohomologie / Quaternionisch hyperbolische Räume; arithmetic groups / cohomology / quaternion hyperbolic spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vukadin, O. (2009). Arithmetic groups acting on quaternion hyperbolic spaces. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/4861/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vukadin, Ognjen. “Arithmetic groups acting on quaternion hyperbolic spaces.” 2009. Thesis, University of Vienna. Accessed May 06, 2021. http://othes.univie.ac.at/4861/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vukadin, Ognjen. “Arithmetic groups acting on quaternion hyperbolic spaces.” 2009. Web. 06 May 2021.

Vancouver:

Vukadin O. Arithmetic groups acting on quaternion hyperbolic spaces. [Internet] [Thesis]. University of Vienna; 2009. [cited 2021 May 06]. Available from: http://othes.univie.ac.at/4861/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vukadin O. Arithmetic groups acting on quaternion hyperbolic spaces. [Thesis]. University of Vienna; 2009. Available from: http://othes.univie.ac.at/4861/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

28. Rolli, Pascal. Split quasicocycles and defect spaces.

Degree: 2014, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rolli, P. (2014). Split quasicocycles and defect spaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/154597

Chicago Manual of Style (16th Edition):

Rolli, Pascal. “Split quasicocycles and defect spaces.” 2014. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/154597.

MLA Handbook (7th Edition):

Rolli, Pascal. “Split quasicocycles and defect spaces.” 2014. Web. 06 May 2021.

Vancouver:

Rolli P. Split quasicocycles and defect spaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/154597.

Council of Science Editors:

Rolli P. Split quasicocycles and defect spaces. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/154597


ETH Zürich

29. Kervaire, Michel André. Courbure intégrale généralisée et homotopie.

Degree: 1956, ETH Zürich

Subjects/Keywords: HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kervaire, M. A. (1956). Courbure intégrale généralisée et homotopie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133361

Chicago Manual of Style (16th Edition):

Kervaire, Michel André. “Courbure intégrale généralisée et homotopie.” 1956. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/133361.

MLA Handbook (7th Edition):

Kervaire, Michel André. “Courbure intégrale généralisée et homotopie.” 1956. Web. 06 May 2021.

Vancouver:

Kervaire MA. Courbure intégrale généralisée et homotopie. [Internet] [Doctoral dissertation]. ETH Zürich; 1956. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/133361.

Council of Science Editors:

Kervaire MA. Courbure intégrale généralisée et homotopie. [Doctoral Dissertation]. ETH Zürich; 1956. Available from: http://hdl.handle.net/20.500.11850/133361


ETH Zürich

30. Stammbach, Urs. Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten von Präsentierungen.

Degree: 1966, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stammbach, U. (1966). Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten von Präsentierungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131368

Chicago Manual of Style (16th Edition):

Stammbach, Urs. “Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten von Präsentierungen.” 1966. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/131368.

MLA Handbook (7th Edition):

Stammbach, Urs. “Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten von Präsentierungen.” 1966. Web. 06 May 2021.

Vancouver:

Stammbach U. Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten von Präsentierungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1966. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/131368.

Council of Science Editors:

Stammbach U. Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten von Präsentierungen. [Doctoral Dissertation]. ETH Zürich; 1966. Available from: http://hdl.handle.net/20.500.11850/131368

[1] [2] [3] [4] [5] … [17]

.