Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Pseudo differential operators). Showing records 1 – 9 of 9 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Gothenburg / Göteborgs Universitet

1. Goffeng, Magnus. Index theory in geometry and physics.

Degree: 2011, University of Gothenburg / Göteborgs Universitet

 This thesis contains three papers in the area of index theory and its applications in geometry and mathematical physics. These papers deal with the problems… (more)

Subjects/Keywords: Index theory; Cyclic cohomology; Regularized index formulas; Toeplitz operators; Pseudo-differential operators; Quantum Hall effect

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Goffeng, M. (2011). Index theory in geometry and physics. (Thesis). University of Gothenburg / Göteborgs Universitet. Retrieved from http://hdl.handle.net/2077/24979

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Goffeng, Magnus. “Index theory in geometry and physics.” 2011. Thesis, University of Gothenburg / Göteborgs Universitet. Accessed July 11, 2020. http://hdl.handle.net/2077/24979.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Goffeng, Magnus. “Index theory in geometry and physics.” 2011. Web. 11 Jul 2020.

Vancouver:

Goffeng M. Index theory in geometry and physics. [Internet] [Thesis]. University of Gothenburg / Göteborgs Universitet; 2011. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2077/24979.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Goffeng M. Index theory in geometry and physics. [Thesis]. University of Gothenburg / Göteborgs Universitet; 2011. Available from: http://hdl.handle.net/2077/24979

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Loughborough University

2. Li, Liangpan. Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators.

Degree: PhD, 2016, Loughborough University

 In this dissertation we study non-negative self-adjoint Laplace type operators acting on smooth sections of a vector bundle. First, we assume base manifolds are compact,… (more)

Subjects/Keywords: 515; Local spectral asymptotics; Heat kernel; Dirac operators; Laplace operators; Pseudo-differential operators; Fourier integral operators; Wodzicki residue; Finite propagation speed; Spectral determinant

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, L. (2016). Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators. (Doctoral Dissertation). Loughborough University. Retrieved from http://hdl.handle.net/2134/23004

Chicago Manual of Style (16th Edition):

Li, Liangpan. “Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators.” 2016. Doctoral Dissertation, Loughborough University. Accessed July 11, 2020. http://hdl.handle.net/2134/23004.

MLA Handbook (7th Edition):

Li, Liangpan. “Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators.” 2016. Web. 11 Jul 2020.

Vancouver:

Li L. Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators. [Internet] [Doctoral dissertation]. Loughborough University; 2016. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2134/23004.

Council of Science Editors:

Li L. Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators. [Doctoral Dissertation]. Loughborough University; 2016. Available from: http://hdl.handle.net/2134/23004

3. Schwarz, Joao Fernando. Problema de Noether não-comutativo.

Degree: Mestrado, Matemática, 2015, University of São Paulo

Neste trabalho, temos o objetivo de introduzir o Problema de Noether Clássico e sua versão não- comutativa introduzida por J. Alev e F. Dumas em… (more)

Subjects/Keywords: Anéis de operadores diferenciais; Grupos de pseudo-reflexão; Noether´s problem; Noncommutative invariant theory; Problema de Noether; Pseudo-reflection groups; Rings of differential operators; Teoria de invariantes não-comutativa

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schwarz, J. F. (2015). Problema de Noether não-comutativo. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45131/tde-31032015-113754/ ;

Chicago Manual of Style (16th Edition):

Schwarz, Joao Fernando. “Problema de Noether não-comutativo.” 2015. Masters Thesis, University of São Paulo. Accessed July 11, 2020. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-31032015-113754/ ;.

MLA Handbook (7th Edition):

Schwarz, Joao Fernando. “Problema de Noether não-comutativo.” 2015. Web. 11 Jul 2020.

Vancouver:

Schwarz JF. Problema de Noether não-comutativo. [Internet] [Masters thesis]. University of São Paulo; 2015. [cited 2020 Jul 11]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-31032015-113754/ ;.

Council of Science Editors:

Schwarz JF. Problema de Noether não-comutativo. [Masters Thesis]. University of São Paulo; 2015. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-31032015-113754/ ;

4. Rouby, Ophélie. Conditions de quantification de Bohr-Sommerfeld pour des opérateurs semi-classiques non auto-adjoints : Bohr-Sommerfeld quantization conditions for non self-adjoint semi-classical operators.

Degree: Docteur es, Mathématiques et applications, 2016, Rennes 1

On s'intéresse à la théorie spectrale d'opérateurs semi-classiques non auto-adjoints en dimension un et plus précisément aux développements asymptotiques des valeurs propres. Ces derniers font… (more)

Subjects/Keywords: Physique mathématique; Analyse semi-Classique; Opérateurs pseudo-Différentiels; Opérateurs de Berezin-Toeplitz; Théorie spectrale; Mathematical physics; Semi-Classical analysis; Pseudo-Differential operators, Berezin-Toeplitz operators, spectral theory; Toeplitz operator; Spectral theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rouby, O. (2016). Conditions de quantification de Bohr-Sommerfeld pour des opérateurs semi-classiques non auto-adjoints : Bohr-Sommerfeld quantization conditions for non self-adjoint semi-classical operators. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2016REN1S051

Chicago Manual of Style (16th Edition):

Rouby, Ophélie. “Conditions de quantification de Bohr-Sommerfeld pour des opérateurs semi-classiques non auto-adjoints : Bohr-Sommerfeld quantization conditions for non self-adjoint semi-classical operators.” 2016. Doctoral Dissertation, Rennes 1. Accessed July 11, 2020. http://www.theses.fr/2016REN1S051.

MLA Handbook (7th Edition):

Rouby, Ophélie. “Conditions de quantification de Bohr-Sommerfeld pour des opérateurs semi-classiques non auto-adjoints : Bohr-Sommerfeld quantization conditions for non self-adjoint semi-classical operators.” 2016. Web. 11 Jul 2020.

Vancouver:

Rouby O. Conditions de quantification de Bohr-Sommerfeld pour des opérateurs semi-classiques non auto-adjoints : Bohr-Sommerfeld quantization conditions for non self-adjoint semi-classical operators. [Internet] [Doctoral dissertation]. Rennes 1; 2016. [cited 2020 Jul 11]. Available from: http://www.theses.fr/2016REN1S051.

Council of Science Editors:

Rouby O. Conditions de quantification de Bohr-Sommerfeld pour des opérateurs semi-classiques non auto-adjoints : Bohr-Sommerfeld quantization conditions for non self-adjoint semi-classical operators. [Doctoral Dissertation]. Rennes 1; 2016. Available from: http://www.theses.fr/2016REN1S051

5. Gao, Li. On quantum Euclidean spaces: Continuous deformation and pseudo-differential operators.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

 Quantum Euclidean spaces are noncommutative deformations of Euclidean spaces. They are prototypes of locally compact noncommutative manifolds in Noncommutative Geometry. In this thesis, we study… (more)

Subjects/Keywords: Noncommutative Euclidean spaces; Moyal Deformation; Pseudo-differential operators

…the study of pseudo-dierential operators. Pseudo-dierential operators (abbreviated as… …adjoint operators and (θjk )dj,k=1 is a d×d real skew-symmetric matrix. In more… …algebras [22]. The rotation by two unitary operators C ∗ -algebra, denoted by Aθ , is… …operatorsHamiltonian operators of 1-dimensional 1/2 continuous deformation also holds λh . The result is… …generalizations of dierential operators and Fourier multipliers by replacing the polynomial in ξ with… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gao, L. (2018). On quantum Euclidean spaces: Continuous deformation and pseudo-differential operators. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101546

Chicago Manual of Style (16th Edition):

Gao, Li. “On quantum Euclidean spaces: Continuous deformation and pseudo-differential operators.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 11, 2020. http://hdl.handle.net/2142/101546.

MLA Handbook (7th Edition):

Gao, Li. “On quantum Euclidean spaces: Continuous deformation and pseudo-differential operators.” 2018. Web. 11 Jul 2020.

Vancouver:

Gao L. On quantum Euclidean spaces: Continuous deformation and pseudo-differential operators. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2142/101546.

Council of Science Editors:

Gao L. On quantum Euclidean spaces: Continuous deformation and pseudo-differential operators. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101546


Université Paris-Sud – Paris XI

6. Le Masson, Etienne. Ergodicité et fonctions propres du laplacien sur les grands graphes réguliers : Ergodicity and eigenfunctions of the Laplacian on large regular graphs.

Degree: Docteur es, Mathématiques, 2013, Université Paris-Sud – Paris XI

Dans cette thèse, nous étudions les propriétés de concentration des fonctions propres du laplacien discret sur des graphes réguliers de degré fixé dont le nombre… (more)

Subjects/Keywords: Fonctions propres du laplacien; Ergodicité quantique; Analyse semi-classique; Opérateurs pseudo-différentiels; Graphes réguliers; Grands graphes aléatoires; Laplacian eigenfunctions; Quantum ergodicity; Semi-classical analysis; Pseudo-differential operators; Regular graphs; Large random graphs

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Le Masson, E. (2013). Ergodicité et fonctions propres du laplacien sur les grands graphes réguliers : Ergodicity and eigenfunctions of the Laplacian on large regular graphs. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2013PA112179

Chicago Manual of Style (16th Edition):

Le Masson, Etienne. “Ergodicité et fonctions propres du laplacien sur les grands graphes réguliers : Ergodicity and eigenfunctions of the Laplacian on large regular graphs.” 2013. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed July 11, 2020. http://www.theses.fr/2013PA112179.

MLA Handbook (7th Edition):

Le Masson, Etienne. “Ergodicité et fonctions propres du laplacien sur les grands graphes réguliers : Ergodicity and eigenfunctions of the Laplacian on large regular graphs.” 2013. Web. 11 Jul 2020.

Vancouver:

Le Masson E. Ergodicité et fonctions propres du laplacien sur les grands graphes réguliers : Ergodicity and eigenfunctions of the Laplacian on large regular graphs. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2013. [cited 2020 Jul 11]. Available from: http://www.theses.fr/2013PA112179.

Council of Science Editors:

Le Masson E. Ergodicité et fonctions propres du laplacien sur les grands graphes réguliers : Ergodicity and eigenfunctions of the Laplacian on large regular graphs. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2013. Available from: http://www.theses.fr/2013PA112179


Texas A&M University

7. Gunturk, Kamil Serkan. Covariant Weyl quantization, symbolic calculus, and the product formula.

Degree: 2006, Texas A&M University

 A covariant Wigner-Weyl quantization formalism on the manifold that uses pseudo-differential operators is proposed. The asymptotic product formula that leads to the symbol calculus in… (more)

Subjects/Keywords: Weyl quantization; Weyl calculus; symbolic calculus; pseudo-differential operators; differential geometry; point seperation method; Wigner function; world function; semi-classical physics; Faa di Bruno formula

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gunturk, K. S. (2006). Covariant Weyl quantization, symbolic calculus, and the product formula. (Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/3963

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gunturk, Kamil Serkan. “Covariant Weyl quantization, symbolic calculus, and the product formula.” 2006. Thesis, Texas A&M University. Accessed July 11, 2020. http://hdl.handle.net/1969.1/3963.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gunturk, Kamil Serkan. “Covariant Weyl quantization, symbolic calculus, and the product formula.” 2006. Web. 11 Jul 2020.

Vancouver:

Gunturk KS. Covariant Weyl quantization, symbolic calculus, and the product formula. [Internet] [Thesis]. Texas A&M University; 2006. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/1969.1/3963.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gunturk KS. Covariant Weyl quantization, symbolic calculus, and the product formula. [Thesis]. Texas A&M University; 2006. Available from: http://hdl.handle.net/1969.1/3963

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Li, Jiawei. Finite Pseudo-Differential Operators, Localization Operators for Curvelet and Ridgelet Transforms.

Degree: PhD, Mathematics & Statistics, 2014, York University

Pseudo-differential operators can be built from the Fourier transform. However, besides the difficult problems in proving convergence and L2-boundedness, the problem of finding eigenvalues is… (more)

Subjects/Keywords: Mathematics; Wavelet Multipliers; Time-Frequency Analysis; Localization Operators; Curvelet Transforms; Ridgelet Transforms; Finite Pseudo-Differential Operators; Harmonic Analysis; Trace Class Operators

…the Fourier inversion formula. Pseudo-differential operators have been used in quantizations… …finite analogs of pseudo-differential operators. First of all, in applications the numerical… …implementations of pseudo-differential operators require a finite setting. Secondly, finite pseudo… …boundedness, which pseudo-differential operators 2 have to deal with all the time, are irrelevant… …to finite pseudo-differential operators. In this dissertation, we are particularly… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, J. (2014). Finite Pseudo-Differential Operators, Localization Operators for Curvelet and Ridgelet Transforms. (Doctoral Dissertation). York University. Retrieved from http://hdl.handle.net/10315/27676

Chicago Manual of Style (16th Edition):

Li, Jiawei. “Finite Pseudo-Differential Operators, Localization Operators for Curvelet and Ridgelet Transforms.” 2014. Doctoral Dissertation, York University. Accessed July 11, 2020. http://hdl.handle.net/10315/27676.

MLA Handbook (7th Edition):

Li, Jiawei. “Finite Pseudo-Differential Operators, Localization Operators for Curvelet and Ridgelet Transforms.” 2014. Web. 11 Jul 2020.

Vancouver:

Li J. Finite Pseudo-Differential Operators, Localization Operators for Curvelet and Ridgelet Transforms. [Internet] [Doctoral dissertation]. York University; 2014. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/10315/27676.

Council of Science Editors:

Li J. Finite Pseudo-Differential Operators, Localization Operators for Curvelet and Ridgelet Transforms. [Doctoral Dissertation]. York University; 2014. Available from: http://hdl.handle.net/10315/27676

9. DEL CORRAL MARTINEZ, CESAR AUGUSTO. Canonical Trace and Pseudo-differential Operators on Manifolds with Boundary .

Degree: 2015, Universidad de los Andes

 Esta tesis es acerca de la existencia y unicidad de la traza canónica para operadores pseudo-diferenciales de tipo log-polihomogeneo sobre una variedad con frontera. Por… (more)

Subjects/Keywords: Fourier transform; Mellin transform; Paley-Wiener theorem; Transmission property; Pseudo-differential operator; Manifold with boundary; Truncated pseudo-differential operators; Wodzicki residue; Noncommutative residue; Canonical trace; Boundary traciality defect; Traciality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

DEL CORRAL MARTINEZ, C. A. (2015). Canonical Trace and Pseudo-differential Operators on Manifolds with Boundary . (Thesis). Universidad de los Andes. Retrieved from https://documentodegrado.uniandes.edu.co/documentos/10575.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

DEL CORRAL MARTINEZ, CESAR AUGUSTO. “Canonical Trace and Pseudo-differential Operators on Manifolds with Boundary .” 2015. Thesis, Universidad de los Andes. Accessed July 11, 2020. https://documentodegrado.uniandes.edu.co/documentos/10575.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

DEL CORRAL MARTINEZ, CESAR AUGUSTO. “Canonical Trace and Pseudo-differential Operators on Manifolds with Boundary .” 2015. Web. 11 Jul 2020.

Vancouver:

DEL CORRAL MARTINEZ CA. Canonical Trace and Pseudo-differential Operators on Manifolds with Boundary . [Internet] [Thesis]. Universidad de los Andes; 2015. [cited 2020 Jul 11]. Available from: https://documentodegrado.uniandes.edu.co/documentos/10575.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

DEL CORRAL MARTINEZ CA. Canonical Trace and Pseudo-differential Operators on Manifolds with Boundary . [Thesis]. Universidad de los Andes; 2015. Available from: https://documentodegrado.uniandes.edu.co/documentos/10575.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.