Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Pressure Poisson equation). Showing records 1 – 7 of 7 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Slama, Myriam. Généralisation des modèles stochastiques de pression turbulente pariétale pour les études vibro-acoustiques via l'utilisation de simulations RANS : Generalization of stochastic models of turbulent wall pressure for vibro-acoustic studies based on RANS simulations.

Degree: Docteur es, Mécanique et physique des fluides, 2017, Aix Marseille Université

Le développement d’une couche limite turbulente sur des structures entraîne des vibrations et des nuisances sonores. Celles-ci sont estimées par des calculs vibro-acoustiques qui nécessitent… (more)

Subjects/Keywords: Turbulence; Pression pariétale; Formulation intégrale; Équation de Poisson; Turbulence; Wall pressure; Integral formulation; Poisson equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Slama, M. (2017). Généralisation des modèles stochastiques de pression turbulente pariétale pour les études vibro-acoustiques via l'utilisation de simulations RANS : Generalization of stochastic models of turbulent wall pressure for vibro-acoustic studies based on RANS simulations. (Doctoral Dissertation). Aix Marseille Université. Retrieved from http://www.theses.fr/2017AIXM0514

Chicago Manual of Style (16th Edition):

Slama, Myriam. “Généralisation des modèles stochastiques de pression turbulente pariétale pour les études vibro-acoustiques via l'utilisation de simulations RANS : Generalization of stochastic models of turbulent wall pressure for vibro-acoustic studies based on RANS simulations.” 2017. Doctoral Dissertation, Aix Marseille Université. Accessed September 26, 2020. http://www.theses.fr/2017AIXM0514.

MLA Handbook (7th Edition):

Slama, Myriam. “Généralisation des modèles stochastiques de pression turbulente pariétale pour les études vibro-acoustiques via l'utilisation de simulations RANS : Generalization of stochastic models of turbulent wall pressure for vibro-acoustic studies based on RANS simulations.” 2017. Web. 26 Sep 2020.

Vancouver:

Slama M. Généralisation des modèles stochastiques de pression turbulente pariétale pour les études vibro-acoustiques via l'utilisation de simulations RANS : Generalization of stochastic models of turbulent wall pressure for vibro-acoustic studies based on RANS simulations. [Internet] [Doctoral dissertation]. Aix Marseille Université 2017. [cited 2020 Sep 26]. Available from: http://www.theses.fr/2017AIXM0514.

Council of Science Editors:

Slama M. Généralisation des modèles stochastiques de pression turbulente pariétale pour les études vibro-acoustiques via l'utilisation de simulations RANS : Generalization of stochastic models of turbulent wall pressure for vibro-acoustic studies based on RANS simulations. [Doctoral Dissertation]. Aix Marseille Université 2017. Available from: http://www.theses.fr/2017AIXM0514


Delft University of Technology

2. Patil, Kaustubh (author). Surface Pressure Measurements using Coaxial Volumetric Velocimetry: Investigation on an Inverted Wing in Ground Effect.

Degree: 2019, Delft University of Technology

In experimental aerodynamics, pressure is an important parameter which provides insight into the various features of the flow around the test object. By obtaining the… (more)

Subjects/Keywords: Robotic Volumetric PIV; CVV; PIV/PTV; Pressure measurements; Poisson equation; HFSB

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Patil, K. (. (2019). Surface Pressure Measurements using Coaxial Volumetric Velocimetry: Investigation on an Inverted Wing in Ground Effect. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:5d4e504c-3b5b-444c-b63a-cbcb6b11b9ca

Chicago Manual of Style (16th Edition):

Patil, Kaustubh (author). “Surface Pressure Measurements using Coaxial Volumetric Velocimetry: Investigation on an Inverted Wing in Ground Effect.” 2019. Masters Thesis, Delft University of Technology. Accessed September 26, 2020. http://resolver.tudelft.nl/uuid:5d4e504c-3b5b-444c-b63a-cbcb6b11b9ca.

MLA Handbook (7th Edition):

Patil, Kaustubh (author). “Surface Pressure Measurements using Coaxial Volumetric Velocimetry: Investigation on an Inverted Wing in Ground Effect.” 2019. Web. 26 Sep 2020.

Vancouver:

Patil K(. Surface Pressure Measurements using Coaxial Volumetric Velocimetry: Investigation on an Inverted Wing in Ground Effect. [Internet] [Masters thesis]. Delft University of Technology; 2019. [cited 2020 Sep 26]. Available from: http://resolver.tudelft.nl/uuid:5d4e504c-3b5b-444c-b63a-cbcb6b11b9ca.

Council of Science Editors:

Patil K(. Surface Pressure Measurements using Coaxial Volumetric Velocimetry: Investigation on an Inverted Wing in Ground Effect. [Masters Thesis]. Delft University of Technology; 2019. Available from: http://resolver.tudelft.nl/uuid:5d4e504c-3b5b-444c-b63a-cbcb6b11b9ca


Virginia Tech

3. Repasky, Russell James. Turbulent Boundary Layers over Rough Surfaces: Large Structure Velocity Scaling and Driver Implications for Acoustic Metamaterials.

Degree: MS, Aerospace Engineering, 2019, Virginia Tech

 Aerodynamicists are often concerned with interactions between fluids and solids, such as an aircraft wing gliding through air. Due to frictional effects, the relative velocity… (more)

Subjects/Keywords: Turbulent boundary layer; Pressure Poisson equation; Low-frequency scaling law; Acoustic metamaterial; Acoustic surface wave

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Repasky, R. J. (2019). Turbulent Boundary Layers over Rough Surfaces: Large Structure Velocity Scaling and Driver Implications for Acoustic Metamaterials. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/90796

Chicago Manual of Style (16th Edition):

Repasky, Russell James. “Turbulent Boundary Layers over Rough Surfaces: Large Structure Velocity Scaling and Driver Implications for Acoustic Metamaterials.” 2019. Masters Thesis, Virginia Tech. Accessed September 26, 2020. http://hdl.handle.net/10919/90796.

MLA Handbook (7th Edition):

Repasky, Russell James. “Turbulent Boundary Layers over Rough Surfaces: Large Structure Velocity Scaling and Driver Implications for Acoustic Metamaterials.” 2019. Web. 26 Sep 2020.

Vancouver:

Repasky RJ. Turbulent Boundary Layers over Rough Surfaces: Large Structure Velocity Scaling and Driver Implications for Acoustic Metamaterials. [Internet] [Masters thesis]. Virginia Tech; 2019. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/10919/90796.

Council of Science Editors:

Repasky RJ. Turbulent Boundary Layers over Rough Surfaces: Large Structure Velocity Scaling and Driver Implications for Acoustic Metamaterials. [Masters Thesis]. Virginia Tech; 2019. Available from: http://hdl.handle.net/10919/90796


University of Louisville

4. Khodarahmi, Iman. Flow and pressure measurement using phase-contrast MRI : experiments in stenotic phantom models.

Degree: PhD, 2012, University of Louisville

  Peripheral Arterial Disease (PAD) is a progressive atherosclerotic disorder which is defined as any pathologic process obstructing the blood flow of the arteries supplying… (more)

Subjects/Keywords: Stenotic flow; Pressure-Poisson equation; Phase-contrast MRI; Harmonics-based; Particle image velocimetry; Orthogonal projection

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khodarahmi, I. (2012). Flow and pressure measurement using phase-contrast MRI : experiments in stenotic phantom models. (Doctoral Dissertation). University of Louisville. Retrieved from 10.18297/etd/744 ; https://ir.library.louisville.edu/etd/744

Chicago Manual of Style (16th Edition):

Khodarahmi, Iman. “Flow and pressure measurement using phase-contrast MRI : experiments in stenotic phantom models.” 2012. Doctoral Dissertation, University of Louisville. Accessed September 26, 2020. 10.18297/etd/744 ; https://ir.library.louisville.edu/etd/744.

MLA Handbook (7th Edition):

Khodarahmi, Iman. “Flow and pressure measurement using phase-contrast MRI : experiments in stenotic phantom models.” 2012. Web. 26 Sep 2020.

Vancouver:

Khodarahmi I. Flow and pressure measurement using phase-contrast MRI : experiments in stenotic phantom models. [Internet] [Doctoral dissertation]. University of Louisville; 2012. [cited 2020 Sep 26]. Available from: 10.18297/etd/744 ; https://ir.library.louisville.edu/etd/744.

Council of Science Editors:

Khodarahmi I. Flow and pressure measurement using phase-contrast MRI : experiments in stenotic phantom models. [Doctoral Dissertation]. University of Louisville; 2012. Available from: 10.18297/etd/744 ; https://ir.library.louisville.edu/etd/744


Temple University

5. Zhou, Dong. High-order numerical methods for pressure Poisson equation reformulations of the incompressible Navier-Stokes equations.

Degree: PhD, 2014, Temple University

Mathematics

Projection methods for the incompressible Navier-Stokes equations (NSE) are efficient, but introduce numerical boundary layers and have limited temporal accuracy due to their fractional… (more)

Subjects/Keywords: Mathematics;

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhou, D. (2014). High-order numerical methods for pressure Poisson equation reformulations of the incompressible Navier-Stokes equations. (Doctoral Dissertation). Temple University. Retrieved from http://digital.library.temple.edu/u?/p245801coll10,295839

Chicago Manual of Style (16th Edition):

Zhou, Dong. “High-order numerical methods for pressure Poisson equation reformulations of the incompressible Navier-Stokes equations.” 2014. Doctoral Dissertation, Temple University. Accessed September 26, 2020. http://digital.library.temple.edu/u?/p245801coll10,295839.

MLA Handbook (7th Edition):

Zhou, Dong. “High-order numerical methods for pressure Poisson equation reformulations of the incompressible Navier-Stokes equations.” 2014. Web. 26 Sep 2020.

Vancouver:

Zhou D. High-order numerical methods for pressure Poisson equation reformulations of the incompressible Navier-Stokes equations. [Internet] [Doctoral dissertation]. Temple University; 2014. [cited 2020 Sep 26]. Available from: http://digital.library.temple.edu/u?/p245801coll10,295839.

Council of Science Editors:

Zhou D. High-order numerical methods for pressure Poisson equation reformulations of the incompressible Navier-Stokes equations. [Doctoral Dissertation]. Temple University; 2014. Available from: http://digital.library.temple.edu/u?/p245801coll10,295839


Case Western Reserve University

6. Wilson, Raymond Gary. A Numerical Analysis of the Influence of Korteweg Stresses on the Flow and Mixing of Miscible Fluids.

Degree: PhD, Mechanical Engineering, 2004, Case Western Reserve University

 When two fully miscible fluids initially share a common dividing surface a surface tension between the fluids can not exist since they are fully miscible… (more)

Subjects/Keywords: Engineering, Mechanical; Korteweg stresses; Miscible fluids; Variable viscosity; Interface stability; Interfacial tension; Concentration gradients; Steady-State mass diffusion Graetz problem; Interface behavior; Navior-Stokes Stresses; Pressure Poisson equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wilson, R. G. (2004). A Numerical Analysis of the Influence of Korteweg Stresses on the Flow and Mixing of Miscible Fluids. (Doctoral Dissertation). Case Western Reserve University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=case1081283678

Chicago Manual of Style (16th Edition):

Wilson, Raymond Gary. “A Numerical Analysis of the Influence of Korteweg Stresses on the Flow and Mixing of Miscible Fluids.” 2004. Doctoral Dissertation, Case Western Reserve University. Accessed September 26, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1081283678.

MLA Handbook (7th Edition):

Wilson, Raymond Gary. “A Numerical Analysis of the Influence of Korteweg Stresses on the Flow and Mixing of Miscible Fluids.” 2004. Web. 26 Sep 2020.

Vancouver:

Wilson RG. A Numerical Analysis of the Influence of Korteweg Stresses on the Flow and Mixing of Miscible Fluids. [Internet] [Doctoral dissertation]. Case Western Reserve University; 2004. [cited 2020 Sep 26]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=case1081283678.

Council of Science Editors:

Wilson RG. A Numerical Analysis of the Influence of Korteweg Stresses on the Flow and Mixing of Miscible Fluids. [Doctoral Dissertation]. Case Western Reserve University; 2004. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=case1081283678

7. Cornthwaite, John. Pressure Poisson Method for the Incompressible Navier-Stokes Equations Using Galerkin Finite Elements.

Degree: MSin Mathematics (M.S.), Department of Mathematical Sciences, 2013, Georgia Southern University

  In this thesis we examine the Navier-Stokes equations (NSE) with the continuity equation replaced by a pressure Poisson equation (PPE). Appropriate boundary conditions are… (more)

Subjects/Keywords: ETD; Navier-Stokes; Pressure Poisson Equation; Galerkin Finite Element; Applied Mathematics; Applied Mathematics; Mathematics; Numerical Analysis and Computation; Jack N. Averitt College of Graduate Studies, Electronic Theses & Dissertations, ETDs, Student Research

…Space of the NSE 1.3 The Pressure Poisson Equation . . . . . . . . . . . . . . . . . . 6… …1.4 Reformulation of the Pressure Poisson Equation . . . . . . . . . 7 1.5 Final Stable… …Reformulation of the Pressure Poisson Equation . . 8 1.6 2 The Navier-Stokes Equations Equivalence… …Coefficient matrices for the momentum equation. 2.2 Coefficient matrices for the pressure Poisson… …that are piecewise continuously differentiable. 1.3 The Pressure Poisson Equation The… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cornthwaite, J. (2013). Pressure Poisson Method for the Incompressible Navier-Stokes Equations Using Galerkin Finite Elements. (Masters Thesis). Georgia Southern University. Retrieved from https://digitalcommons.georgiasouthern.edu/etd/831

Chicago Manual of Style (16th Edition):

Cornthwaite, John. “Pressure Poisson Method for the Incompressible Navier-Stokes Equations Using Galerkin Finite Elements.” 2013. Masters Thesis, Georgia Southern University. Accessed September 26, 2020. https://digitalcommons.georgiasouthern.edu/etd/831.

MLA Handbook (7th Edition):

Cornthwaite, John. “Pressure Poisson Method for the Incompressible Navier-Stokes Equations Using Galerkin Finite Elements.” 2013. Web. 26 Sep 2020.

Vancouver:

Cornthwaite J. Pressure Poisson Method for the Incompressible Navier-Stokes Equations Using Galerkin Finite Elements. [Internet] [Masters thesis]. Georgia Southern University; 2013. [cited 2020 Sep 26]. Available from: https://digitalcommons.georgiasouthern.edu/etd/831.

Council of Science Editors:

Cornthwaite J. Pressure Poisson Method for the Incompressible Navier-Stokes Equations Using Galerkin Finite Elements. [Masters Thesis]. Georgia Southern University; 2013. Available from: https://digitalcommons.georgiasouthern.edu/etd/831

.