Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:


Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(Pre silicon debug). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Campbell, Keith A. Robust and reliable hardware accelerator design through high-level synthesis.

Degree: PhD, Electrical & Computer Engr, 2017, University of Illinois – Urbana-Champaign

System-on-chip design is becoming increasingly complex as technology scaling enables more and more functionality on a chip. This scaling-driven complexity has resulted in a variety of reliability and validation challenges including logic bugs, hot spots, wear-out, and soft errors. To make matters worse, as we reach the limits of Dennard scaling, efforts to improve system performance and energy efficiency have resulted in the integration of a wide variety of complex hardware accelerators in SoCs. Thus the challenge is to design complex, custom hardware that is efficient, but also correct and reliable. High-level synthesis shows promise to address the problem of complex hardware design by providing a bridge from the high-productivity software domain to the hardware design process. Much research has been done on high-level synthesis efficiency optimizations. This dissertation shows that high-level synthesis also has the power to address validation and reliability challenges through three automated solutions targeting three key stages in the hardware design and use cycle: pre-silicon debugging, post-silicon validation, and post-deployment error detection. Our solution for rapid pre-silicon debugging of accelerator designs is hybrid tracing: comparing a datapath-level trace of hardware execution with a reference software implementation at a fine temporal and spatial granularity to detect logic bugs. An integrated backtrace process delivers source-code meaning to the hardware designer, pinpointing the location of bug activation and providing a strong hint for potential bug fixes. Experimental results show that we are able to detect and aid in localization of logic bugs from both C/C++ specifications as well as the high-level synthesis engine itself. A variation of this solution tailored for rapid post-silicon validation of accelerator designs is hybrid hashing: inserting signature generation logic in a hardware design to create a heavily compressed signature stream that captures the internal behavior of the design at a fine temporal and spatial granularity for comparison with a reference set of signatures generated by high-level simulation to detect bugs. Using hybrid hashing, we demonstrate an improvement in error detection latency (time elapsed from when a bug is activated to when it manifests as an observable failure) of two orders of magnitude and a threefold improvement in bug coverage compared to traditional post-silicon validation techniques. Hybrid hashing also uncovered previously unknown bugs in the CHStone benchmark suite, which is widely used by the HLS community. Hybrid hashing incurs less than 10% area overhead for the accelerator it validates with negligible performance impact, and we also introduce techniques to minimize any possible intrusiveness introduced by hybrid hashing. Finally, our solution for post-deployment error detection is modulo-3 shadow datapaths: performing lightweight shadow computations in modulo-3 space for each main computation. We leverage the binding and scheduling… Advisors/Committee Members: Chen, Deming (advisor), Chen, Deming (Committee Chair), Hwu, Wen-Mei W (committee member), Wong, Martin D F (committee member), Kim, Nam Sung (committee member).

Subjects/Keywords: High-level synthesis (HLS); Automation; Error detection; Scheduling; Binding; Compiler transformation; Compiler optimization; Pipelining; Modulo arithmetic; Modulo-3; Logic optimization; State machine; Datapath; Control logic; Shadow datapath; Modulo datapath; Low cost; High performance; Electrical bug; Aliasing; Stuck-at fault; Soft error; Timing error; Checkpointing; Rollback; Recovery; Pre-silicon validation; Post-silicon validation; Pre-silicon debug; Post-silicon debug; Accelerator; System on a chip; Signature generation; Execution signature; Execution hash; Logic bug; Nondeterministic bug; Masked error; Circuit reliability; Hot spot; Wear out; Silent data corruption; Observability; Detection latency; Mixed datapath; Diversity; Checkpoint corruption; Error injection; Error removal; Quick Error Detection (QED); Hybrid Quick Error Detection (H-QED); Instrumentation; Hybrid co-simulation; Hardware/software; Integration testing; Hybrid tracing; Hybrid hashing; Source-code localization; Software debugging tool; Valgrind; Clang sanitizer; Clang static analyzer; Cppcheck; Root cause analysis; Execution tracing; Realtime error detection; Simulation trigger; Nonintrusive; Address conversion; Undefined behavior; High-level synthesis (HLS) bug; Detection coverage; Gate-level architecture; Mersenne modulus; Full adder; Half adder; Quarter adder; Wraparound; Modulo reducer; Modulo adder; Modulo multiplier; Modulo comparator; Cross-layer; Algorithm; Instruction; Architecture; Logic synthesis; Physical design; Algorithm-based fault tolerance (ABFT); Error detection by duplicated instructions (EDDI); Parity; Flip-flop hardening; Layout design through error-aware transistor positioning dual interlocked storage cell (LEAP-DICE); Cost-effective; Place-and-route; Field programmable gate array (FPGA) emulation; Application specific integrated circuit (ASIC); Field programmable gate array (FPGA); Energy; Area; Latency

…25 25 28 29 CHAPTER 5 PRE-SILICON DEBUG: HYBRID TRACING 5.1 Comparison to Software… …accelerators, and hardware accelerators. H-QED can be applied to both pre-silicon and post-silicon… …52 54 60 60 61 62 CHAPTER 6 POST-SILICON VALIDATION: 6.1 Hybrid Hashing Framework… …P&R Place and Route PSV Post-Silicon Validation QA Quarter Adder QED Quick Error… …signature stream that captures the internal behavior of the design during post-silicon validation… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Campbell, K. A. (2017). Robust and reliable hardware accelerator design through high-level synthesis. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from

Chicago Manual of Style (16th Edition):

Campbell, Keith A. “Robust and reliable hardware accelerator design through high-level synthesis.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed March 08, 2021.

MLA Handbook (7th Edition):

Campbell, Keith A. “Robust and reliable hardware accelerator design through high-level synthesis.” 2017. Web. 08 Mar 2021.


Campbell KA. Robust and reliable hardware accelerator design through high-level synthesis. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2021 Mar 08]. Available from:

Council of Science Editors:

Campbell KA. Robust and reliable hardware accelerator design through high-level synthesis. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: