Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Polynomial rings)`

.
Showing records 1 – 22 of
22 total matches.

▼ Search Limiters

Indian Institute of Science

1.
Guha, Ashwin.
An Algorithmic Characterization Of *Polynomial* Functions Over Zpn.

Degree: MSc Engg, Faculty of Engineering, 2014, Indian Institute of Science

URL: http://etd.iisc.ac.in/handle/2005/2337

► The problem of *polynomial* representability of functions is central to many branches of mathematics. If the underlying set is a finite field, every function can…
(more)

Subjects/Keywords: Polynomial Functions; Polynomials Over Finite Fields; Polynomials Over Finite Rings; Polynomial Representability; Polynomial Functions - Algorithms; Polynomials; Functional Polynomial Equations; Zpn; Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Guha, A. (2014). An Algorithmic Characterization Of Polynomial Functions Over Zpn. (Masters Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2337

Chicago Manual of Style (16^{th} Edition):

Guha, Ashwin. “An Algorithmic Characterization Of Polynomial Functions Over Zpn.” 2014. Masters Thesis, Indian Institute of Science. Accessed October 28, 2020. http://etd.iisc.ac.in/handle/2005/2337.

MLA Handbook (7^{th} Edition):

Guha, Ashwin. “An Algorithmic Characterization Of Polynomial Functions Over Zpn.” 2014. Web. 28 Oct 2020.

Vancouver:

Guha A. An Algorithmic Characterization Of Polynomial Functions Over Zpn. [Internet] [Masters thesis]. Indian Institute of Science; 2014. [cited 2020 Oct 28]. Available from: http://etd.iisc.ac.in/handle/2005/2337.

Council of Science Editors:

Guha A. An Algorithmic Characterization Of Polynomial Functions Over Zpn. [Masters Thesis]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ac.in/handle/2005/2337

University of Montana

2. Comes, Jonathan. Computation of the functor Ext using Groebner bases.

Degree: MA, 2004, University of Montana

URL: https://scholarworks.umt.edu/etd/8197

Subjects/Keywords: Polynomial rings.; Polynomial rings. fast (OCoLC)fst01070714

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Comes, J. (2004). Computation of the functor Ext using Groebner bases. (Masters Thesis). University of Montana. Retrieved from https://scholarworks.umt.edu/etd/8197

Chicago Manual of Style (16^{th} Edition):

Comes, Jonathan. “Computation of the functor Ext using Groebner bases.” 2004. Masters Thesis, University of Montana. Accessed October 28, 2020. https://scholarworks.umt.edu/etd/8197.

MLA Handbook (7^{th} Edition):

Comes, Jonathan. “Computation of the functor Ext using Groebner bases.” 2004. Web. 28 Oct 2020.

Vancouver:

Comes J. Computation of the functor Ext using Groebner bases. [Internet] [Masters thesis]. University of Montana; 2004. [cited 2020 Oct 28]. Available from: https://scholarworks.umt.edu/etd/8197.

Council of Science Editors:

Comes J. Computation of the functor Ext using Groebner bases. [Masters Thesis]. University of Montana; 2004. Available from: https://scholarworks.umt.edu/etd/8197

University of Oregon

3.
Brandl, Mary-Katherine, 1963-.
Primitive and Poisson spectra of non-semisimple twists of *polynomial* algebras.

Degree: 2001, University of Oregon

URL: http://hdl.handle.net/1794/147

► We examine a family of twists of the complex *polynomial* ring on n generators by a non-semisimple automorphism. In particular, we consider the case where…
(more)

Subjects/Keywords: Polynomial rings; Poisson algebras; Noncommutative rings

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Brandl, Mary-Katherine, 1. (2001). Primitive and Poisson spectra of non-semisimple twists of polynomial algebras. (Thesis). University of Oregon. Retrieved from http://hdl.handle.net/1794/147

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Brandl, Mary-Katherine, 1963-. “Primitive and Poisson spectra of non-semisimple twists of polynomial algebras.” 2001. Thesis, University of Oregon. Accessed October 28, 2020. http://hdl.handle.net/1794/147.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Brandl, Mary-Katherine, 1963-. “Primitive and Poisson spectra of non-semisimple twists of polynomial algebras.” 2001. Web. 28 Oct 2020.

Vancouver:

Brandl, Mary-Katherine 1. Primitive and Poisson spectra of non-semisimple twists of polynomial algebras. [Internet] [Thesis]. University of Oregon; 2001. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/1794/147.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Brandl, Mary-Katherine 1. Primitive and Poisson spectra of non-semisimple twists of polynomial algebras. [Thesis]. University of Oregon; 2001. Available from: http://hdl.handle.net/1794/147

Not specified: Masters Thesis or Doctoral Dissertation

4.
Khan, Moharram Ali.
A study of some *polynomial* identities which imply
commutativity for *rings*; -.

Degree: Mathematics, 1987, Aligarh Muslim University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/52283

Abstract not available newline newline

Bibliography given

Subjects/Keywords: Polynomial; Commutativity; Rings; Demonstrates; Homomorphisms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Khan, M. A. (1987). A study of some polynomial identities which imply commutativity for rings; -. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/52283

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Khan, Moharram Ali. “A study of some polynomial identities which imply commutativity for rings; -.” 1987. Thesis, Aligarh Muslim University. Accessed October 28, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/52283.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Khan, Moharram Ali. “A study of some polynomial identities which imply commutativity for rings; -.” 1987. Web. 28 Oct 2020.

Vancouver:

Khan MA. A study of some polynomial identities which imply commutativity for rings; -. [Internet] [Thesis]. Aligarh Muslim University; 1987. [cited 2020 Oct 28]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52283.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Khan MA. A study of some polynomial identities which imply commutativity for rings; -. [Thesis]. Aligarh Muslim University; 1987. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52283

Not specified: Masters Thesis or Doctoral Dissertation

Universitat Autònoma de Barcelona

5.
Bauch, Jens-Dietrich.
Lattices over *polynomial* *rings* and applications to function fields.

Degree: Departament de Matemàtiques, 2014, Universitat Autònoma de Barcelona

URL: http://hdl.handle.net/10803/283357

► This thesis deals with lattices over *polynomial* *rings* and its applications to algebraic function fields. In the first part, we consider the notion of lattices…
(more)

Subjects/Keywords: Lattices over polynomial rings; Montes algorithm; Function fields; Ciències Experimentals; 51

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bauch, J. (2014). Lattices over polynomial rings and applications to function fields. (Thesis). Universitat Autònoma de Barcelona. Retrieved from http://hdl.handle.net/10803/283357

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bauch, Jens-Dietrich. “Lattices over polynomial rings and applications to function fields.” 2014. Thesis, Universitat Autònoma de Barcelona. Accessed October 28, 2020. http://hdl.handle.net/10803/283357.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bauch, Jens-Dietrich. “Lattices over polynomial rings and applications to function fields.” 2014. Web. 28 Oct 2020.

Vancouver:

Bauch J. Lattices over polynomial rings and applications to function fields. [Internet] [Thesis]. Universitat Autònoma de Barcelona; 2014. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/10803/283357.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bauch J. Lattices over polynomial rings and applications to function fields. [Thesis]. Universitat Autònoma de Barcelona; 2014. Available from: http://hdl.handle.net/10803/283357

Not specified: Masters Thesis or Doctoral Dissertation

University of Hong Kong

6. 李云昌. Degree estimate and preserving problems.

Degree: 2014, University of Hong Kong

URL: http://hdl.handle.net/10722/206360

Subjects/Keywords: Associative algebras; Polynomial rings

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

李云昌. (2014). Degree estimate and preserving problems. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/206360

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

李云昌. “Degree estimate and preserving problems.” 2014. Thesis, University of Hong Kong. Accessed October 28, 2020. http://hdl.handle.net/10722/206360.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

李云昌. “Degree estimate and preserving problems.” 2014. Web. 28 Oct 2020.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Vancouver:

李云昌. Degree estimate and preserving problems. [Internet] [Thesis]. University of Hong Kong; 2014. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/10722/206360.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

李云昌. Degree estimate and preserving problems. [Thesis]. University of Hong Kong; 2014. Available from: http://hdl.handle.net/10722/206360

Author name may be incomplete

Not specified: Masters Thesis or Doctoral Dissertation

7.
Chapman, Scott T. (Scott Thomas).
Invertible Ideals and the Strong Two-Generator Property in Some *Polynomial* Subrings.

Degree: 1987, North Texas State University

URL: https://digital.library.unt.edu/ark:/67531/metadc331673/

► Let K be any field and Q be the rationals. Define K^{1}[X] = {f(X) e K[X]| the coefficient of X in f(X) is zero} and…
(more)

Subjects/Keywords: invertible ideals; invertibility; polynomial subrings; Ideals (Algebra); Polynomial rings.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chapman, S. T. (. T. (1987). Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc331673/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chapman, Scott T (Scott Thomas). “Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings.” 1987. Thesis, North Texas State University. Accessed October 28, 2020. https://digital.library.unt.edu/ark:/67531/metadc331673/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chapman, Scott T (Scott Thomas). “Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings.” 1987. Web. 28 Oct 2020.

Vancouver:

Chapman ST(T. Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings. [Internet] [Thesis]. North Texas State University; 1987. [cited 2020 Oct 28]. Available from: https://digital.library.unt.edu/ark:/67531/metadc331673/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chapman ST(T. Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings. [Thesis]. North Texas State University; 1987. Available from: https://digital.library.unt.edu/ark:/67531/metadc331673/

Not specified: Masters Thesis or Doctoral Dissertation

8.
Feng, Qiwei.
Generalized inverses of matrices over skew *polynomial* * rings*.

Degree: Mathematics, 2017, University of Manitoba

URL: http://hdl.handle.net/1993/32173

► The applications of generalized inverses of matrices appear in many ﬁelds like applied mathematics, statistics and engineering [2]. In this thesis, we discuss generalized inverses…
(more)

Subjects/Keywords: Generalized inverses; Skew polynomial rings

…1.1. SKEW *POLYNOMIAL* *RINGS*
[34]. Here we recall the definition and the… …properties of skew *polynomial* *rings*.
Definition 1.1. ([29], Definition, p.33)… …*polynomial* *rings* [34] in 1943. These canonical forms play a similar role as Smith
forms… …of matrices over *polynomial* *rings*. Now people call these canonical forms
Jacobson forms… …then S is called a skew *polynomial* ring over R, denoted by R[x; σ, δ].
For any a…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Feng, Q. (2017). Generalized inverses of matrices over skew polynomial rings. (Masters Thesis). University of Manitoba. Retrieved from http://hdl.handle.net/1993/32173

Chicago Manual of Style (16^{th} Edition):

Feng, Qiwei. “Generalized inverses of matrices over skew polynomial rings.” 2017. Masters Thesis, University of Manitoba. Accessed October 28, 2020. http://hdl.handle.net/1993/32173.

MLA Handbook (7^{th} Edition):

Feng, Qiwei. “Generalized inverses of matrices over skew polynomial rings.” 2017. Web. 28 Oct 2020.

Vancouver:

Feng Q. Generalized inverses of matrices over skew polynomial rings. [Internet] [Masters thesis]. University of Manitoba; 2017. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/1993/32173.

Council of Science Editors:

Feng Q. Generalized inverses of matrices over skew polynomial rings. [Masters Thesis]. University of Manitoba; 2017. Available from: http://hdl.handle.net/1993/32173

Hong Kong University of Science and Technology

9.
Chan, Chun Kit.
Reliability study on simple networks in the form of chains and * rings*.

Degree: 2011, Hong Kong University of Science and Technology

URL: http://repository.ust.hk/ir/Record/1783.1-8151 ; https://doi.org/10.14711/thesis-b1155409 ; http://repository.ust.hk/ir/bitstream/1783.1-8151/1/th_redirect.html

► Our research aims to investigate the relation between Physical Quantities and Reliabilitythrough the Topological Structure of the system. To do so, we study the Reliability…
(more)

Subjects/Keywords: System design ; Reliability ; Testing ; Mathematical models ; Polynomial rings ; Wheatstone bridge ; System analysis

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chan, C. K. (2011). Reliability study on simple networks in the form of chains and rings. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-8151 ; https://doi.org/10.14711/thesis-b1155409 ; http://repository.ust.hk/ir/bitstream/1783.1-8151/1/th_redirect.html

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chan, Chun Kit. “Reliability study on simple networks in the form of chains and rings.” 2011. Thesis, Hong Kong University of Science and Technology. Accessed October 28, 2020. http://repository.ust.hk/ir/Record/1783.1-8151 ; https://doi.org/10.14711/thesis-b1155409 ; http://repository.ust.hk/ir/bitstream/1783.1-8151/1/th_redirect.html.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chan, Chun Kit. “Reliability study on simple networks in the form of chains and rings.” 2011. Web. 28 Oct 2020.

Vancouver:

Chan CK. Reliability study on simple networks in the form of chains and rings. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2011. [cited 2020 Oct 28]. Available from: http://repository.ust.hk/ir/Record/1783.1-8151 ; https://doi.org/10.14711/thesis-b1155409 ; http://repository.ust.hk/ir/bitstream/1783.1-8151/1/th_redirect.html.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chan CK. Reliability study on simple networks in the form of chains and rings. [Thesis]. Hong Kong University of Science and Technology; 2011. Available from: http://repository.ust.hk/ir/Record/1783.1-8151 ; https://doi.org/10.14711/thesis-b1155409 ; http://repository.ust.hk/ir/bitstream/1783.1-8151/1/th_redirect.html

Not specified: Masters Thesis or Doctoral Dissertation

California State University – San Bernardino

10. Green, Ellen Yvonne. Characterizing the strong two-generators of certain Noetherian domains.

Degree: MAin Mathematics, Mathematics, 1997, California State University – San Bernardino

URL: http://scholarworks.lib.csusb.edu/etd-project/1539

Subjects/Keywords: Noetherian rings; Artin rings; Polynomial rings; Commutative rings; Associative rings; Rings (Algebra); Algebra; Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Green, E. Y. (1997). Characterizing the strong two-generators of certain Noetherian domains. (Thesis). California State University – San Bernardino. Retrieved from http://scholarworks.lib.csusb.edu/etd-project/1539

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Green, Ellen Yvonne. “Characterizing the strong two-generators of certain Noetherian domains.” 1997. Thesis, California State University – San Bernardino. Accessed October 28, 2020. http://scholarworks.lib.csusb.edu/etd-project/1539.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Green, Ellen Yvonne. “Characterizing the strong two-generators of certain Noetherian domains.” 1997. Web. 28 Oct 2020.

Vancouver:

Green EY. Characterizing the strong two-generators of certain Noetherian domains. [Internet] [Thesis]. California State University – San Bernardino; 1997. [cited 2020 Oct 28]. Available from: http://scholarworks.lib.csusb.edu/etd-project/1539.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Green EY. Characterizing the strong two-generators of certain Noetherian domains. [Thesis]. California State University – San Bernardino; 1997. Available from: http://scholarworks.lib.csusb.edu/etd-project/1539

Not specified: Masters Thesis or Doctoral Dissertation

Leiden University

11.
Ciocanea Teodorescu I.
Algorithms for finite * rings*.

Degree: 2016, Leiden University

URL: http://hdl.handle.net/1887/40676

► In this thesis we are interested in describing algorithms that answer questions arising in ring and module theory. Our focus is on deterministic *polynomial*-time algorithms…
(more)

Subjects/Keywords: Deterministic polynomial time algorithm; Finite rings; Modules; Jacobson radical; Separability; Deterministic polynomial time algorithm; Finite rings; Modules; Jacobson radical; Separability

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

I., C. T. (2016). Algorithms for finite rings. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/40676

Chicago Manual of Style (16^{th} Edition):

I., Ciocanea Teodorescu. “Algorithms for finite rings.” 2016. Doctoral Dissertation, Leiden University. Accessed October 28, 2020. http://hdl.handle.net/1887/40676.

MLA Handbook (7^{th} Edition):

I., Ciocanea Teodorescu. “Algorithms for finite rings.” 2016. Web. 28 Oct 2020.

Vancouver:

I. CT. Algorithms for finite rings. [Internet] [Doctoral dissertation]. Leiden University; 2016. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/1887/40676.

Council of Science Editors:

I. CT. Algorithms for finite rings. [Doctoral Dissertation]. Leiden University; 2016. Available from: http://hdl.handle.net/1887/40676

Indian Institute of Science

12.
Francis, Maria.
Grobuer Basis Algorithms for *Polynomial* Ideal Theory over Noetherian Commutative * Rings*.

Degree: PhD, Faculty of Engineering, 2018, Indian Institute of Science

URL: http://etd.iisc.ac.in/handle/2005/3543

► One of the fundamental problems in commutative algebra and algebraic geometry is to understand the nature of the solution space of a system of multivariate…
(more)

Subjects/Keywords: Grobuer Basis Algorithms; Polynomial Ideal Theory; Buchberger's Algorithm; Affine K-algebra; Polynomial Rings; Grobuer Basis; Grobuer Bases; Macaulay-Buchberger Basis Theorem; Noetherian Rings; Lattice Based Cryptography; Ideal Lattices; Hilbert Polynomials; Computer Science

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Francis, M. (2018). Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3543

Chicago Manual of Style (16^{th} Edition):

Francis, Maria. “Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed October 28, 2020. http://etd.iisc.ac.in/handle/2005/3543.

MLA Handbook (7^{th} Edition):

Francis, Maria. “Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings.” 2018. Web. 28 Oct 2020.

Vancouver:

Francis M. Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2020 Oct 28]. Available from: http://etd.iisc.ac.in/handle/2005/3543.

Council of Science Editors:

Francis M. Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3543

Universidade Estadual de Campinas

13.
Mello, Thiago Castilho de, 1984-.
Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann: *Polynomial* identities in matrix algebras over the Grassmann algebra.

Degree: 2012, Universidade Estadual de Campinas

URL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306366

► Abstract: In this thesis, we study the generic algebra of M1;1 in two generators over an infinite field of characteristic different from 2. We describe…
(more)

Subjects/Keywords: Identidade polinomial; Grassmann, Álgebra de; Anéis (Álgebra); PI-álgebras; Álgebra não-comutativa; Polynomial identity; Grassmann algebra; Rings (Algebra); PI-algebra; Noncommutative algebras

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mello, Thiago Castilho de, 1. (2012). Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann: Polynomial identities in matrix algebras over the Grassmann algebra. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306366

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mello, Thiago Castilho de, 1984-. “Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann: Polynomial identities in matrix algebras over the Grassmann algebra.” 2012. Thesis, Universidade Estadual de Campinas. Accessed October 28, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306366.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mello, Thiago Castilho de, 1984-. “Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann: Polynomial identities in matrix algebras over the Grassmann algebra.” 2012. Web. 28 Oct 2020.

Vancouver:

Mello, Thiago Castilho de 1. Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann: Polynomial identities in matrix algebras over the Grassmann algebra. [Internet] [Thesis]. Universidade Estadual de Campinas; 2012. [cited 2020 Oct 28]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306366.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mello, Thiago Castilho de 1. Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann: Polynomial identities in matrix algebras over the Grassmann algebra. [Thesis]. Universidade Estadual de Campinas; 2012. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306366

Not specified: Masters Thesis or Doctoral Dissertation

Universidade Estadual de Campinas

14. Reis, Júlio César dos, 1979-. Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra.

Degree: 2012, Universidade Estadual de Campinas

URL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363

► Abstract: In this PhD thesis we give bases of the graded *polynomial* identities of...Note: The complete abstract is available with the full electronic document Advisors/Committee…
(more)

Subjects/Keywords: PI-álgebras; Identidade polinomial; Aneís graduados; Matrizes (Matemática); Corpos finitos (Álgebra); PI-algebras; Polynomial identity; Graded rings; Matrix algebra; Finite fields (Algebra)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Reis, Júlio César dos, 1. (2012). Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Reis, Júlio César dos, 1979-. “Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra.” 2012. Thesis, Universidade Estadual de Campinas. Accessed October 28, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Reis, Júlio César dos, 1979-. “Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra.” 2012. Web. 28 Oct 2020.

Vancouver:

Reis, Júlio César dos 1. Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra. [Internet] [Thesis]. Universidade Estadual de Campinas; 2012. [cited 2020 Oct 28]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Reis, Júlio César dos 1. Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra. [Thesis]. Universidade Estadual de Campinas; 2012. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363

Not specified: Masters Thesis or Doctoral Dissertation

15. Yemen, Olfa. Application des codes cycliques tordus : Application of skew cyclic codes.

Degree: Docteur es, Informatique, 2013, Nice

URL: http://www.theses.fr/2013NICE4070

►

Le sujet porte sur une classe de codes correcteurs d erreurs dits codes cycliques tordus, et ses applications a l'Informatique quantique et aux codes quasi-cycliques.… (more)

Subjects/Keywords: Codes cycliques tordus; Codes quasi-cycliques; Informatique quantique; Anneau des polynômes non commutatifs; Skew cyclic codes; Quasi-cyclic codes; Quantum computing; Skew polynomial rings

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yemen, O. (2013). Application des codes cycliques tordus : Application of skew cyclic codes. (Doctoral Dissertation). Nice. Retrieved from http://www.theses.fr/2013NICE4070

Chicago Manual of Style (16^{th} Edition):

Yemen, Olfa. “Application des codes cycliques tordus : Application of skew cyclic codes.” 2013. Doctoral Dissertation, Nice. Accessed October 28, 2020. http://www.theses.fr/2013NICE4070.

MLA Handbook (7^{th} Edition):

Yemen, Olfa. “Application des codes cycliques tordus : Application of skew cyclic codes.” 2013. Web. 28 Oct 2020.

Vancouver:

Yemen O. Application des codes cycliques tordus : Application of skew cyclic codes. [Internet] [Doctoral dissertation]. Nice; 2013. [cited 2020 Oct 28]. Available from: http://www.theses.fr/2013NICE4070.

Council of Science Editors:

Yemen O. Application des codes cycliques tordus : Application of skew cyclic codes. [Doctoral Dissertation]. Nice; 2013. Available from: http://www.theses.fr/2013NICE4070

16.
Edmonds, Ranthony A.C.
Factorization in *polynomial* *rings* with zero divisors.

Degree: PhD, Mathematics, 2018, University of Iowa

URL: https://ir.uiowa.edu/etd/3248

► Factorization theory is concerned with the decomposition of mathematical objects. Such an object could be a *polynomial*, a number in the set of integers,…
(more)

Subjects/Keywords: commutative ring theory; factorization; polynomial rings; zero divisors; Mathematics

…with Zero Divisors . . . . .
5
7
3 ELEMENTARY FACTS ABOUT *POLYNOMIAL* *RINGS*… …*polynomial* *rings*. Given a commutative ring R with
identity and its *polynomial* extension R[X… …facts about *polynomial* *rings* in Chapter 3. Distinguished elements in a *polynomial* ring such as… …discussed in the
context of *polynomial* *rings* and it is shown that in R[X], f is very… …CHAPTER 3
ELEMENTARY FACTS ABOUT *POLYNOMIAL* *RINGS*
3.1
Structure of Zero Divisors, Units…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Edmonds, R. A. C. (2018). Factorization in polynomial rings with zero divisors. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/3248

Chicago Manual of Style (16^{th} Edition):

Edmonds, Ranthony A C. “Factorization in polynomial rings with zero divisors.” 2018. Doctoral Dissertation, University of Iowa. Accessed October 28, 2020. https://ir.uiowa.edu/etd/3248.

MLA Handbook (7^{th} Edition):

Edmonds, Ranthony A C. “Factorization in polynomial rings with zero divisors.” 2018. Web. 28 Oct 2020.

Vancouver:

Edmonds RAC. Factorization in polynomial rings with zero divisors. [Internet] [Doctoral dissertation]. University of Iowa; 2018. [cited 2020 Oct 28]. Available from: https://ir.uiowa.edu/etd/3248.

Council of Science Editors:

Edmonds RAC. Factorization in polynomial rings with zero divisors. [Doctoral Dissertation]. University of Iowa; 2018. Available from: https://ir.uiowa.edu/etd/3248

Texas Tech University

17.
Gapinski, Andrzej J.
Two-dimensional linear discrete systems: a *polynomial* fractional approach.

Degree: Electrical and Computer Engineering, 1988, Texas Tech University

URL: http://hdl.handle.net/2346/14195

► The purpose of this dissertation is two-fold. First, the class of two-dimensional linear time-invariant discrete system is investigated and a unified approach is proposed for…
(more)

Subjects/Keywords: Discrete-time systems; Polynomial rings; Control theory; Time-series analysis

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gapinski, A. J. (1988). Two-dimensional linear discrete systems: a polynomial fractional approach. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/14195

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Gapinski, Andrzej J. “Two-dimensional linear discrete systems: a polynomial fractional approach.” 1988. Thesis, Texas Tech University. Accessed October 28, 2020. http://hdl.handle.net/2346/14195.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Gapinski, Andrzej J. “Two-dimensional linear discrete systems: a polynomial fractional approach.” 1988. Web. 28 Oct 2020.

Vancouver:

Gapinski AJ. Two-dimensional linear discrete systems: a polynomial fractional approach. [Internet] [Thesis]. Texas Tech University; 1988. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/2346/14195.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gapinski AJ. Two-dimensional linear discrete systems: a polynomial fractional approach. [Thesis]. Texas Tech University; 1988. Available from: http://hdl.handle.net/2346/14195

Not specified: Masters Thesis or Doctoral Dissertation

18.
Kamen, Sam A.
*Polynomial**Rings* and Selected Integral Domains.

Degree: 1968, North Texas State University

URL: https://digital.library.unt.edu/ark:/67531/metadc130907/

► This thesis is an investigation of some of the properties of *polynomial* *rings*, unique factorization domains, Euclidean domains, and principal ideal domains. The nature of…
(more)

Subjects/Keywords: polynomial rings; factorization domains; Euclidean domains; principle ideal domains; mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kamen, S. A. (1968). Polynomial Rings and Selected Integral Domains. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc130907/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kamen, Sam A. “Polynomial Rings and Selected Integral Domains.” 1968. Thesis, North Texas State University. Accessed October 28, 2020. https://digital.library.unt.edu/ark:/67531/metadc130907/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kamen, Sam A. “Polynomial Rings and Selected Integral Domains.” 1968. Web. 28 Oct 2020.

Vancouver:

Kamen SA. Polynomial Rings and Selected Integral Domains. [Internet] [Thesis]. North Texas State University; 1968. [cited 2020 Oct 28]. Available from: https://digital.library.unt.edu/ark:/67531/metadc130907/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kamen SA. Polynomial Rings and Selected Integral Domains. [Thesis]. North Texas State University; 1968. Available from: https://digital.library.unt.edu/ark:/67531/metadc130907/

Not specified: Masters Thesis or Doctoral Dissertation

Virginia Tech

19.
Dimitrova, Elena Stanimirova.
* Polynomial* Models for Systems Biology: Data Discretization and Term Order Effect on Dynamics.

Degree: PhD, Mathematics, 2006, Virginia Tech

URL: http://hdl.handle.net/10919/28490

► Systems biology aims at system-level understanding of biological systems, in particular cellular networks. The milestones of this understanding are knowledge of the structure of the…
(more)

Subjects/Keywords: Biochemical Networks; Polynomial Rings; Polynomial Dynamical Systems; Gr\"{o}bner Bases; Systems Biology; Discrete Modeling; Data Discretization; Finite Fields

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dimitrova, E. S. (2006). Polynomial Models for Systems Biology: Data Discretization and Term Order Effect on Dynamics. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/28490

Chicago Manual of Style (16^{th} Edition):

Dimitrova, Elena Stanimirova. “Polynomial Models for Systems Biology: Data Discretization and Term Order Effect on Dynamics.” 2006. Doctoral Dissertation, Virginia Tech. Accessed October 28, 2020. http://hdl.handle.net/10919/28490.

MLA Handbook (7^{th} Edition):

Dimitrova, Elena Stanimirova. “Polynomial Models for Systems Biology: Data Discretization and Term Order Effect on Dynamics.” 2006. Web. 28 Oct 2020.

Vancouver:

Dimitrova ES. Polynomial Models for Systems Biology: Data Discretization and Term Order Effect on Dynamics. [Internet] [Doctoral dissertation]. Virginia Tech; 2006. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/10919/28490.

Council of Science Editors:

Dimitrova ES. Polynomial Models for Systems Biology: Data Discretization and Term Order Effect on Dynamics. [Doctoral Dissertation]. Virginia Tech; 2006. Available from: http://hdl.handle.net/10919/28490

California State University – San Bernardino

20. Ahlgren, Joyce Christine. Ideals, varieties, and Groebner bases.

Degree: MAin Mathematics, Mathematics, 2003, California State University – San Bernardino

URL: http://scholarworks.lib.csusb.edu/etd-project/2225

► The topics explored in this project present and interesting picture of close connections between algebra and geometry. Given a specific system of *polynomial* equations we…
(more)

Subjects/Keywords: Algebraic Geometry; Ideals (Algebra); Varieties (Universal algebra); Gröbner bases; Polynomial rings; Abstract Algebra; Algebraic Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ahlgren, J. C. (2003). Ideals, varieties, and Groebner bases. (Thesis). California State University – San Bernardino. Retrieved from http://scholarworks.lib.csusb.edu/etd-project/2225

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ahlgren, Joyce Christine. “Ideals, varieties, and Groebner bases.” 2003. Thesis, California State University – San Bernardino. Accessed October 28, 2020. http://scholarworks.lib.csusb.edu/etd-project/2225.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ahlgren, Joyce Christine. “Ideals, varieties, and Groebner bases.” 2003. Web. 28 Oct 2020.

Vancouver:

Ahlgren JC. Ideals, varieties, and Groebner bases. [Internet] [Thesis]. California State University – San Bernardino; 2003. [cited 2020 Oct 28]. Available from: http://scholarworks.lib.csusb.edu/etd-project/2225.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ahlgren JC. Ideals, varieties, and Groebner bases. [Thesis]. California State University – San Bernardino; 2003. Available from: http://scholarworks.lib.csusb.edu/etd-project/2225

Not specified: Masters Thesis or Doctoral Dissertation

California State University – San Bernardino

21. Ahlgren, Joyce Christine. Ideals, varieties, and Groebner bases.

Degree: MAin Mathematics, Mathematics, 2003, California State University – San Bernardino

URL: http://scholarworks.lib.csusb.edu/etd-project/2282

► The topics explored in this project present and interesting picture of close connections between algebra and geometry. Given a specific system of *polynomial* equations we…
(more)

Subjects/Keywords: Algebraic Geometry; Ideals (Algebra); Varieties (Universal algebra); Gröbner bases; Polynomial rings; Abstract Algebra; Algebraic Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ahlgren, J. C. (2003). Ideals, varieties, and Groebner bases. (Thesis). California State University – San Bernardino. Retrieved from http://scholarworks.lib.csusb.edu/etd-project/2282

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ahlgren, Joyce Christine. “Ideals, varieties, and Groebner bases.” 2003. Thesis, California State University – San Bernardino. Accessed October 28, 2020. http://scholarworks.lib.csusb.edu/etd-project/2282.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ahlgren, Joyce Christine. “Ideals, varieties, and Groebner bases.” 2003. Web. 28 Oct 2020.

Vancouver:

Ahlgren JC. Ideals, varieties, and Groebner bases. [Internet] [Thesis]. California State University – San Bernardino; 2003. [cited 2020 Oct 28]. Available from: http://scholarworks.lib.csusb.edu/etd-project/2282.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ahlgren JC. Ideals, varieties, and Groebner bases. [Thesis]. California State University – San Bernardino; 2003. Available from: http://scholarworks.lib.csusb.edu/etd-project/2282

Not specified: Masters Thesis or Doctoral Dissertation

22. Fogarty, Neville Lyons. On Skew-Constacyclic Codes.

Degree: 2016, University of Kentucky

URL: https://uknowledge.uky.edu/math_etds/36

► Cyclic codes are a well-known class of linear block codes with efficient decoding algorithms. In recent years they have been generalized to skew-constacyclic codes; such…
(more)

Subjects/Keywords: Linear block codes; skew-constacyclic codes; skew-polynomial rings; circulants; idempotents; Algebra

…Chapter 2 Skew-*Polynomial* *Rings* and Left Quotient Modules
2.1 Properties of Skew-*Polynomial*… …Lyons Fogarty, 2016.
4
Chapter 2 Skew-*Polynomial* *Rings* and Left Quotient Modules
Skew… …*polynomial* *rings* were introduced by Ore [25] in 1933. In this chapter, we
define the skew… …constacyclic code corresponds to a right divisor of xn −a.
2.1
Properties of Skew-*Polynomial* *Rings*… …non-commutativity,
the ring is very similar to ordinary *polynomial* *rings* over fields. Some…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fogarty, N. L. (2016). On Skew-Constacyclic Codes. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/36

Chicago Manual of Style (16^{th} Edition):

Fogarty, Neville Lyons. “On Skew-Constacyclic Codes.” 2016. Doctoral Dissertation, University of Kentucky. Accessed October 28, 2020. https://uknowledge.uky.edu/math_etds/36.

MLA Handbook (7^{th} Edition):

Fogarty, Neville Lyons. “On Skew-Constacyclic Codes.” 2016. Web. 28 Oct 2020.

Vancouver:

Fogarty NL. On Skew-Constacyclic Codes. [Internet] [Doctoral dissertation]. University of Kentucky; 2016. [cited 2020 Oct 28]. Available from: https://uknowledge.uky.edu/math_etds/36.

Council of Science Editors:

Fogarty NL. On Skew-Constacyclic Codes. [Doctoral Dissertation]. University of Kentucky; 2016. Available from: https://uknowledge.uky.edu/math_etds/36