Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Polynomial rings). Showing records 1 – 22 of 22 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Indian Institute of Science

1. Guha, Ashwin. An Algorithmic Characterization Of Polynomial Functions Over Zpn.

Degree: MSc Engg, Faculty of Engineering, 2014, Indian Institute of Science

 The problem of polynomial representability of functions is central to many branches of mathematics. If the underlying set is a finite field, every function can… (more)

Subjects/Keywords: Polynomial Functions; Polynomials Over Finite Fields; Polynomials Over Finite Rings; Polynomial Representability; Polynomial Functions - Algorithms; Polynomials; Functional Polynomial Equations; Zpn; Algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guha, A. (2014). An Algorithmic Characterization Of Polynomial Functions Over Zpn. (Masters Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2337

Chicago Manual of Style (16th Edition):

Guha, Ashwin. “An Algorithmic Characterization Of Polynomial Functions Over Zpn.” 2014. Masters Thesis, Indian Institute of Science. Accessed October 28, 2020. http://etd.iisc.ac.in/handle/2005/2337.

MLA Handbook (7th Edition):

Guha, Ashwin. “An Algorithmic Characterization Of Polynomial Functions Over Zpn.” 2014. Web. 28 Oct 2020.

Vancouver:

Guha A. An Algorithmic Characterization Of Polynomial Functions Over Zpn. [Internet] [Masters thesis]. Indian Institute of Science; 2014. [cited 2020 Oct 28]. Available from: http://etd.iisc.ac.in/handle/2005/2337.

Council of Science Editors:

Guha A. An Algorithmic Characterization Of Polynomial Functions Over Zpn. [Masters Thesis]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ac.in/handle/2005/2337


University of Montana

2. Comes, Jonathan. Computation of the functor Ext using Groebner bases.

Degree: MA, 2004, University of Montana

Subjects/Keywords: Polynomial rings.; Polynomial rings. fast (OCoLC)fst01070714

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Comes, J. (2004). Computation of the functor Ext using Groebner bases. (Masters Thesis). University of Montana. Retrieved from https://scholarworks.umt.edu/etd/8197

Chicago Manual of Style (16th Edition):

Comes, Jonathan. “Computation of the functor Ext using Groebner bases.” 2004. Masters Thesis, University of Montana. Accessed October 28, 2020. https://scholarworks.umt.edu/etd/8197.

MLA Handbook (7th Edition):

Comes, Jonathan. “Computation of the functor Ext using Groebner bases.” 2004. Web. 28 Oct 2020.

Vancouver:

Comes J. Computation of the functor Ext using Groebner bases. [Internet] [Masters thesis]. University of Montana; 2004. [cited 2020 Oct 28]. Available from: https://scholarworks.umt.edu/etd/8197.

Council of Science Editors:

Comes J. Computation of the functor Ext using Groebner bases. [Masters Thesis]. University of Montana; 2004. Available from: https://scholarworks.umt.edu/etd/8197


University of Oregon

3. Brandl, Mary-Katherine, 1963-. Primitive and Poisson spectra of non-semisimple twists of polynomial algebras.

Degree: 2001, University of Oregon

 We examine a family of twists of the complex polynomial ring on n generators by a non-semisimple automorphism. In particular, we consider the case where… (more)

Subjects/Keywords: Polynomial rings; Poisson algebras; Noncommutative rings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brandl, Mary-Katherine, 1. (2001). Primitive and Poisson spectra of non-semisimple twists of polynomial algebras. (Thesis). University of Oregon. Retrieved from http://hdl.handle.net/1794/147

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Brandl, Mary-Katherine, 1963-. “Primitive and Poisson spectra of non-semisimple twists of polynomial algebras.” 2001. Thesis, University of Oregon. Accessed October 28, 2020. http://hdl.handle.net/1794/147.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Brandl, Mary-Katherine, 1963-. “Primitive and Poisson spectra of non-semisimple twists of polynomial algebras.” 2001. Web. 28 Oct 2020.

Vancouver:

Brandl, Mary-Katherine 1. Primitive and Poisson spectra of non-semisimple twists of polynomial algebras. [Internet] [Thesis]. University of Oregon; 2001. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/1794/147.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Brandl, Mary-Katherine 1. Primitive and Poisson spectra of non-semisimple twists of polynomial algebras. [Thesis]. University of Oregon; 2001. Available from: http://hdl.handle.net/1794/147

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Khan, Moharram Ali. A study of some polynomial identities which imply commutativity for rings; -.

Degree: Mathematics, 1987, Aligarh Muslim University

Abstract not available newline newline

Bibliography given

Advisors/Committee Members: Quadri, Murtaza A.

Subjects/Keywords: Polynomial; Commutativity; Rings; Demonstrates; Homomorphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khan, M. A. (1987). A study of some polynomial identities which imply commutativity for rings; -. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/52283

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Khan, Moharram Ali. “A study of some polynomial identities which imply commutativity for rings; -.” 1987. Thesis, Aligarh Muslim University. Accessed October 28, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/52283.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Khan, Moharram Ali. “A study of some polynomial identities which imply commutativity for rings; -.” 1987. Web. 28 Oct 2020.

Vancouver:

Khan MA. A study of some polynomial identities which imply commutativity for rings; -. [Internet] [Thesis]. Aligarh Muslim University; 1987. [cited 2020 Oct 28]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52283.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Khan MA. A study of some polynomial identities which imply commutativity for rings; -. [Thesis]. Aligarh Muslim University; 1987. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52283

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universitat Autònoma de Barcelona

5. Bauch, Jens-Dietrich. Lattices over polynomial rings and applications to function fields.

Degree: Departament de Matemàtiques, 2014, Universitat Autònoma de Barcelona

 This thesis deals with lattices over polynomial rings and its applications to algebraic function fields. In the first part, we consider the notion of lattices… (more)

Subjects/Keywords: Lattices over polynomial rings; Montes algorithm; Function fields; Ciències Experimentals; 51

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bauch, J. (2014). Lattices over polynomial rings and applications to function fields. (Thesis). Universitat Autònoma de Barcelona. Retrieved from http://hdl.handle.net/10803/283357

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bauch, Jens-Dietrich. “Lattices over polynomial rings and applications to function fields.” 2014. Thesis, Universitat Autònoma de Barcelona. Accessed October 28, 2020. http://hdl.handle.net/10803/283357.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bauch, Jens-Dietrich. “Lattices over polynomial rings and applications to function fields.” 2014. Web. 28 Oct 2020.

Vancouver:

Bauch J. Lattices over polynomial rings and applications to function fields. [Internet] [Thesis]. Universitat Autònoma de Barcelona; 2014. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/10803/283357.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bauch J. Lattices over polynomial rings and applications to function fields. [Thesis]. Universitat Autònoma de Barcelona; 2014. Available from: http://hdl.handle.net/10803/283357

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Hong Kong

6. 李云昌. Degree estimate and preserving problems.

Degree: 2014, University of Hong Kong

Subjects/Keywords: Associative algebras; Polynomial rings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

李云昌. (2014). Degree estimate and preserving problems. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/206360

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

李云昌. “Degree estimate and preserving problems.” 2014. Thesis, University of Hong Kong. Accessed October 28, 2020. http://hdl.handle.net/10722/206360.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

李云昌. “Degree estimate and preserving problems.” 2014. Web. 28 Oct 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

李云昌. Degree estimate and preserving problems. [Internet] [Thesis]. University of Hong Kong; 2014. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/10722/206360.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

李云昌. Degree estimate and preserving problems. [Thesis]. University of Hong Kong; 2014. Available from: http://hdl.handle.net/10722/206360

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

7. Chapman, Scott T. (Scott Thomas). Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings.

Degree: 1987, North Texas State University

 Let K be any field and Q be the rationals. Define K1[X] = {f(X) e K[X]| the coefficient of X in f(X) is zero} and… (more)

Subjects/Keywords: invertible ideals; invertibility; polynomial subrings; Ideals (Algebra); Polynomial rings.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chapman, S. T. (. T. (1987). Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc331673/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chapman, Scott T (Scott Thomas). “Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings.” 1987. Thesis, North Texas State University. Accessed October 28, 2020. https://digital.library.unt.edu/ark:/67531/metadc331673/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chapman, Scott T (Scott Thomas). “Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings.” 1987. Web. 28 Oct 2020.

Vancouver:

Chapman ST(T. Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings. [Internet] [Thesis]. North Texas State University; 1987. [cited 2020 Oct 28]. Available from: https://digital.library.unt.edu/ark:/67531/metadc331673/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chapman ST(T. Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings. [Thesis]. North Texas State University; 1987. Available from: https://digital.library.unt.edu/ark:/67531/metadc331673/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Feng, Qiwei. Generalized inverses of matrices over skew polynomial rings.

Degree: Mathematics, 2017, University of Manitoba

 The applications of generalized inverses of matrices appear in many fields like applied mathematics, statistics and engineering [2]. In this thesis, we discuss generalized inverses… (more)

Subjects/Keywords: Generalized inverses; Skew polynomial rings

…1.1. SKEW POLYNOMIAL RINGS [34]. Here we recall the definition and the… …properties of skew polynomial rings. Definition 1.1. ([29], Definition, p.33)… …polynomial rings [34] in 1943. These canonical forms play a similar role as Smith forms… …of matrices over polynomial rings. Now people call these canonical forms Jacobson forms… …then S is called a skew polynomial ring over R, denoted by R[x; σ, δ]. For any a… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Feng, Q. (2017). Generalized inverses of matrices over skew polynomial rings. (Masters Thesis). University of Manitoba. Retrieved from http://hdl.handle.net/1993/32173

Chicago Manual of Style (16th Edition):

Feng, Qiwei. “Generalized inverses of matrices over skew polynomial rings.” 2017. Masters Thesis, University of Manitoba. Accessed October 28, 2020. http://hdl.handle.net/1993/32173.

MLA Handbook (7th Edition):

Feng, Qiwei. “Generalized inverses of matrices over skew polynomial rings.” 2017. Web. 28 Oct 2020.

Vancouver:

Feng Q. Generalized inverses of matrices over skew polynomial rings. [Internet] [Masters thesis]. University of Manitoba; 2017. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/1993/32173.

Council of Science Editors:

Feng Q. Generalized inverses of matrices over skew polynomial rings. [Masters Thesis]. University of Manitoba; 2017. Available from: http://hdl.handle.net/1993/32173


Hong Kong University of Science and Technology

9. Chan, Chun Kit. Reliability study on simple networks in the form of chains and rings.

Degree: 2011, Hong Kong University of Science and Technology

 Our research aims to investigate the relation between Physical Quantities and Reliabilitythrough the Topological Structure of the system. To do so, we study the Reliability… (more)

Subjects/Keywords: System design ; Reliability ; Testing ; Mathematical models ; Polynomial rings ; Wheatstone bridge ; System analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chan, C. K. (2011). Reliability study on simple networks in the form of chains and rings. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-8151 ; https://doi.org/10.14711/thesis-b1155409 ; http://repository.ust.hk/ir/bitstream/1783.1-8151/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chan, Chun Kit. “Reliability study on simple networks in the form of chains and rings.” 2011. Thesis, Hong Kong University of Science and Technology. Accessed October 28, 2020. http://repository.ust.hk/ir/Record/1783.1-8151 ; https://doi.org/10.14711/thesis-b1155409 ; http://repository.ust.hk/ir/bitstream/1783.1-8151/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chan, Chun Kit. “Reliability study on simple networks in the form of chains and rings.” 2011. Web. 28 Oct 2020.

Vancouver:

Chan CK. Reliability study on simple networks in the form of chains and rings. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2011. [cited 2020 Oct 28]. Available from: http://repository.ust.hk/ir/Record/1783.1-8151 ; https://doi.org/10.14711/thesis-b1155409 ; http://repository.ust.hk/ir/bitstream/1783.1-8151/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chan CK. Reliability study on simple networks in the form of chains and rings. [Thesis]. Hong Kong University of Science and Technology; 2011. Available from: http://repository.ust.hk/ir/Record/1783.1-8151 ; https://doi.org/10.14711/thesis-b1155409 ; http://repository.ust.hk/ir/bitstream/1783.1-8151/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


California State University – San Bernardino

10. Green, Ellen Yvonne. Characterizing the strong two-generators of certain Noetherian domains.

Degree: MAin Mathematics, Mathematics, 1997, California State University – San Bernardino

Subjects/Keywords: Noetherian rings; Artin rings; Polynomial rings; Commutative rings; Associative rings; Rings (Algebra); Algebra; Algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Green, E. Y. (1997). Characterizing the strong two-generators of certain Noetherian domains. (Thesis). California State University – San Bernardino. Retrieved from http://scholarworks.lib.csusb.edu/etd-project/1539

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Green, Ellen Yvonne. “Characterizing the strong two-generators of certain Noetherian domains.” 1997. Thesis, California State University – San Bernardino. Accessed October 28, 2020. http://scholarworks.lib.csusb.edu/etd-project/1539.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Green, Ellen Yvonne. “Characterizing the strong two-generators of certain Noetherian domains.” 1997. Web. 28 Oct 2020.

Vancouver:

Green EY. Characterizing the strong two-generators of certain Noetherian domains. [Internet] [Thesis]. California State University – San Bernardino; 1997. [cited 2020 Oct 28]. Available from: http://scholarworks.lib.csusb.edu/etd-project/1539.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Green EY. Characterizing the strong two-generators of certain Noetherian domains. [Thesis]. California State University – San Bernardino; 1997. Available from: http://scholarworks.lib.csusb.edu/etd-project/1539

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Leiden University

11. Ciocanea Teodorescu I. Algorithms for finite rings.

Degree: 2016, Leiden University

 In this thesis we are interested in describing algorithms that answer questions arising in ring and module theory. Our focus is on deterministic polynomial-time algorithms… (more)

Subjects/Keywords: Deterministic polynomial time algorithm; Finite rings; Modules; Jacobson radical; Separability; Deterministic polynomial time algorithm; Finite rings; Modules; Jacobson radical; Separability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

I., C. T. (2016). Algorithms for finite rings. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/40676

Chicago Manual of Style (16th Edition):

I., Ciocanea Teodorescu. “Algorithms for finite rings.” 2016. Doctoral Dissertation, Leiden University. Accessed October 28, 2020. http://hdl.handle.net/1887/40676.

MLA Handbook (7th Edition):

I., Ciocanea Teodorescu. “Algorithms for finite rings.” 2016. Web. 28 Oct 2020.

Vancouver:

I. CT. Algorithms for finite rings. [Internet] [Doctoral dissertation]. Leiden University; 2016. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/1887/40676.

Council of Science Editors:

I. CT. Algorithms for finite rings. [Doctoral Dissertation]. Leiden University; 2016. Available from: http://hdl.handle.net/1887/40676


Indian Institute of Science

12. Francis, Maria. Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings.

Degree: PhD, Faculty of Engineering, 2018, Indian Institute of Science

 One of the fundamental problems in commutative algebra and algebraic geometry is to understand the nature of the solution space of a system of multivariate… (more)

Subjects/Keywords: Grobuer Basis Algorithms; Polynomial Ideal Theory; Buchberger's Algorithm; Affine K-algebra; Polynomial Rings; Grobuer Basis; Grobuer Bases; Macaulay-Buchberger Basis Theorem; Noetherian Rings; Lattice Based Cryptography; Ideal Lattices; Hilbert Polynomials; Computer Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Francis, M. (2018). Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3543

Chicago Manual of Style (16th Edition):

Francis, Maria. “Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed October 28, 2020. http://etd.iisc.ac.in/handle/2005/3543.

MLA Handbook (7th Edition):

Francis, Maria. “Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings.” 2018. Web. 28 Oct 2020.

Vancouver:

Francis M. Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2020 Oct 28]. Available from: http://etd.iisc.ac.in/handle/2005/3543.

Council of Science Editors:

Francis M. Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3543


Universidade Estadual de Campinas

13. Mello, Thiago Castilho de, 1984-. Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann: Polynomial identities in matrix algebras over the Grassmann algebra.

Degree: 2012, Universidade Estadual de Campinas

 Abstract: In this thesis, we study the generic algebra of M1;1 in two generators over an infinite field of characteristic different from 2. We describe… (more)

Subjects/Keywords: Identidade polinomial; Grassmann, Álgebra de; Anéis (Álgebra); PI-álgebras; Álgebra não-comutativa; Polynomial identity; Grassmann algebra; Rings (Algebra); PI-algebra; Noncommutative algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mello, Thiago Castilho de, 1. (2012). Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann: Polynomial identities in matrix algebras over the Grassmann algebra. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306366

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mello, Thiago Castilho de, 1984-. “Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann: Polynomial identities in matrix algebras over the Grassmann algebra.” 2012. Thesis, Universidade Estadual de Campinas. Accessed October 28, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306366.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mello, Thiago Castilho de, 1984-. “Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann: Polynomial identities in matrix algebras over the Grassmann algebra.” 2012. Web. 28 Oct 2020.

Vancouver:

Mello, Thiago Castilho de 1. Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann: Polynomial identities in matrix algebras over the Grassmann algebra. [Internet] [Thesis]. Universidade Estadual de Campinas; 2012. [cited 2020 Oct 28]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306366.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mello, Thiago Castilho de 1. Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann: Polynomial identities in matrix algebras over the Grassmann algebra. [Thesis]. Universidade Estadual de Campinas; 2012. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306366

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade Estadual de Campinas

14. Reis, Júlio César dos, 1979-. Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra.

Degree: 2012, Universidade Estadual de Campinas

 Abstract: In this PhD thesis we give bases of the graded polynomial identities of...Note: The complete abstract is available with the full electronic document Advisors/Committee… (more)

Subjects/Keywords: PI-álgebras; Identidade polinomial; Aneís graduados; Matrizes (Matemática); Corpos finitos (Álgebra); PI-algebras; Polynomial identity; Graded rings; Matrix algebra; Finite fields (Algebra)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Reis, Júlio César dos, 1. (2012). Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Reis, Júlio César dos, 1979-. “Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra.” 2012. Thesis, Universidade Estadual de Campinas. Accessed October 28, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Reis, Júlio César dos, 1979-. “Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra.” 2012. Web. 28 Oct 2020.

Vancouver:

Reis, Júlio César dos 1. Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra. [Internet] [Thesis]. Universidade Estadual de Campinas; 2012. [cited 2020 Oct 28]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Reis, Júlio César dos 1. Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra. [Thesis]. Universidade Estadual de Campinas; 2012. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

15. Yemen, Olfa. Application des codes cycliques tordus : Application of skew cyclic codes.

Degree: Docteur es, Informatique, 2013, Nice

Le sujet porte sur une classe de codes correcteurs d erreurs dits codes cycliques tordus, et ses applications a l'Informatique quantique et aux codes quasi-cycliques.… (more)

Subjects/Keywords: Codes cycliques tordus; Codes quasi-cycliques; Informatique quantique; Anneau des polynômes non commutatifs; Skew cyclic codes; Quasi-cyclic codes; Quantum computing; Skew polynomial rings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yemen, O. (2013). Application des codes cycliques tordus : Application of skew cyclic codes. (Doctoral Dissertation). Nice. Retrieved from http://www.theses.fr/2013NICE4070

Chicago Manual of Style (16th Edition):

Yemen, Olfa. “Application des codes cycliques tordus : Application of skew cyclic codes.” 2013. Doctoral Dissertation, Nice. Accessed October 28, 2020. http://www.theses.fr/2013NICE4070.

MLA Handbook (7th Edition):

Yemen, Olfa. “Application des codes cycliques tordus : Application of skew cyclic codes.” 2013. Web. 28 Oct 2020.

Vancouver:

Yemen O. Application des codes cycliques tordus : Application of skew cyclic codes. [Internet] [Doctoral dissertation]. Nice; 2013. [cited 2020 Oct 28]. Available from: http://www.theses.fr/2013NICE4070.

Council of Science Editors:

Yemen O. Application des codes cycliques tordus : Application of skew cyclic codes. [Doctoral Dissertation]. Nice; 2013. Available from: http://www.theses.fr/2013NICE4070

16. Edmonds, Ranthony A.C. Factorization in polynomial rings with zero divisors.

Degree: PhD, Mathematics, 2018, University of Iowa

  Factorization theory is concerned with the decomposition of mathematical objects. Such an object could be a polynomial, a number in the set of integers,… (more)

Subjects/Keywords: commutative ring theory; factorization; polynomial rings; zero divisors; Mathematics

…with Zero Divisors . . . . . 5 7 3 ELEMENTARY FACTS ABOUT POLYNOMIAL RINGS… …polynomial rings. Given a commutative ring R with identity and its polynomial extension R[X… …facts about polynomial rings in Chapter 3. Distinguished elements in a polynomial ring such as… …discussed in the context of polynomial rings and it is shown that in R[X], f is very… …CHAPTER 3 ELEMENTARY FACTS ABOUT POLYNOMIAL RINGS 3.1 Structure of Zero Divisors, Units… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Edmonds, R. A. C. (2018). Factorization in polynomial rings with zero divisors. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/3248

Chicago Manual of Style (16th Edition):

Edmonds, Ranthony A C. “Factorization in polynomial rings with zero divisors.” 2018. Doctoral Dissertation, University of Iowa. Accessed October 28, 2020. https://ir.uiowa.edu/etd/3248.

MLA Handbook (7th Edition):

Edmonds, Ranthony A C. “Factorization in polynomial rings with zero divisors.” 2018. Web. 28 Oct 2020.

Vancouver:

Edmonds RAC. Factorization in polynomial rings with zero divisors. [Internet] [Doctoral dissertation]. University of Iowa; 2018. [cited 2020 Oct 28]. Available from: https://ir.uiowa.edu/etd/3248.

Council of Science Editors:

Edmonds RAC. Factorization in polynomial rings with zero divisors. [Doctoral Dissertation]. University of Iowa; 2018. Available from: https://ir.uiowa.edu/etd/3248


Texas Tech University

17. Gapinski, Andrzej J. Two-dimensional linear discrete systems: a polynomial fractional approach.

Degree: Electrical and Computer Engineering, 1988, Texas Tech University

 The purpose of this dissertation is two-fold. First, the class of two-dimensional linear time-invariant discrete system is investigated and a unified approach is proposed for… (more)

Subjects/Keywords: Discrete-time systems; Polynomial rings; Control theory; Time-series analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gapinski, A. J. (1988). Two-dimensional linear discrete systems: a polynomial fractional approach. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/14195

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gapinski, Andrzej J. “Two-dimensional linear discrete systems: a polynomial fractional approach.” 1988. Thesis, Texas Tech University. Accessed October 28, 2020. http://hdl.handle.net/2346/14195.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gapinski, Andrzej J. “Two-dimensional linear discrete systems: a polynomial fractional approach.” 1988. Web. 28 Oct 2020.

Vancouver:

Gapinski AJ. Two-dimensional linear discrete systems: a polynomial fractional approach. [Internet] [Thesis]. Texas Tech University; 1988. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/2346/14195.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gapinski AJ. Two-dimensional linear discrete systems: a polynomial fractional approach. [Thesis]. Texas Tech University; 1988. Available from: http://hdl.handle.net/2346/14195

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

18. Kamen, Sam A. Polynomial Rings and Selected Integral Domains.

Degree: 1968, North Texas State University

 This thesis is an investigation of some of the properties of polynomial rings, unique factorization domains, Euclidean domains, and principal ideal domains. The nature of… (more)

Subjects/Keywords: polynomial rings; factorization domains; Euclidean domains; principle ideal domains; mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kamen, S. A. (1968). Polynomial Rings and Selected Integral Domains. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc130907/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kamen, Sam A. “Polynomial Rings and Selected Integral Domains.” 1968. Thesis, North Texas State University. Accessed October 28, 2020. https://digital.library.unt.edu/ark:/67531/metadc130907/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kamen, Sam A. “Polynomial Rings and Selected Integral Domains.” 1968. Web. 28 Oct 2020.

Vancouver:

Kamen SA. Polynomial Rings and Selected Integral Domains. [Internet] [Thesis]. North Texas State University; 1968. [cited 2020 Oct 28]. Available from: https://digital.library.unt.edu/ark:/67531/metadc130907/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kamen SA. Polynomial Rings and Selected Integral Domains. [Thesis]. North Texas State University; 1968. Available from: https://digital.library.unt.edu/ark:/67531/metadc130907/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Virginia Tech

19. Dimitrova, Elena Stanimirova. Polynomial Models for Systems Biology: Data Discretization and Term Order Effect on Dynamics.

Degree: PhD, Mathematics, 2006, Virginia Tech

 Systems biology aims at system-level understanding of biological systems, in particular cellular networks. The milestones of this understanding are knowledge of the structure of the… (more)

Subjects/Keywords: Biochemical Networks; Polynomial Rings; Polynomial Dynamical Systems; Gr\"{o}bner Bases; Systems Biology; Discrete Modeling; Data Discretization; Finite Fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dimitrova, E. S. (2006). Polynomial Models for Systems Biology: Data Discretization and Term Order Effect on Dynamics. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/28490

Chicago Manual of Style (16th Edition):

Dimitrova, Elena Stanimirova. “Polynomial Models for Systems Biology: Data Discretization and Term Order Effect on Dynamics.” 2006. Doctoral Dissertation, Virginia Tech. Accessed October 28, 2020. http://hdl.handle.net/10919/28490.

MLA Handbook (7th Edition):

Dimitrova, Elena Stanimirova. “Polynomial Models for Systems Biology: Data Discretization and Term Order Effect on Dynamics.” 2006. Web. 28 Oct 2020.

Vancouver:

Dimitrova ES. Polynomial Models for Systems Biology: Data Discretization and Term Order Effect on Dynamics. [Internet] [Doctoral dissertation]. Virginia Tech; 2006. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/10919/28490.

Council of Science Editors:

Dimitrova ES. Polynomial Models for Systems Biology: Data Discretization and Term Order Effect on Dynamics. [Doctoral Dissertation]. Virginia Tech; 2006. Available from: http://hdl.handle.net/10919/28490


California State University – San Bernardino

20. Ahlgren, Joyce Christine. Ideals, varieties, and Groebner bases.

Degree: MAin Mathematics, Mathematics, 2003, California State University – San Bernardino

 The topics explored in this project present and interesting picture of close connections between algebra and geometry. Given a specific system of polynomial equations we… (more)

Subjects/Keywords: Algebraic Geometry; Ideals (Algebra); Varieties (Universal algebra); Gröbner bases; Polynomial rings; Abstract Algebra; Algebraic Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ahlgren, J. C. (2003). Ideals, varieties, and Groebner bases. (Thesis). California State University – San Bernardino. Retrieved from http://scholarworks.lib.csusb.edu/etd-project/2225

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ahlgren, Joyce Christine. “Ideals, varieties, and Groebner bases.” 2003. Thesis, California State University – San Bernardino. Accessed October 28, 2020. http://scholarworks.lib.csusb.edu/etd-project/2225.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ahlgren, Joyce Christine. “Ideals, varieties, and Groebner bases.” 2003. Web. 28 Oct 2020.

Vancouver:

Ahlgren JC. Ideals, varieties, and Groebner bases. [Internet] [Thesis]. California State University – San Bernardino; 2003. [cited 2020 Oct 28]. Available from: http://scholarworks.lib.csusb.edu/etd-project/2225.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ahlgren JC. Ideals, varieties, and Groebner bases. [Thesis]. California State University – San Bernardino; 2003. Available from: http://scholarworks.lib.csusb.edu/etd-project/2225

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


California State University – San Bernardino

21. Ahlgren, Joyce Christine. Ideals, varieties, and Groebner bases.

Degree: MAin Mathematics, Mathematics, 2003, California State University – San Bernardino

 The topics explored in this project present and interesting picture of close connections between algebra and geometry. Given a specific system of polynomial equations we… (more)

Subjects/Keywords: Algebraic Geometry; Ideals (Algebra); Varieties (Universal algebra); Gröbner bases; Polynomial rings; Abstract Algebra; Algebraic Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ahlgren, J. C. (2003). Ideals, varieties, and Groebner bases. (Thesis). California State University – San Bernardino. Retrieved from http://scholarworks.lib.csusb.edu/etd-project/2282

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ahlgren, Joyce Christine. “Ideals, varieties, and Groebner bases.” 2003. Thesis, California State University – San Bernardino. Accessed October 28, 2020. http://scholarworks.lib.csusb.edu/etd-project/2282.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ahlgren, Joyce Christine. “Ideals, varieties, and Groebner bases.” 2003. Web. 28 Oct 2020.

Vancouver:

Ahlgren JC. Ideals, varieties, and Groebner bases. [Internet] [Thesis]. California State University – San Bernardino; 2003. [cited 2020 Oct 28]. Available from: http://scholarworks.lib.csusb.edu/etd-project/2282.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ahlgren JC. Ideals, varieties, and Groebner bases. [Thesis]. California State University – San Bernardino; 2003. Available from: http://scholarworks.lib.csusb.edu/etd-project/2282

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

22. Fogarty, Neville Lyons. On Skew-Constacyclic Codes.

Degree: 2016, University of Kentucky

 Cyclic codes are a well-known class of linear block codes with efficient decoding algorithms. In recent years they have been generalized to skew-constacyclic codes; such… (more)

Subjects/Keywords: Linear block codes; skew-constacyclic codes; skew-polynomial rings; circulants; idempotents; Algebra

…Chapter 2 Skew-Polynomial Rings and Left Quotient Modules 2.1 Properties of Skew-Polynomial… …Lyons Fogarty, 2016. 4 Chapter 2 Skew-Polynomial Rings and Left Quotient Modules Skew… …polynomial rings were introduced by Ore [25] in 1933. In this chapter, we define the skew… …constacyclic code corresponds to a right divisor of xn −a. 2.1 Properties of Skew-Polynomial Rings… …non-commutativity, the ring is very similar to ordinary polynomial rings over fields. Some… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fogarty, N. L. (2016). On Skew-Constacyclic Codes. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/36

Chicago Manual of Style (16th Edition):

Fogarty, Neville Lyons. “On Skew-Constacyclic Codes.” 2016. Doctoral Dissertation, University of Kentucky. Accessed October 28, 2020. https://uknowledge.uky.edu/math_etds/36.

MLA Handbook (7th Edition):

Fogarty, Neville Lyons. “On Skew-Constacyclic Codes.” 2016. Web. 28 Oct 2020.

Vancouver:

Fogarty NL. On Skew-Constacyclic Codes. [Internet] [Doctoral dissertation]. University of Kentucky; 2016. [cited 2020 Oct 28]. Available from: https://uknowledge.uky.edu/math_etds/36.

Council of Science Editors:

Fogarty NL. On Skew-Constacyclic Codes. [Doctoral Dissertation]. University of Kentucky; 2016. Available from: https://uknowledge.uky.edu/math_etds/36

.