Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Poisson Lie groups). Showing records 1 – 9 of 9 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Arizona

1. Lamb, McKenzie Russell. Ginzburg-Weinstein Isomorphisms for Pseudo-Unitary Groups .

Degree: 2009, University of Arizona

 Ginzburg and Weinstein proved in [GW92] that for a compact, semisimple Lie group K endowed with the Lu-Weinstein Poisson structure, there exists a Poisson diffeomorphism… (more)

Subjects/Keywords: geometry; Lie groups; Poisson

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lamb, M. R. (2009). Ginzburg-Weinstein Isomorphisms for Pseudo-Unitary Groups . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/193755

Chicago Manual of Style (16th Edition):

Lamb, McKenzie Russell. “Ginzburg-Weinstein Isomorphisms for Pseudo-Unitary Groups .” 2009. Doctoral Dissertation, University of Arizona. Accessed August 19, 2018. http://hdl.handle.net/10150/193755.

MLA Handbook (7th Edition):

Lamb, McKenzie Russell. “Ginzburg-Weinstein Isomorphisms for Pseudo-Unitary Groups .” 2009. Web. 19 Aug 2018.

Vancouver:

Lamb MR. Ginzburg-Weinstein Isomorphisms for Pseudo-Unitary Groups . [Internet] [Doctoral dissertation]. University of Arizona; 2009. [cited 2018 Aug 19]. Available from: http://hdl.handle.net/10150/193755.

Council of Science Editors:

Lamb MR. Ginzburg-Weinstein Isomorphisms for Pseudo-Unitary Groups . [Doctoral Dissertation]. University of Arizona; 2009. Available from: http://hdl.handle.net/10150/193755

2. Dahamna, Khaled. Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. : Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equations.

Degree: Docteur es, Mathématiques, 2011, Rouen, INSA

Dans cette thèse, on s'intéresse en premier aux problèmes sous-riemanniens sur un groupe de Lie nilpotent d'ordre 2. Dans un premier temps, on réalise la… (more)

Subjects/Keywords: Groupes de Lie; Algèbres de Lie; Contact; Classification; Sous-riemannien; Géodésiques; Intégrabilité; Lie groups; Lie algebras; Sub-Riemannian; Geodesics; Lie-Poisson

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dahamna, K. (2011). Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. : Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equations. (Doctoral Dissertation). Rouen, INSA. Retrieved from http://www.theses.fr/2011ISAM0012

Chicago Manual of Style (16th Edition):

Dahamna, Khaled. “Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. : Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equations.” 2011. Doctoral Dissertation, Rouen, INSA. Accessed August 19, 2018. http://www.theses.fr/2011ISAM0012.

MLA Handbook (7th Edition):

Dahamna, Khaled. “Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. : Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equations.” 2011. Web. 19 Aug 2018.

Vancouver:

Dahamna K. Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. : Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equations. [Internet] [Doctoral dissertation]. Rouen, INSA; 2011. [cited 2018 Aug 19]. Available from: http://www.theses.fr/2011ISAM0012.

Council of Science Editors:

Dahamna K. Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. : Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equations. [Doctoral Dissertation]. Rouen, INSA; 2011. Available from: http://www.theses.fr/2011ISAM0012


EPFL

3. Jotz, Madeleine. Dirac Group(oid)s and Their Homogeneous Spaces.

Degree: 2011, EPFL

 A theorem of Drinfel'd (Drinfel'd (1993)) classifies the Poisson homogeneous spaces of a Poisson Lie group (G,πG) via a special class of Lagrangian subalgebras of… (more)

Subjects/Keywords: Poisson Lie groups; homogeneous spaces; Dirac manifolds; Lie groupoids; Lie algebroids; Courant algebroids; Groupes de Poisson-Lie; espaces homogènes; variétés Dirac; groupoïdes de Lie; algébroïdes de Lie; algébroïdes de Courant

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jotz, M. (2011). Dirac Group(oid)s and Their Homogeneous Spaces. (Thesis). EPFL. Retrieved from http://infoscience.epfl.ch/record/165760

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jotz, Madeleine. “Dirac Group(oid)s and Their Homogeneous Spaces.” 2011. Thesis, EPFL. Accessed August 19, 2018. http://infoscience.epfl.ch/record/165760.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jotz, Madeleine. “Dirac Group(oid)s and Their Homogeneous Spaces.” 2011. Web. 19 Aug 2018.

Vancouver:

Jotz M. Dirac Group(oid)s and Their Homogeneous Spaces. [Internet] [Thesis]. EPFL; 2011. [cited 2018 Aug 19]. Available from: http://infoscience.epfl.ch/record/165760.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jotz M. Dirac Group(oid)s and Their Homogeneous Spaces. [Thesis]. EPFL; 2011. Available from: http://infoscience.epfl.ch/record/165760

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Hong Kong

4. To, Kai-ming, Simon. On some aspects of a Poisson structure on a complex semisimple Lie group.

Degree: PhD, 2011, University of Hong Kong

published_or_final_version

Mathematics

Doctoral

Doctor of Philosophy

Advisors/Committee Members: Lu, J.

Subjects/Keywords: Semisimple Lie groups.; Poisson manifolds.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

To, Kai-ming, S. (2011). On some aspects of a Poisson structure on a complex semisimple Lie group. (Doctoral Dissertation). University of Hong Kong. Retrieved from To, K. S. [杜啟明]. (2011). On some aspects of a Poisson structure on a complex semisimple Lie group. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4570033 ; http://dx.doi.org/10.5353/th_b4570033 ; http://hdl.handle.net/10722/133218

Chicago Manual of Style (16th Edition):

To, Kai-ming, Simon. “On some aspects of a Poisson structure on a complex semisimple Lie group.” 2011. Doctoral Dissertation, University of Hong Kong. Accessed August 19, 2018. To, K. S. [杜啟明]. (2011). On some aspects of a Poisson structure on a complex semisimple Lie group. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4570033 ; http://dx.doi.org/10.5353/th_b4570033 ; http://hdl.handle.net/10722/133218.

MLA Handbook (7th Edition):

To, Kai-ming, Simon. “On some aspects of a Poisson structure on a complex semisimple Lie group.” 2011. Web. 19 Aug 2018.

Vancouver:

To, Kai-ming S. On some aspects of a Poisson structure on a complex semisimple Lie group. [Internet] [Doctoral dissertation]. University of Hong Kong; 2011. [cited 2018 Aug 19]. Available from: To, K. S. [杜啟明]. (2011). On some aspects of a Poisson structure on a complex semisimple Lie group. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4570033 ; http://dx.doi.org/10.5353/th_b4570033 ; http://hdl.handle.net/10722/133218.

Council of Science Editors:

To, Kai-ming S. On some aspects of a Poisson structure on a complex semisimple Lie group. [Doctoral Dissertation]. University of Hong Kong; 2011. Available from: To, K. S. [杜啟明]. (2011). On some aspects of a Poisson structure on a complex semisimple Lie group. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4570033 ; http://dx.doi.org/10.5353/th_b4570033 ; http://hdl.handle.net/10722/133218


University of Hong Kong

5. Elek, Balázes. Computing the standard Poisson structure on Bott-Samelson varieties incoordinates.

Degree: M. Phil., 2012, University of Hong Kong

Bott-Samelson varieties associated to reductive algebraic groups are much studied in representation theory and algebraic geometry. They not only provide resolutions of singularities for Schubert… (more)

Subjects/Keywords: Root systems (Algebra); Poisson manifolds.; Lie groups; Schubert varieties; Coordinates.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Elek, B. (2012). Computing the standard Poisson structure on Bott-Samelson varieties incoordinates. (Masters Thesis). University of Hong Kong. Retrieved from Elek, B.. (2012). Computing the standard Poisson structure on Bott-Samelson varieties in coordinates. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4833005 ; http://dx.doi.org/10.5353/th_b4833005 ; http://hdl.handle.net/10722/173875

Chicago Manual of Style (16th Edition):

Elek, Balázes. “Computing the standard Poisson structure on Bott-Samelson varieties incoordinates.” 2012. Masters Thesis, University of Hong Kong. Accessed August 19, 2018. Elek, B.. (2012). Computing the standard Poisson structure on Bott-Samelson varieties in coordinates. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4833005 ; http://dx.doi.org/10.5353/th_b4833005 ; http://hdl.handle.net/10722/173875.

MLA Handbook (7th Edition):

Elek, Balázes. “Computing the standard Poisson structure on Bott-Samelson varieties incoordinates.” 2012. Web. 19 Aug 2018.

Vancouver:

Elek B. Computing the standard Poisson structure on Bott-Samelson varieties incoordinates. [Internet] [Masters thesis]. University of Hong Kong; 2012. [cited 2018 Aug 19]. Available from: Elek, B.. (2012). Computing the standard Poisson structure on Bott-Samelson varieties in coordinates. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4833005 ; http://dx.doi.org/10.5353/th_b4833005 ; http://hdl.handle.net/10722/173875.

Council of Science Editors:

Elek B. Computing the standard Poisson structure on Bott-Samelson varieties incoordinates. [Masters Thesis]. University of Hong Kong; 2012. Available from: Elek, B.. (2012). Computing the standard Poisson structure on Bott-Samelson varieties in coordinates. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4833005 ; http://dx.doi.org/10.5353/th_b4833005 ; http://hdl.handle.net/10722/173875


Université Montpellier II

6. Ohayon, Jonathan. Quantification des sous-algèbres de Lie coisotropes : Quantization of coisotropic Lie subalgebras.

Degree: Docteur es, Mathématiques et modélisation, 2012, Université Montpellier II

L’objet de cette thèse est l’étude de l’existence d’une quantification pour les sous-algèbres de Lie coisotropes des bigèbres de Lie. Une sous-algèbre de Lie coisotrope… (more)

Subjects/Keywords: Groupes quantiques; Bigèbres de Lie; Sous-algèbres de Lie coisotropes; Quantification universelle; Espaces de Poisson homogènes; Props; Quantum groups; Lie bialgebras; Coisotropic Lie subalgebras; Universal quantization; Homogeneous Poisson spaces; Props

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ohayon, J. (2012). Quantification des sous-algèbres de Lie coisotropes : Quantization of coisotropic Lie subalgebras. (Doctoral Dissertation). Université Montpellier II. Retrieved from http://www.theses.fr/2012MON20040

Chicago Manual of Style (16th Edition):

Ohayon, Jonathan. “Quantification des sous-algèbres de Lie coisotropes : Quantization of coisotropic Lie subalgebras.” 2012. Doctoral Dissertation, Université Montpellier II. Accessed August 19, 2018. http://www.theses.fr/2012MON20040.

MLA Handbook (7th Edition):

Ohayon, Jonathan. “Quantification des sous-algèbres de Lie coisotropes : Quantization of coisotropic Lie subalgebras.” 2012. Web. 19 Aug 2018.

Vancouver:

Ohayon J. Quantification des sous-algèbres de Lie coisotropes : Quantization of coisotropic Lie subalgebras. [Internet] [Doctoral dissertation]. Université Montpellier II; 2012. [cited 2018 Aug 19]. Available from: http://www.theses.fr/2012MON20040.

Council of Science Editors:

Ohayon J. Quantification des sous-algèbres de Lie coisotropes : Quantization of coisotropic Lie subalgebras. [Doctoral Dissertation]. Université Montpellier II; 2012. Available from: http://www.theses.fr/2012MON20040

7. Κουλούκας, Θεόδωρος. Δράσεις ομάδων Lie σε πολλαπλότητες Poison.

Degree: 2006, University of Patras

Subjects/Keywords: Πολλαπλότητες Poisson; Ομάδες Lie; Απεικόνιση ορμής; 515.39; Poisson manifolds; Lie groups; Momentum map

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Κουλούκας, . (2006). Δράσεις ομάδων Lie σε πολλαπλότητες Poison. (Masters Thesis). University of Patras. Retrieved from http://nemertes.lis.upatras.gr/jspui/handle/10889/893

Chicago Manual of Style (16th Edition):

Κουλούκας, Θεόδωρος. “Δράσεις ομάδων Lie σε πολλαπλότητες Poison.” 2006. Masters Thesis, University of Patras. Accessed August 19, 2018. http://nemertes.lis.upatras.gr/jspui/handle/10889/893.

MLA Handbook (7th Edition):

Κουλούκας, Θεόδωρος. “Δράσεις ομάδων Lie σε πολλαπλότητες Poison.” 2006. Web. 19 Aug 2018.

Vancouver:

Κουλούκας . Δράσεις ομάδων Lie σε πολλαπλότητες Poison. [Internet] [Masters thesis]. University of Patras; 2006. [cited 2018 Aug 19]. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/893.

Council of Science Editors:

Κουλούκας . Δράσεις ομάδων Lie σε πολλαπλότητες Poison. [Masters Thesis]. University of Patras; 2006. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/893


University of Arizona

8. Garcia-Naranjo, Luis Constantino. Almost Poisson Brackets for Nonholonomic Systems on Lie Groups .

Degree: 2007, University of Arizona

 We present a geometric construction of almost Poisson brackets for nonholonomic mechanical systems whose configuration space is a Lie group G. We study the so-called… (more)

Subjects/Keywords: nonholonomic; almost Poisson bracket; Lie groups; mechanics; Hamiltonization; reduction

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Garcia-Naranjo, L. C. (2007). Almost Poisson Brackets for Nonholonomic Systems on Lie Groups . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/195845

Chicago Manual of Style (16th Edition):

Garcia-Naranjo, Luis Constantino. “Almost Poisson Brackets for Nonholonomic Systems on Lie Groups .” 2007. Doctoral Dissertation, University of Arizona. Accessed August 19, 2018. http://hdl.handle.net/10150/195845.

MLA Handbook (7th Edition):

Garcia-Naranjo, Luis Constantino. “Almost Poisson Brackets for Nonholonomic Systems on Lie Groups .” 2007. Web. 19 Aug 2018.

Vancouver:

Garcia-Naranjo LC. Almost Poisson Brackets for Nonholonomic Systems on Lie Groups . [Internet] [Doctoral dissertation]. University of Arizona; 2007. [cited 2018 Aug 19]. Available from: http://hdl.handle.net/10150/195845.

Council of Science Editors:

Garcia-Naranjo LC. Almost Poisson Brackets for Nonholonomic Systems on Lie Groups . [Doctoral Dissertation]. University of Arizona; 2007. Available from: http://hdl.handle.net/10150/195845

9. Zhang, Chi. Controlled particle systems for nonlinear filtering and global optimization.

Degree: PhD, Mechanical Engineering, 2017, University of Illinois – Urbana-Champaign

 This thesis is concerned with the development and applications of controlled interacting particle systems for nonlinear filtering and global optimization problems. These problems are important… (more)

Subjects/Keywords: Nonlinear filtering; Estimation; Particle filtering; Kalman filtering; Matrix Lie groups; Differential geometry; Poisson equation; Global optimization; Optimal control; Feedback control; Monte-Carlo simulation

…32 32 36 47 Chapter 4 Poisson equation on Matrix Lie groups 4.1 Introduction… …foundation of the FPF on matrix Lie groups: • Poisson equation on matrix Lie groups. The FPF… …1 . 2 . 7 . 11 Theory 12 Chapter 2 Feedback Particle Filter on Matrix Lie Groups… …Preliminaries . . . . . . . . . . . . . . . . 2.3 Feedback Particle Filter on Matrix Lie Groups… …is extended to matrix Lie groups. Applications of FPF to attitude estimation and motion… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, C. (2017). Controlled particle systems for nonlinear filtering and global optimization. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/97376

Chicago Manual of Style (16th Edition):

Zhang, Chi. “Controlled particle systems for nonlinear filtering and global optimization.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed August 19, 2018. http://hdl.handle.net/2142/97376.

MLA Handbook (7th Edition):

Zhang, Chi. “Controlled particle systems for nonlinear filtering and global optimization.” 2017. Web. 19 Aug 2018.

Vancouver:

Zhang C. Controlled particle systems for nonlinear filtering and global optimization. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2018 Aug 19]. Available from: http://hdl.handle.net/2142/97376.

Council of Science Editors:

Zhang C. Controlled particle systems for nonlinear filtering and global optimization. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/97376

.