Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Picard varieties)`

.
Showing records 1 – 5 of
5 total matches.

▼ Search Limiters

University of Pennsylvania

1. Kelly, Tyler L. On Berglund-Hübsch-Krawitz Mirror Symmetry.

Degree: 2014, University of Pennsylvania

URL: https://repository.upenn.edu/edissertations/1328

► We provide various suites of results for the Calabi-Yau orbifolds that have Berglund-HÃ¼bsch-Krawitz (BHK) mirrors. These Calabi-Yau orbifolds are certain finite symplectic quotients of hypersurfaces…
(more)

Subjects/Keywords: birational geometry; calabi-yau varieties; k3 surfaces; mirror symmetry; picard ranks; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kelly, T. L. (2014). On Berglund-Hübsch-Krawitz Mirror Symmetry. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/1328

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kelly, Tyler L. “On Berglund-Hübsch-Krawitz Mirror Symmetry.” 2014. Thesis, University of Pennsylvania. Accessed July 12, 2020. https://repository.upenn.edu/edissertations/1328.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kelly, Tyler L. “On Berglund-Hübsch-Krawitz Mirror Symmetry.” 2014. Web. 12 Jul 2020.

Vancouver:

Kelly TL. On Berglund-Hübsch-Krawitz Mirror Symmetry. [Internet] [Thesis]. University of Pennsylvania; 2014. [cited 2020 Jul 12]. Available from: https://repository.upenn.edu/edissertations/1328.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kelly TL. On Berglund-Hübsch-Krawitz Mirror Symmetry. [Thesis]. University of Pennsylvania; 2014. Available from: https://repository.upenn.edu/edissertations/1328

Not specified: Masters Thesis or Doctoral Dissertation

Penn State University

2. Arora, Sonny. Constructing curves with complex multiplication using the Chinese Remainder Theorem.

Degree: 2018, Penn State University

URL: https://etda.libraries.psu.edu/catalog/15611sza149

► For cryptographic protocols whose security relies on the difficulty ofthe discrete log problem of the underlying group, one often wants to find a group whose…
(more)

Subjects/Keywords: Number Theory; Cryptography; Arithmetic Geometry; Picard Curves; Abelian Varieties; Chinese remainder theorem

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Arora, S. (2018). Constructing curves with complex multiplication using the Chinese Remainder Theorem. (Thesis). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/15611sza149

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Arora, Sonny. “Constructing curves with complex multiplication using the Chinese Remainder Theorem.” 2018. Thesis, Penn State University. Accessed July 12, 2020. https://etda.libraries.psu.edu/catalog/15611sza149.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Arora, Sonny. “Constructing curves with complex multiplication using the Chinese Remainder Theorem.” 2018. Web. 12 Jul 2020.

Vancouver:

Arora S. Constructing curves with complex multiplication using the Chinese Remainder Theorem. [Internet] [Thesis]. Penn State University; 2018. [cited 2020 Jul 12]. Available from: https://etda.libraries.psu.edu/catalog/15611sza149.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Arora S. Constructing curves with complex multiplication using the Chinese Remainder Theorem. [Thesis]. Penn State University; 2018. Available from: https://etda.libraries.psu.edu/catalog/15611sza149

Not specified: Masters Thesis or Doctoral Dissertation

University of Illinois – Chicago

3.
Lombardi, Luigi.
Derived Equivalences of Irregular *Varieties* and Constraints on Hodge Numbers.

Degree: 2013, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/10294

► We study derived equivalences of smooth projective irregular *varieties*. More specifically, as suggested by a conjecture of Popa, we investigate the behavior of cohomological support…
(more)

Subjects/Keywords: Derived Categories; Equivalences; Non-vanishing Loci; Irregular Varieties; Picard Variety; Hodge Numbers; Derivative Complex; Hochschild homology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lombardi, L. (2013). Derived Equivalences of Irregular Varieties and Constraints on Hodge Numbers. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/10294

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lombardi, Luigi. “Derived Equivalences of Irregular Varieties and Constraints on Hodge Numbers.” 2013. Thesis, University of Illinois – Chicago. Accessed July 12, 2020. http://hdl.handle.net/10027/10294.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lombardi, Luigi. “Derived Equivalences of Irregular Varieties and Constraints on Hodge Numbers.” 2013. Web. 12 Jul 2020.

Vancouver:

Lombardi L. Derived Equivalences of Irregular Varieties and Constraints on Hodge Numbers. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/10027/10294.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lombardi L. Derived Equivalences of Irregular Varieties and Constraints on Hodge Numbers. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/10294

Not specified: Masters Thesis or Doctoral Dissertation

Université de Bordeaux I

4. Pepin, Cédric. Prolongement de faisceaux inversibles : Sur la répartition des valeurs des fonctions arithmétiques.

Degree: Docteur es, Mathématiques pures, 2011, Université de Bordeaux I

URL: http://www.theses.fr/2011BOR14276

►

Soit R un anneau de valuation discrète de corps de fractions K. Soit X_K un K- schéma propre géométriquement normal. On montre que X_K possède… (more)

Subjects/Keywords: Modèles entiers; Faisceaux inversibles; Foncteur de Picard; Modèles de Néron; Symbole de Néron; Dualité pour les variétés abéliennes; Accouplement de Grothendieck; Integral models; Invertible sheaves; Picard functor; Néron models; Néron symbol; Duality for abelian varieties; Grothendieck's pairing

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pepin, C. (2011). Prolongement de faisceaux inversibles : Sur la répartition des valeurs des fonctions arithmétiques. (Doctoral Dissertation). Université de Bordeaux I. Retrieved from http://www.theses.fr/2011BOR14276

Chicago Manual of Style (16^{th} Edition):

Pepin, Cédric. “Prolongement de faisceaux inversibles : Sur la répartition des valeurs des fonctions arithmétiques.” 2011. Doctoral Dissertation, Université de Bordeaux I. Accessed July 12, 2020. http://www.theses.fr/2011BOR14276.

MLA Handbook (7^{th} Edition):

Pepin, Cédric. “Prolongement de faisceaux inversibles : Sur la répartition des valeurs des fonctions arithmétiques.” 2011. Web. 12 Jul 2020.

Vancouver:

Pepin C. Prolongement de faisceaux inversibles : Sur la répartition des valeurs des fonctions arithmétiques. [Internet] [Doctoral dissertation]. Université de Bordeaux I; 2011. [cited 2020 Jul 12]. Available from: http://www.theses.fr/2011BOR14276.

Council of Science Editors:

Pepin C. Prolongement de faisceaux inversibles : Sur la répartition des valeurs des fonctions arithmétiques. [Doctoral Dissertation]. Université de Bordeaux I; 2011. Available from: http://www.theses.fr/2011BOR14276

5.
Pham, Tuan D.
On the *Picard* *Varieties* of Surfaces with Equivalent Derived Categories.

Degree: 2012, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/9623

► It was shown recently by Popa and Schnell that the irregularities of two smooth projective *varieties* with equivalent bounded derived categories of coherent sheaves are…
(more)

Subjects/Keywords: algebraic geometry; derived categories; Picard varieties; automorphism groups; Albanese varieties; Fourier-Mukai transforms

…preserved under derived
equivalences. They also conjectured that the *Picard* *varieties* of derived… …picture of *Picard* *varieties*, the groups Aut0 and the
Albanese dimensions for derived equivalent… …SUMMARY
The study of derived categories as invariants of algebraic *varieties* has… …algebraic *varieties* are
preserved by derived equivalences. Only until recently, Popa and Schnell… …equivalent *varieties* are
derived equivalent. This conjecture clearly holds in the case of curves…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pham, T. D. (2012). On the Picard Varieties of Surfaces with Equivalent Derived Categories. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9623

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Pham, Tuan D. “On the Picard Varieties of Surfaces with Equivalent Derived Categories.” 2012. Thesis, University of Illinois – Chicago. Accessed July 12, 2020. http://hdl.handle.net/10027/9623.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Pham, Tuan D. “On the Picard Varieties of Surfaces with Equivalent Derived Categories.” 2012. Web. 12 Jul 2020.

Vancouver:

Pham TD. On the Picard Varieties of Surfaces with Equivalent Derived Categories. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/10027/9623.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pham TD. On the Picard Varieties of Surfaces with Equivalent Derived Categories. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/9623

Not specified: Masters Thesis or Doctoral Dissertation