Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Perverse sheaves)`

.
Showing records 1 – 10 of
10 total matches.

▼ Search Limiters

Louisiana State University

1. Rider, Laura Joy. Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence.

Degree: PhD, Applied Mathematics, 2013, Louisiana State University

URL: etd-06212013-132011 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2732

► Recall that the Springer correspondence relates representations of the Weyl group to *perverse* *sheaves* on the nilpotent cone. We explain how to extend this to…
(more)

Subjects/Keywords: formality; perverse sheaves; nilpotent cone

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rider, L. J. (2013). Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-06212013-132011 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2732

Chicago Manual of Style (16^{th} Edition):

Rider, Laura Joy. “Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence.” 2013. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-06212013-132011 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2732.

MLA Handbook (7^{th} Edition):

Rider, Laura Joy. “Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence.” 2013. Web. 13 Apr 2021.

Vancouver:

Rider LJ. Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence. [Internet] [Doctoral dissertation]. Louisiana State University; 2013. [cited 2021 Apr 13]. Available from: etd-06212013-132011 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2732.

Council of Science Editors:

Rider LJ. Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence. [Doctoral Dissertation]. Louisiana State University; 2013. Available from: etd-06212013-132011 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2732

Louisiana State University

2.
Russell, Amber.
Graham's variety and *perverse* *sheaves* on the nilpotent cone.

Degree: PhD, Applied Mathematics, 2012, Louisiana State University

URL: etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631

► In recent work, Graham has defined a variety which maps to the nilpotent cone, and which shares many properties with the Springer resolution. However, Graham's…
(more)

Subjects/Keywords: graham's variety; nilpotent cone; perverse sheaves

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Russell, A. (2012). Graham's variety and perverse sheaves on the nilpotent cone. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631

Chicago Manual of Style (16^{th} Edition):

Russell, Amber. “Graham's variety and perverse sheaves on the nilpotent cone.” 2012. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631.

MLA Handbook (7^{th} Edition):

Russell, Amber. “Graham's variety and perverse sheaves on the nilpotent cone.” 2012. Web. 13 Apr 2021.

Vancouver:

Russell A. Graham's variety and perverse sheaves on the nilpotent cone. [Internet] [Doctoral dissertation]. Louisiana State University; 2012. [cited 2021 Apr 13]. Available from: etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631.

Council of Science Editors:

Russell A. Graham's variety and perverse sheaves on the nilpotent cone. [Doctoral Dissertation]. Louisiana State University; 2012. Available from: etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631

Louisiana State University

3.
Minn-Thu-Aye, Myron.
Multiplicity formulas for *perverse* coherent *sheaves* on the nilpotent cone.

Degree: PhD, Applied Mathematics, 2013, Louisiana State University

URL: etd-07082013-113917 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3732

► Arinkin and Bezrukavnikov have given the construction of the category of equivariant *perverse* coherent *sheaves* on the nilpotent cone of a complex reductive algebraic group.…
(more)

Subjects/Keywords: perverse coherent sheaves; derived categories of coherent sheaves; representation theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Minn-Thu-Aye, M. (2013). Multiplicity formulas for perverse coherent sheaves on the nilpotent cone. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07082013-113917 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3732

Chicago Manual of Style (16^{th} Edition):

Minn-Thu-Aye, Myron. “Multiplicity formulas for perverse coherent sheaves on the nilpotent cone.” 2013. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-07082013-113917 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3732.

MLA Handbook (7^{th} Edition):

Minn-Thu-Aye, Myron. “Multiplicity formulas for perverse coherent sheaves on the nilpotent cone.” 2013. Web. 13 Apr 2021.

Vancouver:

Minn-Thu-Aye M. Multiplicity formulas for perverse coherent sheaves on the nilpotent cone. [Internet] [Doctoral dissertation]. Louisiana State University; 2013. [cited 2021 Apr 13]. Available from: etd-07082013-113917 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3732.

Council of Science Editors:

Minn-Thu-Aye M. Multiplicity formulas for perverse coherent sheaves on the nilpotent cone. [Doctoral Dissertation]. Louisiana State University; 2013. Available from: etd-07082013-113917 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3732

Louisiana State University

4.
Taylor, Sean Michael.
Mixed Categories of *Sheaves* on Toric Varieties.

Degree: PhD, Algebraic Geometry, 2018, Louisiana State University

URL: https://digitalcommons.lsu.edu/gradschool_dissertations/4590

► In [BGS96], Beilinson, Ginzburg, and Soergel introduced the notion of mixed categories. This idea often underlies many interesting "Koszul dualities." In this paper, we…
(more)

Subjects/Keywords: Toric varieties; mixed categories; sheaves; finite fields; perverse sheaves; Koszul duality

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Taylor, S. M. (2018). Mixed Categories of Sheaves on Toric Varieties. (Doctoral Dissertation). Louisiana State University. Retrieved from https://digitalcommons.lsu.edu/gradschool_dissertations/4590

Chicago Manual of Style (16^{th} Edition):

Taylor, Sean Michael. “Mixed Categories of Sheaves on Toric Varieties.” 2018. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. https://digitalcommons.lsu.edu/gradschool_dissertations/4590.

MLA Handbook (7^{th} Edition):

Taylor, Sean Michael. “Mixed Categories of Sheaves on Toric Varieties.” 2018. Web. 13 Apr 2021.

Vancouver:

Taylor SM. Mixed Categories of Sheaves on Toric Varieties. [Internet] [Doctoral dissertation]. Louisiana State University; 2018. [cited 2021 Apr 13]. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/4590.

Council of Science Editors:

Taylor SM. Mixed Categories of Sheaves on Toric Varieties. [Doctoral Dissertation]. Louisiana State University; 2018. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/4590

Louisiana State University

5. Matherne, Jacob Paul. Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations.

Degree: PhD, Applied Mathematics, 2016, Louisiana State University

URL: etd-07022016-000813 ; https://digitalcommons.lsu.edu/gradschool_dissertations/668

► It is known that the geometric Satake equivalence is intimately related to the Springer correspondence when restricting to small representations of the Langlands dual group…
(more)

Subjects/Keywords: Geometric Satake; Springer correspondence; small representations; perverse sheaves; algebraic groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Matherne, J. P. (2016). Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07022016-000813 ; https://digitalcommons.lsu.edu/gradschool_dissertations/668

Chicago Manual of Style (16^{th} Edition):

Matherne, Jacob Paul. “Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations.” 2016. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-07022016-000813 ; https://digitalcommons.lsu.edu/gradschool_dissertations/668.

MLA Handbook (7^{th} Edition):

Matherne, Jacob Paul. “Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations.” 2016. Web. 13 Apr 2021.

Vancouver:

Matherne JP. Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations. [Internet] [Doctoral dissertation]. Louisiana State University; 2016. [cited 2021 Apr 13]. Available from: etd-07022016-000813 ; https://digitalcommons.lsu.edu/gradschool_dissertations/668.

Council of Science Editors:

Matherne JP. Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations. [Doctoral Dissertation]. Louisiana State University; 2016. Available from: etd-07022016-000813 ; https://digitalcommons.lsu.edu/gradschool_dissertations/668

Louisiana State University

6.
Culbertson, Jared Lee.
* Perverse* poisson

Degree: PhD, Applied Mathematics, 2010, Louisiana State University

URL: etd-04152010-174523 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3133

► For a reductive complex algebraic group, the associated nilpotent cone is the variety of nilpotent elements in the corresponding Lie algebra. Understanding the nilpotent cone…
(more)

Subjects/Keywords: nilpotent cone; Poisson; perverse sheaves

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Culbertson, J. L. (2010). Perverse poisson sheaves on the nilpotent cone. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-04152010-174523 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3133

Chicago Manual of Style (16^{th} Edition):

Culbertson, Jared Lee. “Perverse poisson sheaves on the nilpotent cone.” 2010. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-04152010-174523 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3133.

MLA Handbook (7^{th} Edition):

Culbertson, Jared Lee. “Perverse poisson sheaves on the nilpotent cone.” 2010. Web. 13 Apr 2021.

Vancouver:

Culbertson JL. Perverse poisson sheaves on the nilpotent cone. [Internet] [Doctoral dissertation]. Louisiana State University; 2010. [cited 2021 Apr 13]. Available from: etd-04152010-174523 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3133.

Council of Science Editors:

Culbertson JL. Perverse poisson sheaves on the nilpotent cone. [Doctoral Dissertation]. Louisiana State University; 2010. Available from: etd-04152010-174523 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3133

University of California – Berkeley

7. Jin, Xin. Symplectic approaches in geometric representation theory.

Degree: Mathematics, 2015, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/07t5s31b

► We study various topics lying in the crossroads of symplectic topology and geometric representation theory, with an emphasis on understanding central objects in geometric representation…
(more)

Subjects/Keywords: Mathematics; Fukaya categories; geometric representation theory; Lagrangian branes; perverse sheaves; symplectic geometry; symplectomorphism groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jin, X. (2015). Symplectic approaches in geometric representation theory. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/07t5s31b

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Jin, Xin. “Symplectic approaches in geometric representation theory.” 2015. Thesis, University of California – Berkeley. Accessed April 13, 2021. http://www.escholarship.org/uc/item/07t5s31b.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Jin, Xin. “Symplectic approaches in geometric representation theory.” 2015. Web. 13 Apr 2021.

Vancouver:

Jin X. Symplectic approaches in geometric representation theory. [Internet] [Thesis]. University of California – Berkeley; 2015. [cited 2021 Apr 13]. Available from: http://www.escholarship.org/uc/item/07t5s31b.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jin X. Symplectic approaches in geometric representation theory. [Thesis]. University of California – Berkeley; 2015. Available from: http://www.escholarship.org/uc/item/07t5s31b

Not specified: Masters Thesis or Doctoral Dissertation

8. Hepler, Brian. Hypersurface Normalizations And Numerical Invariants.

Degree: PhD, Department of Mathematics, 2019, Northeastern University

URL: http://hdl.handle.net/2047/D20316378

► We define a new *perverse* sheaf, the comparison complex, naturally associated to any locally reduced complex analytic space X on which the (shifted) constant sheaf…
(more)

Subjects/Keywords: Algebraic Geometry; Hodge Theory; Perverse Sheaves; Singularities; Mathematics

…approach using *perverse* *sheaves* allows us to make some headway. Particularly, these spaces
are… …short exact sequence
of *perverse* *sheaves* on X, and Theorem 1.1.1.4, which is our main… …extension of semi-simple *perverse* *sheaves*?” This question was posed
to us by a referee of [21… …surjection of *perverse* *sheaves* Z•X [n] → I•X → 0, where I•X is the intersection… …simple object in the category of *perverse* *sheaves* on X with no
*perverse* sub or quotient objects…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hepler, B. (2019). Hypersurface Normalizations And Numerical Invariants. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20316378

Chicago Manual of Style (16^{th} Edition):

Hepler, Brian. “Hypersurface Normalizations And Numerical Invariants.” 2019. Doctoral Dissertation, Northeastern University. Accessed April 13, 2021. http://hdl.handle.net/2047/D20316378.

MLA Handbook (7^{th} Edition):

Hepler, Brian. “Hypersurface Normalizations And Numerical Invariants.” 2019. Web. 13 Apr 2021.

Vancouver:

Hepler B. Hypersurface Normalizations And Numerical Invariants. [Internet] [Doctoral dissertation]. Northeastern University; 2019. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2047/D20316378.

Council of Science Editors:

Hepler B. Hypersurface Normalizations And Numerical Invariants. [Doctoral Dissertation]. Northeastern University; 2019. Available from: http://hdl.handle.net/2047/D20316378

University of Texas – Austin

9. Mautner, Carl Irving. Sheaf theoretic methods in modular representation theory.

Degree: PhD, Mathematics, 2010, University of Texas – Austin

URL: http://hdl.handle.net/2152/ETD-UT-2010-05-943

► This thesis concerns the use of *perverse* *sheaves* with coefficients in commutative rings and in particular, fields of positive characteristic, in the study of modular…
(more)

Subjects/Keywords: Perverse sheaves; Modular representation theory; Schur-Weyl duality; Parity sheaves; Sheaf theoretic methods; Commutative rings; Decomposition theorem

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mautner, C. I. (2010). Sheaf theoretic methods in modular representation theory. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-05-943

Chicago Manual of Style (16^{th} Edition):

Mautner, Carl Irving. “Sheaf theoretic methods in modular representation theory.” 2010. Doctoral Dissertation, University of Texas – Austin. Accessed April 13, 2021. http://hdl.handle.net/2152/ETD-UT-2010-05-943.

MLA Handbook (7^{th} Edition):

Mautner, Carl Irving. “Sheaf theoretic methods in modular representation theory.” 2010. Web. 13 Apr 2021.

Vancouver:

Mautner CI. Sheaf theoretic methods in modular representation theory. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2010. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-943.

Council of Science Editors:

Mautner CI. Sheaf theoretic methods in modular representation theory. [Doctoral Dissertation]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-943

10. Kochersperger, Matthieu. Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope.

Degree: Docteur es, Mathématiques fondamentales, 2018, Université Paris-Saclay (ComUE)

URL: http://www.theses.fr/2018SACLX041

►

Dans cette thèse nous nous intéressons aux singularités d'espaces analytiques complexes définis comme le lieu des zéros d'un morphisme sans pente. Nous étudions dans un… (more)

Subjects/Keywords: Morphisme sans pente; Cycles évanescents; Multifiltration de Kashiwara-Malgrange; Modules de Hodge mixtes; D-Modules; Faisceaux pervers; Cycles proches; Morphisms without slope; Vanishing cycles; Kashiwara-Malgrange multifiltration; Mixed Hodge modules; D-Modules; Perverse sheaves; Nearby cycles; 514.74

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kochersperger, M. (2018). Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2018SACLX041

Chicago Manual of Style (16^{th} Edition):

Kochersperger, Matthieu. “Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope.” 2018. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed April 13, 2021. http://www.theses.fr/2018SACLX041.

MLA Handbook (7^{th} Edition):

Kochersperger, Matthieu. “Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope.” 2018. Web. 13 Apr 2021.

Vancouver:

Kochersperger M. Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2018. [cited 2021 Apr 13]. Available from: http://www.theses.fr/2018SACLX041.

Council of Science Editors:

Kochersperger M. Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2018. Available from: http://www.theses.fr/2018SACLX041