Advanced search options
You searched for subject:(Perverse sheaves)
.
Showing records 1 – 10 of
10 total matches.
▼ Search Limiters
Louisiana State University
1. Rider, Laura Joy. Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence.
Degree: PhD, Applied Mathematics, 2013, Louisiana State University
URL: etd-06212013-132011
;
https://digitalcommons.lsu.edu/gradschool_dissertations/2732
Subjects/Keywords: formality; perverse sheaves; nilpotent cone
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Rider, L. J. (2013). Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-06212013-132011 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2732
Chicago Manual of Style (16th Edition):
Rider, Laura Joy. “Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence.” 2013. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-06212013-132011 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2732.
MLA Handbook (7th Edition):
Rider, Laura Joy. “Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence.” 2013. Web. 13 Apr 2021.
Vancouver:
Rider LJ. Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence. [Internet] [Doctoral dissertation]. Louisiana State University; 2013. [cited 2021 Apr 13]. Available from: etd-06212013-132011 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2732.
Council of Science Editors:
Rider LJ. Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence. [Doctoral Dissertation]. Louisiana State University; 2013. Available from: etd-06212013-132011 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2732
Louisiana State University
2. Russell, Amber. Graham's variety and perverse sheaves on the nilpotent cone.
Degree: PhD, Applied Mathematics, 2012, Louisiana State University
URL: etd-06232012-104447
;
https://digitalcommons.lsu.edu/gradschool_dissertations/3631
Subjects/Keywords: graham's variety; nilpotent cone; perverse sheaves
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Russell, A. (2012). Graham's variety and perverse sheaves on the nilpotent cone. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631
Chicago Manual of Style (16th Edition):
Russell, Amber. “Graham's variety and perverse sheaves on the nilpotent cone.” 2012. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631.
MLA Handbook (7th Edition):
Russell, Amber. “Graham's variety and perverse sheaves on the nilpotent cone.” 2012. Web. 13 Apr 2021.
Vancouver:
Russell A. Graham's variety and perverse sheaves on the nilpotent cone. [Internet] [Doctoral dissertation]. Louisiana State University; 2012. [cited 2021 Apr 13]. Available from: etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631.
Council of Science Editors:
Russell A. Graham's variety and perverse sheaves on the nilpotent cone. [Doctoral Dissertation]. Louisiana State University; 2012. Available from: etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631
Louisiana State University
3. Minn-Thu-Aye, Myron. Multiplicity formulas for perverse coherent sheaves on the nilpotent cone.
Degree: PhD, Applied Mathematics, 2013, Louisiana State University
URL: etd-07082013-113917
;
https://digitalcommons.lsu.edu/gradschool_dissertations/3732
Subjects/Keywords: perverse coherent sheaves; derived categories of coherent sheaves; representation theory
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Minn-Thu-Aye, M. (2013). Multiplicity formulas for perverse coherent sheaves on the nilpotent cone. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07082013-113917 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3732
Chicago Manual of Style (16th Edition):
Minn-Thu-Aye, Myron. “Multiplicity formulas for perverse coherent sheaves on the nilpotent cone.” 2013. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-07082013-113917 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3732.
MLA Handbook (7th Edition):
Minn-Thu-Aye, Myron. “Multiplicity formulas for perverse coherent sheaves on the nilpotent cone.” 2013. Web. 13 Apr 2021.
Vancouver:
Minn-Thu-Aye M. Multiplicity formulas for perverse coherent sheaves on the nilpotent cone. [Internet] [Doctoral dissertation]. Louisiana State University; 2013. [cited 2021 Apr 13]. Available from: etd-07082013-113917 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3732.
Council of Science Editors:
Minn-Thu-Aye M. Multiplicity formulas for perverse coherent sheaves on the nilpotent cone. [Doctoral Dissertation]. Louisiana State University; 2013. Available from: etd-07082013-113917 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3732
Louisiana State University
4. Taylor, Sean Michael. Mixed Categories of Sheaves on Toric Varieties.
Degree: PhD, Algebraic Geometry, 2018, Louisiana State University
URL: https://digitalcommons.lsu.edu/gradschool_dissertations/4590
Subjects/Keywords: Toric varieties; mixed categories; sheaves; finite fields; perverse sheaves; Koszul duality
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Taylor, S. M. (2018). Mixed Categories of Sheaves on Toric Varieties. (Doctoral Dissertation). Louisiana State University. Retrieved from https://digitalcommons.lsu.edu/gradschool_dissertations/4590
Chicago Manual of Style (16th Edition):
Taylor, Sean Michael. “Mixed Categories of Sheaves on Toric Varieties.” 2018. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. https://digitalcommons.lsu.edu/gradschool_dissertations/4590.
MLA Handbook (7th Edition):
Taylor, Sean Michael. “Mixed Categories of Sheaves on Toric Varieties.” 2018. Web. 13 Apr 2021.
Vancouver:
Taylor SM. Mixed Categories of Sheaves on Toric Varieties. [Internet] [Doctoral dissertation]. Louisiana State University; 2018. [cited 2021 Apr 13]. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/4590.
Council of Science Editors:
Taylor SM. Mixed Categories of Sheaves on Toric Varieties. [Doctoral Dissertation]. Louisiana State University; 2018. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/4590
Louisiana State University
5. Matherne, Jacob Paul. Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations.
Degree: PhD, Applied Mathematics, 2016, Louisiana State University
URL: etd-07022016-000813
;
https://digitalcommons.lsu.edu/gradschool_dissertations/668
Subjects/Keywords: Geometric Satake; Springer correspondence; small representations; perverse sheaves; algebraic groups
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Matherne, J. P. (2016). Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07022016-000813 ; https://digitalcommons.lsu.edu/gradschool_dissertations/668
Chicago Manual of Style (16th Edition):
Matherne, Jacob Paul. “Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations.” 2016. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-07022016-000813 ; https://digitalcommons.lsu.edu/gradschool_dissertations/668.
MLA Handbook (7th Edition):
Matherne, Jacob Paul. “Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations.” 2016. Web. 13 Apr 2021.
Vancouver:
Matherne JP. Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations. [Internet] [Doctoral dissertation]. Louisiana State University; 2016. [cited 2021 Apr 13]. Available from: etd-07022016-000813 ; https://digitalcommons.lsu.edu/gradschool_dissertations/668.
Council of Science Editors:
Matherne JP. Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations. [Doctoral Dissertation]. Louisiana State University; 2016. Available from: etd-07022016-000813 ; https://digitalcommons.lsu.edu/gradschool_dissertations/668
Louisiana State University
6. Culbertson, Jared Lee. Perverse poisson sheaves on the nilpotent cone.
Degree: PhD, Applied Mathematics, 2010, Louisiana State University
URL: etd-04152010-174523
;
https://digitalcommons.lsu.edu/gradschool_dissertations/3133
Subjects/Keywords: nilpotent cone; Poisson; perverse sheaves
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Culbertson, J. L. (2010). Perverse poisson sheaves on the nilpotent cone. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-04152010-174523 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3133
Chicago Manual of Style (16th Edition):
Culbertson, Jared Lee. “Perverse poisson sheaves on the nilpotent cone.” 2010. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-04152010-174523 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3133.
MLA Handbook (7th Edition):
Culbertson, Jared Lee. “Perverse poisson sheaves on the nilpotent cone.” 2010. Web. 13 Apr 2021.
Vancouver:
Culbertson JL. Perverse poisson sheaves on the nilpotent cone. [Internet] [Doctoral dissertation]. Louisiana State University; 2010. [cited 2021 Apr 13]. Available from: etd-04152010-174523 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3133.
Council of Science Editors:
Culbertson JL. Perverse poisson sheaves on the nilpotent cone. [Doctoral Dissertation]. Louisiana State University; 2010. Available from: etd-04152010-174523 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3133
University of California – Berkeley
7. Jin, Xin. Symplectic approaches in geometric representation theory.
Degree: Mathematics, 2015, University of California – Berkeley
URL: http://www.escholarship.org/uc/item/07t5s31b
Subjects/Keywords: Mathematics; Fukaya categories; geometric representation theory; Lagrangian branes; perverse sheaves; symplectic geometry; symplectomorphism groups
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Jin, X. (2015). Symplectic approaches in geometric representation theory. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/07t5s31b
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Jin, Xin. “Symplectic approaches in geometric representation theory.” 2015. Thesis, University of California – Berkeley. Accessed April 13, 2021. http://www.escholarship.org/uc/item/07t5s31b.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Jin, Xin. “Symplectic approaches in geometric representation theory.” 2015. Web. 13 Apr 2021.
Vancouver:
Jin X. Symplectic approaches in geometric representation theory. [Internet] [Thesis]. University of California – Berkeley; 2015. [cited 2021 Apr 13]. Available from: http://www.escholarship.org/uc/item/07t5s31b.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Jin X. Symplectic approaches in geometric representation theory. [Thesis]. University of California – Berkeley; 2015. Available from: http://www.escholarship.org/uc/item/07t5s31b
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
8. Hepler, Brian. Hypersurface Normalizations And Numerical Invariants.
Degree: PhD, Department of Mathematics, 2019, Northeastern University
URL: http://hdl.handle.net/2047/D20316378
Subjects/Keywords: Algebraic Geometry; Hodge Theory; Perverse Sheaves; Singularities; Mathematics
…approach using perverse sheaves allows us to make some headway. Particularly, these spaces are… …short exact sequence of perverse sheaves on X, and Theorem 1.1.1.4, which is our main… …extension of semi-simple perverse sheaves?” This question was posed to us by a referee of [21… …surjection of perverse sheaves Z•X [n] → I•X → 0, where I•X is the intersection… …simple object in the category of perverse sheaves on X with no perverse sub or quotient objects…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Hepler, B. (2019). Hypersurface Normalizations And Numerical Invariants. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20316378
Chicago Manual of Style (16th Edition):
Hepler, Brian. “Hypersurface Normalizations And Numerical Invariants.” 2019. Doctoral Dissertation, Northeastern University. Accessed April 13, 2021. http://hdl.handle.net/2047/D20316378.
MLA Handbook (7th Edition):
Hepler, Brian. “Hypersurface Normalizations And Numerical Invariants.” 2019. Web. 13 Apr 2021.
Vancouver:
Hepler B. Hypersurface Normalizations And Numerical Invariants. [Internet] [Doctoral dissertation]. Northeastern University; 2019. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2047/D20316378.
Council of Science Editors:
Hepler B. Hypersurface Normalizations And Numerical Invariants. [Doctoral Dissertation]. Northeastern University; 2019. Available from: http://hdl.handle.net/2047/D20316378
University of Texas – Austin
9. Mautner, Carl Irving. Sheaf theoretic methods in modular representation theory.
Degree: PhD, Mathematics, 2010, University of Texas – Austin
URL: http://hdl.handle.net/2152/ETD-UT-2010-05-943
Subjects/Keywords: Perverse sheaves; Modular representation theory; Schur-Weyl duality; Parity sheaves; Sheaf theoretic methods; Commutative rings; Decomposition theorem
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Mautner, C. I. (2010). Sheaf theoretic methods in modular representation theory. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-05-943
Chicago Manual of Style (16th Edition):
Mautner, Carl Irving. “Sheaf theoretic methods in modular representation theory.” 2010. Doctoral Dissertation, University of Texas – Austin. Accessed April 13, 2021. http://hdl.handle.net/2152/ETD-UT-2010-05-943.
MLA Handbook (7th Edition):
Mautner, Carl Irving. “Sheaf theoretic methods in modular representation theory.” 2010. Web. 13 Apr 2021.
Vancouver:
Mautner CI. Sheaf theoretic methods in modular representation theory. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2010. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-943.
Council of Science Editors:
Mautner CI. Sheaf theoretic methods in modular representation theory. [Doctoral Dissertation]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-943
10. Kochersperger, Matthieu. Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope.
Degree: Docteur es, Mathématiques fondamentales, 2018, Université Paris-Saclay (ComUE)
URL: http://www.theses.fr/2018SACLX041
Subjects/Keywords: Morphisme sans pente; Cycles évanescents; Multifiltration de Kashiwara-Malgrange; Modules de Hodge mixtes; D-Modules; Faisceaux pervers; Cycles proches; Morphisms without slope; Vanishing cycles; Kashiwara-Malgrange multifiltration; Mixed Hodge modules; D-Modules; Perverse sheaves; Nearby cycles; 514.74
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Kochersperger, M. (2018). Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2018SACLX041
Chicago Manual of Style (16th Edition):
Kochersperger, Matthieu. “Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope.” 2018. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed April 13, 2021. http://www.theses.fr/2018SACLX041.
MLA Handbook (7th Edition):
Kochersperger, Matthieu. “Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope.” 2018. Web. 13 Apr 2021.
Vancouver:
Kochersperger M. Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2018. [cited 2021 Apr 13]. Available from: http://www.theses.fr/2018SACLX041.
Council of Science Editors:
Kochersperger M. Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2018. Available from: http://www.theses.fr/2018SACLX041