Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Perverse sheaves). Showing records 1 – 10 of 10 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Louisiana State University

1. Rider, Laura Joy. Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence.

Degree: PhD, Applied Mathematics, 2013, Louisiana State University

 Recall that the Springer correspondence relates representations of the Weyl group to perverse sheaves on the nilpotent cone. We explain how to extend this to… (more)

Subjects/Keywords: formality; perverse sheaves; nilpotent cone

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rider, L. J. (2013). Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-06212013-132011 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2732

Chicago Manual of Style (16th Edition):

Rider, Laura Joy. “Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence.” 2013. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-06212013-132011 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2732.

MLA Handbook (7th Edition):

Rider, Laura Joy. “Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence.” 2013. Web. 13 Apr 2021.

Vancouver:

Rider LJ. Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence. [Internet] [Doctoral dissertation]. Louisiana State University; 2013. [cited 2021 Apr 13]. Available from: etd-06212013-132011 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2732.

Council of Science Editors:

Rider LJ. Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence. [Doctoral Dissertation]. Louisiana State University; 2013. Available from: etd-06212013-132011 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2732


Louisiana State University

2. Russell, Amber. Graham's variety and perverse sheaves on the nilpotent cone.

Degree: PhD, Applied Mathematics, 2012, Louisiana State University

 In recent work, Graham has defined a variety which maps to the nilpotent cone, and which shares many properties with the Springer resolution. However, Graham's… (more)

Subjects/Keywords: graham's variety; nilpotent cone; perverse sheaves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Russell, A. (2012). Graham's variety and perverse sheaves on the nilpotent cone. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631

Chicago Manual of Style (16th Edition):

Russell, Amber. “Graham's variety and perverse sheaves on the nilpotent cone.” 2012. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631.

MLA Handbook (7th Edition):

Russell, Amber. “Graham's variety and perverse sheaves on the nilpotent cone.” 2012. Web. 13 Apr 2021.

Vancouver:

Russell A. Graham's variety and perverse sheaves on the nilpotent cone. [Internet] [Doctoral dissertation]. Louisiana State University; 2012. [cited 2021 Apr 13]. Available from: etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631.

Council of Science Editors:

Russell A. Graham's variety and perverse sheaves on the nilpotent cone. [Doctoral Dissertation]. Louisiana State University; 2012. Available from: etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631


Louisiana State University

3. Minn-Thu-Aye, Myron. Multiplicity formulas for perverse coherent sheaves on the nilpotent cone.

Degree: PhD, Applied Mathematics, 2013, Louisiana State University

 Arinkin and Bezrukavnikov have given the construction of the category of equivariant perverse coherent sheaves on the nilpotent cone of a complex reductive algebraic group.… (more)

Subjects/Keywords: perverse coherent sheaves; derived categories of coherent sheaves; representation theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Minn-Thu-Aye, M. (2013). Multiplicity formulas for perverse coherent sheaves on the nilpotent cone. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07082013-113917 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3732

Chicago Manual of Style (16th Edition):

Minn-Thu-Aye, Myron. “Multiplicity formulas for perverse coherent sheaves on the nilpotent cone.” 2013. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-07082013-113917 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3732.

MLA Handbook (7th Edition):

Minn-Thu-Aye, Myron. “Multiplicity formulas for perverse coherent sheaves on the nilpotent cone.” 2013. Web. 13 Apr 2021.

Vancouver:

Minn-Thu-Aye M. Multiplicity formulas for perverse coherent sheaves on the nilpotent cone. [Internet] [Doctoral dissertation]. Louisiana State University; 2013. [cited 2021 Apr 13]. Available from: etd-07082013-113917 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3732.

Council of Science Editors:

Minn-Thu-Aye M. Multiplicity formulas for perverse coherent sheaves on the nilpotent cone. [Doctoral Dissertation]. Louisiana State University; 2013. Available from: etd-07082013-113917 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3732


Louisiana State University

4. Taylor, Sean Michael. Mixed Categories of Sheaves on Toric Varieties.

Degree: PhD, Algebraic Geometry, 2018, Louisiana State University

  In [BGS96], Beilinson, Ginzburg, and Soergel introduced the notion of mixed categories. This idea often underlies many interesting "Koszul dualities." In this paper, we… (more)

Subjects/Keywords: Toric varieties; mixed categories; sheaves; finite fields; perverse sheaves; Koszul duality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Taylor, S. M. (2018). Mixed Categories of Sheaves on Toric Varieties. (Doctoral Dissertation). Louisiana State University. Retrieved from https://digitalcommons.lsu.edu/gradschool_dissertations/4590

Chicago Manual of Style (16th Edition):

Taylor, Sean Michael. “Mixed Categories of Sheaves on Toric Varieties.” 2018. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. https://digitalcommons.lsu.edu/gradschool_dissertations/4590.

MLA Handbook (7th Edition):

Taylor, Sean Michael. “Mixed Categories of Sheaves on Toric Varieties.” 2018. Web. 13 Apr 2021.

Vancouver:

Taylor SM. Mixed Categories of Sheaves on Toric Varieties. [Internet] [Doctoral dissertation]. Louisiana State University; 2018. [cited 2021 Apr 13]. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/4590.

Council of Science Editors:

Taylor SM. Mixed Categories of Sheaves on Toric Varieties. [Doctoral Dissertation]. Louisiana State University; 2018. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/4590


Louisiana State University

5. Matherne, Jacob Paul. Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations.

Degree: PhD, Applied Mathematics, 2016, Louisiana State University

 It is known that the geometric Satake equivalence is intimately related to the Springer correspondence when restricting to small representations of the Langlands dual group… (more)

Subjects/Keywords: Geometric Satake; Springer correspondence; small representations; perverse sheaves; algebraic groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Matherne, J. P. (2016). Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07022016-000813 ; https://digitalcommons.lsu.edu/gradschool_dissertations/668

Chicago Manual of Style (16th Edition):

Matherne, Jacob Paul. “Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations.” 2016. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-07022016-000813 ; https://digitalcommons.lsu.edu/gradschool_dissertations/668.

MLA Handbook (7th Edition):

Matherne, Jacob Paul. “Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations.” 2016. Web. 13 Apr 2021.

Vancouver:

Matherne JP. Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations. [Internet] [Doctoral dissertation]. Louisiana State University; 2016. [cited 2021 Apr 13]. Available from: etd-07022016-000813 ; https://digitalcommons.lsu.edu/gradschool_dissertations/668.

Council of Science Editors:

Matherne JP. Derived Geometric Satake Equivalence, Springer Correspondence, and Small Representations. [Doctoral Dissertation]. Louisiana State University; 2016. Available from: etd-07022016-000813 ; https://digitalcommons.lsu.edu/gradschool_dissertations/668


Louisiana State University

6. Culbertson, Jared Lee. Perverse poisson sheaves on the nilpotent cone.

Degree: PhD, Applied Mathematics, 2010, Louisiana State University

 For a reductive complex algebraic group, the associated nilpotent cone is the variety of nilpotent elements in the corresponding Lie algebra. Understanding the nilpotent cone… (more)

Subjects/Keywords: nilpotent cone; Poisson; perverse sheaves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Culbertson, J. L. (2010). Perverse poisson sheaves on the nilpotent cone. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-04152010-174523 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3133

Chicago Manual of Style (16th Edition):

Culbertson, Jared Lee. “Perverse poisson sheaves on the nilpotent cone.” 2010. Doctoral Dissertation, Louisiana State University. Accessed April 13, 2021. etd-04152010-174523 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3133.

MLA Handbook (7th Edition):

Culbertson, Jared Lee. “Perverse poisson sheaves on the nilpotent cone.” 2010. Web. 13 Apr 2021.

Vancouver:

Culbertson JL. Perverse poisson sheaves on the nilpotent cone. [Internet] [Doctoral dissertation]. Louisiana State University; 2010. [cited 2021 Apr 13]. Available from: etd-04152010-174523 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3133.

Council of Science Editors:

Culbertson JL. Perverse poisson sheaves on the nilpotent cone. [Doctoral Dissertation]. Louisiana State University; 2010. Available from: etd-04152010-174523 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3133


University of California – Berkeley

7. Jin, Xin. Symplectic approaches in geometric representation theory.

Degree: Mathematics, 2015, University of California – Berkeley

 We study various topics lying in the crossroads of symplectic topology and geometric representation theory, with an emphasis on understanding central objects in geometric representation… (more)

Subjects/Keywords: Mathematics; Fukaya categories; geometric representation theory; Lagrangian branes; perverse sheaves; symplectic geometry; symplectomorphism groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jin, X. (2015). Symplectic approaches in geometric representation theory. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/07t5s31b

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jin, Xin. “Symplectic approaches in geometric representation theory.” 2015. Thesis, University of California – Berkeley. Accessed April 13, 2021. http://www.escholarship.org/uc/item/07t5s31b.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jin, Xin. “Symplectic approaches in geometric representation theory.” 2015. Web. 13 Apr 2021.

Vancouver:

Jin X. Symplectic approaches in geometric representation theory. [Internet] [Thesis]. University of California – Berkeley; 2015. [cited 2021 Apr 13]. Available from: http://www.escholarship.org/uc/item/07t5s31b.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jin X. Symplectic approaches in geometric representation theory. [Thesis]. University of California – Berkeley; 2015. Available from: http://www.escholarship.org/uc/item/07t5s31b

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Hepler, Brian. Hypersurface Normalizations And Numerical Invariants.

Degree: PhD, Department of Mathematics, 2019, Northeastern University

 We define a new perverse sheaf, the comparison complex, naturally associated to any locally reduced complex analytic space X on which the (shifted) constant sheaf… (more)

Subjects/Keywords: Algebraic Geometry; Hodge Theory; Perverse Sheaves; Singularities; Mathematics

…approach using perverse sheaves allows us to make some headway. Particularly, these spaces are… …short exact sequence of perverse sheaves on X, and Theorem 1.1.1.4, which is our main… …extension of semi-simple perverse sheaves?” This question was posed to us by a referee of [21… …surjection of perverse sheaves Z•X [n] → I•X → 0, where I•X is the intersection… …simple object in the category of perverse sheaves on X with no perverse sub or quotient objects… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hepler, B. (2019). Hypersurface Normalizations And Numerical Invariants. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20316378

Chicago Manual of Style (16th Edition):

Hepler, Brian. “Hypersurface Normalizations And Numerical Invariants.” 2019. Doctoral Dissertation, Northeastern University. Accessed April 13, 2021. http://hdl.handle.net/2047/D20316378.

MLA Handbook (7th Edition):

Hepler, Brian. “Hypersurface Normalizations And Numerical Invariants.” 2019. Web. 13 Apr 2021.

Vancouver:

Hepler B. Hypersurface Normalizations And Numerical Invariants. [Internet] [Doctoral dissertation]. Northeastern University; 2019. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2047/D20316378.

Council of Science Editors:

Hepler B. Hypersurface Normalizations And Numerical Invariants. [Doctoral Dissertation]. Northeastern University; 2019. Available from: http://hdl.handle.net/2047/D20316378


University of Texas – Austin

9. Mautner, Carl Irving. Sheaf theoretic methods in modular representation theory.

Degree: PhD, Mathematics, 2010, University of Texas – Austin

 This thesis concerns the use of perverse sheaves with coefficients in commutative rings and in particular, fields of positive characteristic, in the study of modular… (more)

Subjects/Keywords: Perverse sheaves; Modular representation theory; Schur-Weyl duality; Parity sheaves; Sheaf theoretic methods; Commutative rings; Decomposition theorem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mautner, C. I. (2010). Sheaf theoretic methods in modular representation theory. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-05-943

Chicago Manual of Style (16th Edition):

Mautner, Carl Irving. “Sheaf theoretic methods in modular representation theory.” 2010. Doctoral Dissertation, University of Texas – Austin. Accessed April 13, 2021. http://hdl.handle.net/2152/ETD-UT-2010-05-943.

MLA Handbook (7th Edition):

Mautner, Carl Irving. “Sheaf theoretic methods in modular representation theory.” 2010. Web. 13 Apr 2021.

Vancouver:

Mautner CI. Sheaf theoretic methods in modular representation theory. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2010. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-943.

Council of Science Editors:

Mautner CI. Sheaf theoretic methods in modular representation theory. [Doctoral Dissertation]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-943

10. Kochersperger, Matthieu. Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope.

Degree: Docteur es, Mathématiques fondamentales, 2018, Université Paris-Saclay (ComUE)

Dans cette thèse nous nous intéressons aux singularités d'espaces analytiques complexes définis comme le lieu des zéros d'un morphisme sans pente. Nous étudions dans un… (more)

Subjects/Keywords: Morphisme sans pente; Cycles évanescents; Multifiltration de Kashiwara-Malgrange; Modules de Hodge mixtes; D-Modules; Faisceaux pervers; Cycles proches; Morphisms without slope; Vanishing cycles; Kashiwara-Malgrange multifiltration; Mixed Hodge modules; D-Modules; Perverse sheaves; Nearby cycles; 514.74

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kochersperger, M. (2018). Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2018SACLX041

Chicago Manual of Style (16th Edition):

Kochersperger, Matthieu. “Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope.” 2018. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed April 13, 2021. http://www.theses.fr/2018SACLX041.

MLA Handbook (7th Edition):

Kochersperger, Matthieu. “Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope.” 2018. Web. 13 Apr 2021.

Vancouver:

Kochersperger M. Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2018. [cited 2021 Apr 13]. Available from: http://www.theses.fr/2018SACLX041.

Council of Science Editors:

Kochersperger M. Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2018. Available from: http://www.theses.fr/2018SACLX041

.