Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Parabolic equation). Showing records 1 – 30 of 91 total matches.

[1] [2] [3] [4]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Country

▼ Search Limiters


University of Wollongong

1. Mofarreh, Fatemah. Fully nonlinear curvature flow of axially symmetric hypersurfaces.

Degree: PhD, 2015, University of Wollongong

  In this thesis we consider axially symmetric evolving hypersurfaces mostly with boundary conditions between two parallel planes. The speed function is a fully nonlinear… (more)

Subjects/Keywords: hypersurface; curvature flow; parabolic partial differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mofarreh, F. (2015). Fully nonlinear curvature flow of axially symmetric hypersurfaces. (Doctoral Dissertation). University of Wollongong. Retrieved from 010102 Algebraic and Differential Geometry, 010110 Partial Differential Equations ; https://ro.uow.edu.au/theses/4699

Chicago Manual of Style (16th Edition):

Mofarreh, Fatemah. “Fully nonlinear curvature flow of axially symmetric hypersurfaces.” 2015. Doctoral Dissertation, University of Wollongong. Accessed January 27, 2021. 010102 Algebraic and Differential Geometry, 010110 Partial Differential Equations ; https://ro.uow.edu.au/theses/4699.

MLA Handbook (7th Edition):

Mofarreh, Fatemah. “Fully nonlinear curvature flow of axially symmetric hypersurfaces.” 2015. Web. 27 Jan 2021.

Vancouver:

Mofarreh F. Fully nonlinear curvature flow of axially symmetric hypersurfaces. [Internet] [Doctoral dissertation]. University of Wollongong; 2015. [cited 2021 Jan 27]. Available from: 010102 Algebraic and Differential Geometry, 010110 Partial Differential Equations ; https://ro.uow.edu.au/theses/4699.

Council of Science Editors:

Mofarreh F. Fully nonlinear curvature flow of axially symmetric hypersurfaces. [Doctoral Dissertation]. University of Wollongong; 2015. Available from: 010102 Algebraic and Differential Geometry, 010110 Partial Differential Equations ; https://ro.uow.edu.au/theses/4699


Bowling Green State University

2. Romutis, Todd. Numerical Smoothness and Error Analysis for Parabolic Equations.

Degree: PhD, Mathematics, 2018, Bowling Green State University

 In an effort to improve the error analysis of numerical methods for time-dependent PDEs andobtain reasonable error estimates, Sun developed the concept of numerical smoothness… (more)

Subjects/Keywords: Mathematics; Numerical smoothness; Error analysis; Parabolic equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Romutis, T. (2018). Numerical Smoothness and Error Analysis for Parabolic Equations. (Doctoral Dissertation). Bowling Green State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1522150799203255

Chicago Manual of Style (16th Edition):

Romutis, Todd. “Numerical Smoothness and Error Analysis for Parabolic Equations.” 2018. Doctoral Dissertation, Bowling Green State University. Accessed January 27, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1522150799203255.

MLA Handbook (7th Edition):

Romutis, Todd. “Numerical Smoothness and Error Analysis for Parabolic Equations.” 2018. Web. 27 Jan 2021.

Vancouver:

Romutis T. Numerical Smoothness and Error Analysis for Parabolic Equations. [Internet] [Doctoral dissertation]. Bowling Green State University; 2018. [cited 2021 Jan 27]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1522150799203255.

Council of Science Editors:

Romutis T. Numerical Smoothness and Error Analysis for Parabolic Equations. [Doctoral Dissertation]. Bowling Green State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1522150799203255


Penn State University

3. Cheng, Wen. Approximate Solutions to Second Order Parabolic Equations with Applications to Option Pricing.

Degree: 2011, Penn State University

 In this thesis, we consider second order parabolic equations with coefficients that vary both in space and in time (non-autonomous). We derive closed-form approx- imations… (more)

Subjects/Keywords: Green function; Fokker Planck equation; parabolic equation; Option Pricing

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cheng, W. (2011). Approximate Solutions to Second Order Parabolic Equations with Applications to Option Pricing. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/12454

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cheng, Wen. “Approximate Solutions to Second Order Parabolic Equations with Applications to Option Pricing.” 2011. Thesis, Penn State University. Accessed January 27, 2021. https://submit-etda.libraries.psu.edu/catalog/12454.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cheng, Wen. “Approximate Solutions to Second Order Parabolic Equations with Applications to Option Pricing.” 2011. Web. 27 Jan 2021.

Vancouver:

Cheng W. Approximate Solutions to Second Order Parabolic Equations with Applications to Option Pricing. [Internet] [Thesis]. Penn State University; 2011. [cited 2021 Jan 27]. Available from: https://submit-etda.libraries.psu.edu/catalog/12454.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cheng W. Approximate Solutions to Second Order Parabolic Equations with Applications to Option Pricing. [Thesis]. Penn State University; 2011. Available from: https://submit-etda.libraries.psu.edu/catalog/12454

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Colorado School of Mines

4. Threet, Eric James. Parabolic equation solution for a transitional solid seafloor.

Degree: MS(M.S.), Applied Mathematics and Statistics, 2013, Colorado School of Mines

 The study of sound propagation in the ocean has a wide range of applications and is interesting from a mathematical perspective. Parabolic equation solutions, resulting… (more)

Subjects/Keywords: sediment; RAM; parabolic equation method; Underwater acoustics; Sound  – Transmission  – Mathematical models; Differential equations, Parabolic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Threet, E. J. (2013). Parabolic equation solution for a transitional solid seafloor. (Masters Thesis). Colorado School of Mines. Retrieved from http://hdl.handle.net/11124/78961

Chicago Manual of Style (16th Edition):

Threet, Eric James. “Parabolic equation solution for a transitional solid seafloor.” 2013. Masters Thesis, Colorado School of Mines. Accessed January 27, 2021. http://hdl.handle.net/11124/78961.

MLA Handbook (7th Edition):

Threet, Eric James. “Parabolic equation solution for a transitional solid seafloor.” 2013. Web. 27 Jan 2021.

Vancouver:

Threet EJ. Parabolic equation solution for a transitional solid seafloor. [Internet] [Masters thesis]. Colorado School of Mines; 2013. [cited 2021 Jan 27]. Available from: http://hdl.handle.net/11124/78961.

Council of Science Editors:

Threet EJ. Parabolic equation solution for a transitional solid seafloor. [Masters Thesis]. Colorado School of Mines; 2013. Available from: http://hdl.handle.net/11124/78961


Iowa State University

5. Hwang, Sukjung. Holder regularity of solutions of generalized p-Laplacian type parabolic equations.

Degree: 2012, Iowa State University

 Using ideas from the theory of Orlicz spaces, we discuss the Holder regularity of a bounded weak solution of a p-Laplacian type parabolic partial differential… (more)

Subjects/Keywords: generalized Laplacian equation; Holder regularity; Laplacian equation; Orlicz space; Parabolic equation; Partial differential equation; Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hwang, S. (2012). Holder regularity of solutions of generalized p-Laplacian type parabolic equations. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/etd/12667

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hwang, Sukjung. “Holder regularity of solutions of generalized p-Laplacian type parabolic equations.” 2012. Thesis, Iowa State University. Accessed January 27, 2021. https://lib.dr.iastate.edu/etd/12667.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hwang, Sukjung. “Holder regularity of solutions of generalized p-Laplacian type parabolic equations.” 2012. Web. 27 Jan 2021.

Vancouver:

Hwang S. Holder regularity of solutions of generalized p-Laplacian type parabolic equations. [Internet] [Thesis]. Iowa State University; 2012. [cited 2021 Jan 27]. Available from: https://lib.dr.iastate.edu/etd/12667.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hwang S. Holder regularity of solutions of generalized p-Laplacian type parabolic equations. [Thesis]. Iowa State University; 2012. Available from: https://lib.dr.iastate.edu/etd/12667

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Tarhini, Rana. Équation de films minces fractionnaire pour les fractures hydrauliques : Fractional equation of thin films for hydraulic fractures.

Degree: Docteur es, Mathématiques, 2018, Université Paris-Est

Ces travaux concernent deux équations paraboliques, dégénérées et non-locales. La première équation est une équation de films minces fractionnaire et la deuxième est une équation… (more)

Subjects/Keywords: Equation parabolique dégénérée; Laplacien fractionnaire; Equation non locale; Degenereted parabolic equation; Fractional Laplacian; Non local equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tarhini, R. (2018). Équation de films minces fractionnaire pour les fractures hydrauliques : Fractional equation of thin films for hydraulic fractures. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2018PESC1061

Chicago Manual of Style (16th Edition):

Tarhini, Rana. “Équation de films minces fractionnaire pour les fractures hydrauliques : Fractional equation of thin films for hydraulic fractures.” 2018. Doctoral Dissertation, Université Paris-Est. Accessed January 27, 2021. http://www.theses.fr/2018PESC1061.

MLA Handbook (7th Edition):

Tarhini, Rana. “Équation de films minces fractionnaire pour les fractures hydrauliques : Fractional equation of thin films for hydraulic fractures.” 2018. Web. 27 Jan 2021.

Vancouver:

Tarhini R. Équation de films minces fractionnaire pour les fractures hydrauliques : Fractional equation of thin films for hydraulic fractures. [Internet] [Doctoral dissertation]. Université Paris-Est; 2018. [cited 2021 Jan 27]. Available from: http://www.theses.fr/2018PESC1061.

Council of Science Editors:

Tarhini R. Équation de films minces fractionnaire pour les fractures hydrauliques : Fractional equation of thin films for hydraulic fractures. [Doctoral Dissertation]. Université Paris-Est; 2018. Available from: http://www.theses.fr/2018PESC1061


NSYSU

7. Lin, Hsiu-pin. The study of Acoustic Propagation in Dongsha Atoll.

Degree: Master, Institute of Undersea Technology, 2017, NSYSU

 Huge internal solitary waves (ISW) and steep bathymetry around DongSha Atoll in the South China Sea was expected to affect sound propagation. Internal waves, generated… (more)

Subjects/Keywords: multipath effect; Doppler effect; Parabolic equation; DongSha Atoll; internal wave

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lin, H. (2017). The study of Acoustic Propagation in Dongsha Atoll. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0703117-123044

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lin, Hsiu-pin. “The study of Acoustic Propagation in Dongsha Atoll.” 2017. Thesis, NSYSU. Accessed January 27, 2021. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0703117-123044.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lin, Hsiu-pin. “The study of Acoustic Propagation in Dongsha Atoll.” 2017. Web. 27 Jan 2021.

Vancouver:

Lin H. The study of Acoustic Propagation in Dongsha Atoll. [Internet] [Thesis]. NSYSU; 2017. [cited 2021 Jan 27]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0703117-123044.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lin H. The study of Acoustic Propagation in Dongsha Atoll. [Thesis]. NSYSU; 2017. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0703117-123044

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Bristol

8. Khodr, Codor. Three-dimensional infrasonic wave propagation above irregular boundaries.

Degree: PhD, 2020, University of Bristol

 This thesis deals with the propagation of infrasonic waves above irregular boundaries using a numerical approach based on the parabolic equation (PE) method. The first… (more)

Subjects/Keywords: Infrasound; Physical Acoustics; Wave Scattering; Parabolic Equation; Outdoor Sound Propagation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khodr, C. (2020). Three-dimensional infrasonic wave propagation above irregular boundaries. (Doctoral Dissertation). University of Bristol. Retrieved from http://hdl.handle.net/1983/efcad722-767e-4e3c-8d74-fe3bc6d21a4d

Chicago Manual of Style (16th Edition):

Khodr, Codor. “Three-dimensional infrasonic wave propagation above irregular boundaries.” 2020. Doctoral Dissertation, University of Bristol. Accessed January 27, 2021. http://hdl.handle.net/1983/efcad722-767e-4e3c-8d74-fe3bc6d21a4d.

MLA Handbook (7th Edition):

Khodr, Codor. “Three-dimensional infrasonic wave propagation above irregular boundaries.” 2020. Web. 27 Jan 2021.

Vancouver:

Khodr C. Three-dimensional infrasonic wave propagation above irregular boundaries. [Internet] [Doctoral dissertation]. University of Bristol; 2020. [cited 2021 Jan 27]. Available from: http://hdl.handle.net/1983/efcad722-767e-4e3c-8d74-fe3bc6d21a4d.

Council of Science Editors:

Khodr C. Three-dimensional infrasonic wave propagation above irregular boundaries. [Doctoral Dissertation]. University of Bristol; 2020. Available from: http://hdl.handle.net/1983/efcad722-767e-4e3c-8d74-fe3bc6d21a4d


Penn State University

9. Coyle, Whitney Leigh. Using the Green's Function Parabolic Equation Method to Predict Sound Propagation Outdoors in the Presence of Weather and Complex Terrain.

Degree: 2012, Penn State University

 This thesis, through collaboration between researchers at The Pennsylvania State University and Blue Ridge Research and Consulting, LLC developed a complementary experimental and compu- tational… (more)

Subjects/Keywords: Outdoor Sound Propagation Prediction; Green's Function Parabolic Equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Coyle, W. L. (2012). Using the Green's Function Parabolic Equation Method to Predict Sound Propagation Outdoors in the Presence of Weather and Complex Terrain. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/16169

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Coyle, Whitney Leigh. “Using the Green's Function Parabolic Equation Method to Predict Sound Propagation Outdoors in the Presence of Weather and Complex Terrain.” 2012. Thesis, Penn State University. Accessed January 27, 2021. https://submit-etda.libraries.psu.edu/catalog/16169.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Coyle, Whitney Leigh. “Using the Green's Function Parabolic Equation Method to Predict Sound Propagation Outdoors in the Presence of Weather and Complex Terrain.” 2012. Web. 27 Jan 2021.

Vancouver:

Coyle WL. Using the Green's Function Parabolic Equation Method to Predict Sound Propagation Outdoors in the Presence of Weather and Complex Terrain. [Internet] [Thesis]. Penn State University; 2012. [cited 2021 Jan 27]. Available from: https://submit-etda.libraries.psu.edu/catalog/16169.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Coyle WL. Using the Green's Function Parabolic Equation Method to Predict Sound Propagation Outdoors in the Presence of Weather and Complex Terrain. [Thesis]. Penn State University; 2012. Available from: https://submit-etda.libraries.psu.edu/catalog/16169

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

10. Rosenbaum, Joyce E. Enhanced propagation modeling of directional aviation noise: A hybrid parabolic equation-fast field program method.

Degree: 2011, Penn State University

 Commercial air traffic is anticipated to increase rapidly in the coming years. The impact of aviation noise on communities surrounding airports is, therefore, a growing… (more)

Subjects/Keywords: acoustic propagation; aviation noise; parabolic equation method; fast field program

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rosenbaum, J. E. (2011). Enhanced propagation modeling of directional aviation noise: A hybrid parabolic equation-fast field program method. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/11494

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rosenbaum, Joyce E. “Enhanced propagation modeling of directional aviation noise: A hybrid parabolic equation-fast field program method.” 2011. Thesis, Penn State University. Accessed January 27, 2021. https://submit-etda.libraries.psu.edu/catalog/11494.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rosenbaum, Joyce E. “Enhanced propagation modeling of directional aviation noise: A hybrid parabolic equation-fast field program method.” 2011. Web. 27 Jan 2021.

Vancouver:

Rosenbaum JE. Enhanced propagation modeling of directional aviation noise: A hybrid parabolic equation-fast field program method. [Internet] [Thesis]. Penn State University; 2011. [cited 2021 Jan 27]. Available from: https://submit-etda.libraries.psu.edu/catalog/11494.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rosenbaum JE. Enhanced propagation modeling of directional aviation noise: A hybrid parabolic equation-fast field program method. [Thesis]. Penn State University; 2011. Available from: https://submit-etda.libraries.psu.edu/catalog/11494

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

11. Cheng, Rui. LONG-RANGE WIND TURBINE NOISE ROPAGATION BY THE PARABOLIC EQUATION METHOD .

Degree: 2008, Penn State University

 A project has been undertaken to develop a numerical toolkit to simulate long-range propagation of wind turbine noise problems with the CFD (Computational Fluid Dynamics)… (more)

Subjects/Keywords: Sound Propagation; Parabolic Equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cheng, R. (2008). LONG-RANGE WIND TURBINE NOISE ROPAGATION BY THE PARABOLIC EQUATION METHOD . (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/7456

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cheng, Rui. “LONG-RANGE WIND TURBINE NOISE ROPAGATION BY THE PARABOLIC EQUATION METHOD .” 2008. Thesis, Penn State University. Accessed January 27, 2021. https://submit-etda.libraries.psu.edu/catalog/7456.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cheng, Rui. “LONG-RANGE WIND TURBINE NOISE ROPAGATION BY THE PARABOLIC EQUATION METHOD .” 2008. Web. 27 Jan 2021.

Vancouver:

Cheng R. LONG-RANGE WIND TURBINE NOISE ROPAGATION BY THE PARABOLIC EQUATION METHOD . [Internet] [Thesis]. Penn State University; 2008. [cited 2021 Jan 27]. Available from: https://submit-etda.libraries.psu.edu/catalog/7456.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cheng R. LONG-RANGE WIND TURBINE NOISE ROPAGATION BY THE PARABOLIC EQUATION METHOD . [Thesis]. Penn State University; 2008. Available from: https://submit-etda.libraries.psu.edu/catalog/7456

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Vytautas Magnus University

12. Šimkevičiūtė, Jolanta. Parabolinės lygties su nelokaliąja daugiataške sąlyga sprendimas baigtinių skirtumų metodu.

Degree: Master, Mathematics, 2011, Vytautas Magnus University

Darbe nagrinėjamas parabolinių lygčių su nelokaliąja daugiataške sąlyga ir tikrinių reikšmių uždaviniai antrosios eilės paprastajam diferencialiniam operatoriui. Uždavinio specifika yra ta, kad vietoje vienos arba… (more)

Subjects/Keywords: Parabolinė lygtis; Nelokaliosios sąlygos; Tikrinės reikšmės; Parabolic equation; Nonlocal conditions; Eigenvalues

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Šimkevičiūtė, Jolanta. (2011). Parabolinės lygties su nelokaliąja daugiataške sąlyga sprendimas baigtinių skirtumų metodu. (Masters Thesis). Vytautas Magnus University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110615_110310-18441 ;

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

Šimkevičiūtė, Jolanta. “Parabolinės lygties su nelokaliąja daugiataške sąlyga sprendimas baigtinių skirtumų metodu.” 2011. Masters Thesis, Vytautas Magnus University. Accessed January 27, 2021. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110615_110310-18441 ;.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

Šimkevičiūtė, Jolanta. “Parabolinės lygties su nelokaliąja daugiataške sąlyga sprendimas baigtinių skirtumų metodu.” 2011. Web. 27 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

Šimkevičiūtė, Jolanta. Parabolinės lygties su nelokaliąja daugiataške sąlyga sprendimas baigtinių skirtumų metodu. [Internet] [Masters thesis]. Vytautas Magnus University; 2011. [cited 2021 Jan 27]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110615_110310-18441 ;.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

Šimkevičiūtė, Jolanta. Parabolinės lygties su nelokaliąja daugiataške sąlyga sprendimas baigtinių skirtumų metodu. [Masters Thesis]. Vytautas Magnus University; 2011. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110615_110310-18441 ;

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

13. Zavareh, Alireza. Analytical and Numerical methods for a Mean curvature flow equation with applications to financial Mathematics and image processing.

Degree: 2012, , School of Engineering

This thesis provides an analytical and two numerical methods for solving a parabolic equation of two-dimensional mean curvature flow with some applications. In analytical… (more)

Subjects/Keywords: Mean curvature flow; Lie group analysis; Parabolic equation; Deterministic game theoretic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zavareh, A. (2012). Analytical and Numerical methods for a Mean curvature flow equation with applications to financial Mathematics and image processing. (Thesis). , School of Engineering. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2132

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zavareh, Alireza. “Analytical and Numerical methods for a Mean curvature flow equation with applications to financial Mathematics and image processing.” 2012. Thesis, , School of Engineering. Accessed January 27, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2132.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zavareh, Alireza. “Analytical and Numerical methods for a Mean curvature flow equation with applications to financial Mathematics and image processing.” 2012. Web. 27 Jan 2021.

Vancouver:

Zavareh A. Analytical and Numerical methods for a Mean curvature flow equation with applications to financial Mathematics and image processing. [Internet] [Thesis]. , School of Engineering; 2012. [cited 2021 Jan 27]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2132.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zavareh A. Analytical and Numerical methods for a Mean curvature flow equation with applications to financial Mathematics and image processing. [Thesis]. , School of Engineering; 2012. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2132

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Bath

14. Dumont, Nathan. Software defined radio for cognitive networks.

Degree: PhD, 2014, University of Bath

 The introduction of software radio has meant that standards for radio communication can evolve in a much more natural way, changing only a little at… (more)

Subjects/Keywords: 621.3845; software defined radio; propagation modelling; parabolic equation model

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dumont, N. (2014). Software defined radio for cognitive networks. (Doctoral Dissertation). University of Bath. Retrieved from https://researchportal.bath.ac.uk/en/studentthesis/software-defined-radio-for-cognitive-networks(0bd30103-708b-44ea-a584-bb2f73fc3704).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619232

Chicago Manual of Style (16th Edition):

Dumont, Nathan. “Software defined radio for cognitive networks.” 2014. Doctoral Dissertation, University of Bath. Accessed January 27, 2021. https://researchportal.bath.ac.uk/en/studentthesis/software-defined-radio-for-cognitive-networks(0bd30103-708b-44ea-a584-bb2f73fc3704).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619232.

MLA Handbook (7th Edition):

Dumont, Nathan. “Software defined radio for cognitive networks.” 2014. Web. 27 Jan 2021.

Vancouver:

Dumont N. Software defined radio for cognitive networks. [Internet] [Doctoral dissertation]. University of Bath; 2014. [cited 2021 Jan 27]. Available from: https://researchportal.bath.ac.uk/en/studentthesis/software-defined-radio-for-cognitive-networks(0bd30103-708b-44ea-a584-bb2f73fc3704).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619232.

Council of Science Editors:

Dumont N. Software defined radio for cognitive networks. [Doctoral Dissertation]. University of Bath; 2014. Available from: https://researchportal.bath.ac.uk/en/studentthesis/software-defined-radio-for-cognitive-networks(0bd30103-708b-44ea-a584-bb2f73fc3704).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619232


University of Bristol

15. Khodr, Codor. Three-dimensional infrasonic wave propagation above irregular boundaries.

Degree: PhD, 2020, University of Bristol

 This thesis deals with the propagation of infrasonic waves above irregular boundaries using a numerical approach based on the parabolic equation (PE) method. The first… (more)

Subjects/Keywords: Infrasound; Physical Acoustics; Wave Scattering; Parabolic Equation; Outdoor Sound Propagation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khodr, C. (2020). Three-dimensional infrasonic wave propagation above irregular boundaries. (Doctoral Dissertation). University of Bristol. Retrieved from https://research-information.bris.ac.uk/en/studentTheses/efcad722-767e-4e3c-8d74-fe3bc6d21a4d ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809873

Chicago Manual of Style (16th Edition):

Khodr, Codor. “Three-dimensional infrasonic wave propagation above irregular boundaries.” 2020. Doctoral Dissertation, University of Bristol. Accessed January 27, 2021. https://research-information.bris.ac.uk/en/studentTheses/efcad722-767e-4e3c-8d74-fe3bc6d21a4d ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809873.

MLA Handbook (7th Edition):

Khodr, Codor. “Three-dimensional infrasonic wave propagation above irregular boundaries.” 2020. Web. 27 Jan 2021.

Vancouver:

Khodr C. Three-dimensional infrasonic wave propagation above irregular boundaries. [Internet] [Doctoral dissertation]. University of Bristol; 2020. [cited 2021 Jan 27]. Available from: https://research-information.bris.ac.uk/en/studentTheses/efcad722-767e-4e3c-8d74-fe3bc6d21a4d ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809873.

Council of Science Editors:

Khodr C. Three-dimensional infrasonic wave propagation above irregular boundaries. [Doctoral Dissertation]. University of Bristol; 2020. Available from: https://research-information.bris.ac.uk/en/studentTheses/efcad722-767e-4e3c-8d74-fe3bc6d21a4d ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.809873


University of Texas – Austin

16. Liu, Xiao, active 21st century. Computation of near-field distribution around wind turbines.

Degree: MSin Engineering, Electrical and Computer Engineering, 2014, University of Texas – Austin

 In this work, two approaches for computing the near-field distribution around wind turbines are proposed, including: (1) Huygens Principle and (2) the parabolic equation technique.… (more)

Subjects/Keywords: Wind turbines; Shadow region; Huygens principle; Parabolic equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, Xiao, a. 2. c. (2014). Computation of near-field distribution around wind turbines. (Masters Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/26004

Chicago Manual of Style (16th Edition):

Liu, Xiao, active 21st century. “Computation of near-field distribution around wind turbines.” 2014. Masters Thesis, University of Texas – Austin. Accessed January 27, 2021. http://hdl.handle.net/2152/26004.

MLA Handbook (7th Edition):

Liu, Xiao, active 21st century. “Computation of near-field distribution around wind turbines.” 2014. Web. 27 Jan 2021.

Vancouver:

Liu, Xiao a2c. Computation of near-field distribution around wind turbines. [Internet] [Masters thesis]. University of Texas – Austin; 2014. [cited 2021 Jan 27]. Available from: http://hdl.handle.net/2152/26004.

Council of Science Editors:

Liu, Xiao a2c. Computation of near-field distribution around wind turbines. [Masters Thesis]. University of Texas – Austin; 2014. Available from: http://hdl.handle.net/2152/26004


University of Alberta

17. Tajik, Peyman. Optimal Control of a Tubular Reactor via Cayley-Tustin Time Discretization.

Degree: MS, Department of Chemical and Materials Engineering, 2016, University of Alberta

 Boundary value problems involving continuous flow reactors have been considered in which tubular reactors have been modeled with an axial dispersion model. Concentration distribution in… (more)

Subjects/Keywords: Optimal Control; Parabolic PDEs; Cayley-Tustin Time Discretization; Algebraic Riccati Equation; Self-Adjoint Operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tajik, P. (2016). Optimal Control of a Tubular Reactor via Cayley-Tustin Time Discretization. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/cg158bh54t

Chicago Manual of Style (16th Edition):

Tajik, Peyman. “Optimal Control of a Tubular Reactor via Cayley-Tustin Time Discretization.” 2016. Masters Thesis, University of Alberta. Accessed January 27, 2021. https://era.library.ualberta.ca/files/cg158bh54t.

MLA Handbook (7th Edition):

Tajik, Peyman. “Optimal Control of a Tubular Reactor via Cayley-Tustin Time Discretization.” 2016. Web. 27 Jan 2021.

Vancouver:

Tajik P. Optimal Control of a Tubular Reactor via Cayley-Tustin Time Discretization. [Internet] [Masters thesis]. University of Alberta; 2016. [cited 2021 Jan 27]. Available from: https://era.library.ualberta.ca/files/cg158bh54t.

Council of Science Editors:

Tajik P. Optimal Control of a Tubular Reactor via Cayley-Tustin Time Discretization. [Masters Thesis]. University of Alberta; 2016. Available from: https://era.library.ualberta.ca/files/cg158bh54t


Vytautas Magnus University

18. Zdanytė, Vaida. Trisluoksnės skirtuminės schemos parabolinei lygčiai su integraline sąlyga spręsti.

Degree: Master, Mathematics, 2014, Vytautas Magnus University

Magistriniame darbe tiriama trisluoksnė skirtuminė schema parabolinei lygčiai su integraline sąlyga. Aprašomi metodai skaitiniai diferencialinių kraštinių uţdavinių su nelokaliosiomis sąlygomis. Atlikto magistrinio darbo rezultatas papildo… (more)

Subjects/Keywords: Parabolinė lygtis; Nelokalioji sąlyga; Trisluoksnė diferencialinė schema; Parabolic equation; Nonlocal condition; Three-layer difference scheme

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zdanytė, Vaida. (2014). Trisluoksnės skirtuminės schemos parabolinei lygčiai su integraline sąlyga spręsti. (Masters Thesis). Vytautas Magnus University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20140611_153535-55131 ;

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

Zdanytė, Vaida. “Trisluoksnės skirtuminės schemos parabolinei lygčiai su integraline sąlyga spręsti.” 2014. Masters Thesis, Vytautas Magnus University. Accessed January 27, 2021. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20140611_153535-55131 ;.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

Zdanytė, Vaida. “Trisluoksnės skirtuminės schemos parabolinei lygčiai su integraline sąlyga spręsti.” 2014. Web. 27 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

Zdanytė, Vaida. Trisluoksnės skirtuminės schemos parabolinei lygčiai su integraline sąlyga spręsti. [Internet] [Masters thesis]. Vytautas Magnus University; 2014. [cited 2021 Jan 27]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20140611_153535-55131 ;.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

Zdanytė, Vaida. Trisluoksnės skirtuminės schemos parabolinei lygčiai su integraline sąlyga spręsti. [Masters Thesis]. Vytautas Magnus University; 2014. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20140611_153535-55131 ;

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Toronto

19. Zhang, Xingqi. Development, Analysis, and Validation of Parabolic Equation/Ray-Tracing Techniques in Railway Environments.

Degree: 2014, University of Toronto

The deployment of modern communication-based train control (CBTC) systems in railway networks requires a thorough understanding of the radio-wave propagation characteristics. Parabolic equation (PE) and… (more)

Subjects/Keywords: Applied Electromagnetics; Channel Modeling; Hybrid Model; Parabolic Equation; Ray Tracing; Wave Propagation; 0607

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, X. (2014). Development, Analysis, and Validation of Parabolic Equation/Ray-Tracing Techniques in Railway Environments. (Masters Thesis). University of Toronto. Retrieved from http://hdl.handle.net/1807/68522

Chicago Manual of Style (16th Edition):

Zhang, Xingqi. “Development, Analysis, and Validation of Parabolic Equation/Ray-Tracing Techniques in Railway Environments.” 2014. Masters Thesis, University of Toronto. Accessed January 27, 2021. http://hdl.handle.net/1807/68522.

MLA Handbook (7th Edition):

Zhang, Xingqi. “Development, Analysis, and Validation of Parabolic Equation/Ray-Tracing Techniques in Railway Environments.” 2014. Web. 27 Jan 2021.

Vancouver:

Zhang X. Development, Analysis, and Validation of Parabolic Equation/Ray-Tracing Techniques in Railway Environments. [Internet] [Masters thesis]. University of Toronto; 2014. [cited 2021 Jan 27]. Available from: http://hdl.handle.net/1807/68522.

Council of Science Editors:

Zhang X. Development, Analysis, and Validation of Parabolic Equation/Ray-Tracing Techniques in Railway Environments. [Masters Thesis]. University of Toronto; 2014. Available from: http://hdl.handle.net/1807/68522


Vytautas Magnus University

20. Gabulas, Aurimas. Parabolinės lygties su nelokaliosiomis sąlygomis sprendimas skirtuminiu metodu.

Degree: Master, Mathematics, 2010, Vytautas Magnus University

Šiame magistriniame darbe yra nagrinėjamos parabolinio tipo diferencialinių lygčių su nelokaliosiomis kraštinėmis sąlygomis sprendimas baigtinių skirtumų metodu. Darbe aprašyta, kaip tirti skirtuminių lygčių sistemos su… (more)

Subjects/Keywords: Parabolinė lygtis; Skirtuminė schema; Stabilumas; Tikrinė reikšmė; Parabolic equation; Difference scheme; Stability; Eigenvalue

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gabulas, Aurimas. (2010). Parabolinės lygties su nelokaliosiomis sąlygomis sprendimas skirtuminiu metodu. (Masters Thesis). Vytautas Magnus University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20100614_131701-38365 ;

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

Gabulas, Aurimas. “Parabolinės lygties su nelokaliosiomis sąlygomis sprendimas skirtuminiu metodu.” 2010. Masters Thesis, Vytautas Magnus University. Accessed January 27, 2021. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20100614_131701-38365 ;.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

Gabulas, Aurimas. “Parabolinės lygties su nelokaliosiomis sąlygomis sprendimas skirtuminiu metodu.” 2010. Web. 27 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

Gabulas, Aurimas. Parabolinės lygties su nelokaliosiomis sąlygomis sprendimas skirtuminiu metodu. [Internet] [Masters thesis]. Vytautas Magnus University; 2010. [cited 2021 Jan 27]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20100614_131701-38365 ;.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

Gabulas, Aurimas. Parabolinės lygties su nelokaliosiomis sąlygomis sprendimas skirtuminiu metodu. [Masters Thesis]. Vytautas Magnus University; 2010. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20100614_131701-38365 ;

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

21. Moyano Garcia, Iván. Controllability of of some kinetic equations, of parabolic degenerated equations and of the Schrödinger equation via domain transformation. : Contrôlabilité de quelques équations cinétiques, paraboliques dégénérées et Schrödinger.

Degree: Docteur es, Mathématiques fondamentales, 2016, Université Paris-Saclay (ComUE)

Ce mémoire présente les travaux réalisés au cours de ma thèse dans le but d'étudier la contrôlabilité de quelques équations aux dérivées partielles. La première… (more)

Subjects/Keywords: Controlabilité; Équations cinétiques; Équations paraboliques dégénérées; Schrödinger; Controllability; Kinetic equations; Parabolic degenerated equations; Schrödinger equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moyano Garcia, I. (2016). Controllability of of some kinetic equations, of parabolic degenerated equations and of the Schrödinger equation via domain transformation. : Contrôlabilité de quelques équations cinétiques, paraboliques dégénérées et Schrödinger. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2016SACLX062

Chicago Manual of Style (16th Edition):

Moyano Garcia, Iván. “Controllability of of some kinetic equations, of parabolic degenerated equations and of the Schrödinger equation via domain transformation. : Contrôlabilité de quelques équations cinétiques, paraboliques dégénérées et Schrödinger.” 2016. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed January 27, 2021. http://www.theses.fr/2016SACLX062.

MLA Handbook (7th Edition):

Moyano Garcia, Iván. “Controllability of of some kinetic equations, of parabolic degenerated equations and of the Schrödinger equation via domain transformation. : Contrôlabilité de quelques équations cinétiques, paraboliques dégénérées et Schrödinger.” 2016. Web. 27 Jan 2021.

Vancouver:

Moyano Garcia I. Controllability of of some kinetic equations, of parabolic degenerated equations and of the Schrödinger equation via domain transformation. : Contrôlabilité de quelques équations cinétiques, paraboliques dégénérées et Schrödinger. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2016. [cited 2021 Jan 27]. Available from: http://www.theses.fr/2016SACLX062.

Council of Science Editors:

Moyano Garcia I. Controllability of of some kinetic equations, of parabolic degenerated equations and of the Schrödinger equation via domain transformation. : Contrôlabilité de quelques équations cinétiques, paraboliques dégénérées et Schrödinger. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2016. Available from: http://www.theses.fr/2016SACLX062


The Ohio State University

22. Wang, Qi. Estimation of Refractivity Conditions in the Marine Atmospheric Boundary Layer from Range and Height Measurement of X-band EM Propagation and Inverse Solutions.

Degree: PhD, Electrical and Computer Engineering, 2019, The Ohio State University

 An important application of air-sea interaction research is in characterizing marine atmospheric boundary layer (MABL) properties, electromagnetic ducting in particular, in order to predict radar… (more)

Subjects/Keywords: Electrical Engineering; Environmental factors, parabolic wave equation, propagation measurements, refractivity, weather forecasting

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, Q. (2019). Estimation of Refractivity Conditions in the Marine Atmospheric Boundary Layer from Range and Height Measurement of X-band EM Propagation and Inverse Solutions. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1565885420888906

Chicago Manual of Style (16th Edition):

Wang, Qi. “Estimation of Refractivity Conditions in the Marine Atmospheric Boundary Layer from Range and Height Measurement of X-band EM Propagation and Inverse Solutions.” 2019. Doctoral Dissertation, The Ohio State University. Accessed January 27, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1565885420888906.

MLA Handbook (7th Edition):

Wang, Qi. “Estimation of Refractivity Conditions in the Marine Atmospheric Boundary Layer from Range and Height Measurement of X-band EM Propagation and Inverse Solutions.” 2019. Web. 27 Jan 2021.

Vancouver:

Wang Q. Estimation of Refractivity Conditions in the Marine Atmospheric Boundary Layer from Range and Height Measurement of X-band EM Propagation and Inverse Solutions. [Internet] [Doctoral dissertation]. The Ohio State University; 2019. [cited 2021 Jan 27]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1565885420888906.

Council of Science Editors:

Wang Q. Estimation of Refractivity Conditions in the Marine Atmospheric Boundary Layer from Range and Height Measurement of X-band EM Propagation and Inverse Solutions. [Doctoral Dissertation]. The Ohio State University; 2019. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1565885420888906


Colorado School of Mines

23. Moore, Courtney Herrero. Existence of shear wave resonances in parabolic wave equation solutions.

Degree: MS(M.S.), Applied Mathematics and Statistics, 2014, Colorado School of Mines

 The ocean acoustic waveguide is often bounded below by a thin transitional solid layer of partially unconsolidated sediments, typically on the order of ten meters… (more)

Subjects/Keywords: Shear waves; Resonance; Wave equation; Differential equations, Parabolic; Wave guides; Underwater acoustics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moore, C. H. (2014). Existence of shear wave resonances in parabolic wave equation solutions. (Masters Thesis). Colorado School of Mines. Retrieved from http://hdl.handle.net/11124/288

Chicago Manual of Style (16th Edition):

Moore, Courtney Herrero. “Existence of shear wave resonances in parabolic wave equation solutions.” 2014. Masters Thesis, Colorado School of Mines. Accessed January 27, 2021. http://hdl.handle.net/11124/288.

MLA Handbook (7th Edition):

Moore, Courtney Herrero. “Existence of shear wave resonances in parabolic wave equation solutions.” 2014. Web. 27 Jan 2021.

Vancouver:

Moore CH. Existence of shear wave resonances in parabolic wave equation solutions. [Internet] [Masters thesis]. Colorado School of Mines; 2014. [cited 2021 Jan 27]. Available from: http://hdl.handle.net/11124/288.

Council of Science Editors:

Moore CH. Existence of shear wave resonances in parabolic wave equation solutions. [Masters Thesis]. Colorado School of Mines; 2014. Available from: http://hdl.handle.net/11124/288

24. Rizik, Vivian. Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations.

Degree: Docteur es, Mathématiques Appliquées : Laboratoire de Mathématiques Appliquées de Compiègne (Unité de recherche EA-2222), 2019, Compiègne; Université libanaise

Dans cette thèse on s'intéresse à l'analyse théorique et numérique de la dynamique des densités des dislocations, où les dislocations sont des défauts cristallins, apparaissant… (more)

Subjects/Keywords: Équations hyperboliques; Équations paraboliques; BV space; Hamilton-Jacobi equation; Hyperbolic equation; Parabolic equation; Viscosity solution; Dislocation dynamics; Gas dynamics; BV space; Non-linear partial differential equations; Elasto-viscoplasticity; Numerical analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rizik, V. (2019). Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations. (Doctoral Dissertation). Compiègne; Université libanaise. Retrieved from http://www.theses.fr/2019COMP2505

Chicago Manual of Style (16th Edition):

Rizik, Vivian. “Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations.” 2019. Doctoral Dissertation, Compiègne; Université libanaise. Accessed January 27, 2021. http://www.theses.fr/2019COMP2505.

MLA Handbook (7th Edition):

Rizik, Vivian. “Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations.” 2019. Web. 27 Jan 2021.

Vancouver:

Rizik V. Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations. [Internet] [Doctoral dissertation]. Compiègne; Université libanaise; 2019. [cited 2021 Jan 27]. Available from: http://www.theses.fr/2019COMP2505.

Council of Science Editors:

Rizik V. Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations. [Doctoral Dissertation]. Compiègne; Université libanaise; 2019. Available from: http://www.theses.fr/2019COMP2505


Colorado School of Mines

25. Behbahani, Mohammad E. Extending the two-dimensional fluid parabolic equation to three dimensions and solving via a split-step Pade approach.

Degree: MS(M.S.), Applied Mathematics and Statistics, 2014, Colorado School of Mines

 The development of three-dimensional solutions using fluid parabolic equations is an active area of research in underwater acoustics. Several approaches for solving the time-harmonic three-dimensional… (more)

Subjects/Keywords: three dimensional; partial differential equation; Padé Approximation; efficient; one-way wave equation; underwater acoustics; Underwater acoustics; Pade approximant; Differential equations, Parabolic; Wave equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Behbahani, M. E. (2014). Extending the two-dimensional fluid parabolic equation to three dimensions and solving via a split-step Pade approach. (Masters Thesis). Colorado School of Mines. Retrieved from http://hdl.handle.net/11124/493

Chicago Manual of Style (16th Edition):

Behbahani, Mohammad E. “Extending the two-dimensional fluid parabolic equation to three dimensions and solving via a split-step Pade approach.” 2014. Masters Thesis, Colorado School of Mines. Accessed January 27, 2021. http://hdl.handle.net/11124/493.

MLA Handbook (7th Edition):

Behbahani, Mohammad E. “Extending the two-dimensional fluid parabolic equation to three dimensions and solving via a split-step Pade approach.” 2014. Web. 27 Jan 2021.

Vancouver:

Behbahani ME. Extending the two-dimensional fluid parabolic equation to three dimensions and solving via a split-step Pade approach. [Internet] [Masters thesis]. Colorado School of Mines; 2014. [cited 2021 Jan 27]. Available from: http://hdl.handle.net/11124/493.

Council of Science Editors:

Behbahani ME. Extending the two-dimensional fluid parabolic equation to three dimensions and solving via a split-step Pade approach. [Masters Thesis]. Colorado School of Mines; 2014. Available from: http://hdl.handle.net/11124/493


Vytautas Magnus University

26. Šiaulytė, Austėja. Parabolinės lygties su nelokaliąja integraline Robino sąlyga išreikštinė skirtuminė schema.

Degree: Master, Mathematics, 2013, Vytautas Magnus University

Magistro darbe yra tiriama parabolinės lygties su nelokaliąja integraline Robino sąlyga skirtuminė schema. Skirtuminės schemos stabilumui nagrinėti naudojama skirtuminio operatoriaus su nelokaliąja sąlyga spektro struktūros… (more)

Subjects/Keywords: Diferencialinis operatorius; Parabolinė lygtis; Skirtuminė schema; Nelokalioji sąlyga; Differential operator; Parabolic equation; Difference scheme; Nonlocal condition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Šiaulytė, Austėja. (2013). Parabolinės lygties su nelokaliąja integraline Robino sąlyga išreikštinė skirtuminė schema. (Masters Thesis). Vytautas Magnus University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130617_182830-33054 ;

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

Šiaulytė, Austėja. “Parabolinės lygties su nelokaliąja integraline Robino sąlyga išreikštinė skirtuminė schema.” 2013. Masters Thesis, Vytautas Magnus University. Accessed January 27, 2021. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130617_182830-33054 ;.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

Šiaulytė, Austėja. “Parabolinės lygties su nelokaliąja integraline Robino sąlyga išreikštinė skirtuminė schema.” 2013. Web. 27 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

Šiaulytė, Austėja. Parabolinės lygties su nelokaliąja integraline Robino sąlyga išreikštinė skirtuminė schema. [Internet] [Masters thesis]. Vytautas Magnus University; 2013. [cited 2021 Jan 27]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130617_182830-33054 ;.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

Šiaulytė, Austėja. Parabolinės lygties su nelokaliąja integraline Robino sąlyga išreikštinė skirtuminė schema. [Masters Thesis]. Vytautas Magnus University; 2013. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130617_182830-33054 ;

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


Purdue University

27. Peng, Yuan. Propogation Of Wind Turbine Noise Through Wakes And Turbulent Atmosphere.

Degree: MSE, 2014, Purdue University

  It is well known that the atmospheric inhomogeneities have great impact on sound propagation over long ranges. For the application of predicting wind turbine… (more)

Subjects/Keywords: Pure sciences; Applied sciences; Parabolic equation; Sound propagation; Turbulence; Wakes; Wind turbine noise; Oil, Gas, and Energy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Peng, Y. (2014). Propogation Of Wind Turbine Noise Through Wakes And Turbulent Atmosphere. (Thesis). Purdue University. Retrieved from http://docs.lib.purdue.edu/open_access_theses/366

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Peng, Yuan. “Propogation Of Wind Turbine Noise Through Wakes And Turbulent Atmosphere.” 2014. Thesis, Purdue University. Accessed January 27, 2021. http://docs.lib.purdue.edu/open_access_theses/366.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Peng, Yuan. “Propogation Of Wind Turbine Noise Through Wakes And Turbulent Atmosphere.” 2014. Web. 27 Jan 2021.

Vancouver:

Peng Y. Propogation Of Wind Turbine Noise Through Wakes And Turbulent Atmosphere. [Internet] [Thesis]. Purdue University; 2014. [cited 2021 Jan 27]. Available from: http://docs.lib.purdue.edu/open_access_theses/366.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Peng Y. Propogation Of Wind Turbine Noise Through Wakes And Turbulent Atmosphere. [Thesis]. Purdue University; 2014. Available from: http://docs.lib.purdue.edu/open_access_theses/366

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Vilnius University

28. Jakubėlienė, Kristina. Dvimatės parabolinės lygties su integraline sąlyga sprendimas baigtinių skirtumų metodu.

Degree: Dissertation, Mathematics, 2013, Vilnius University

Darbo tikslas - išnagrinėti dvimatės parabolinio tipo lygties su nelokaliąja integraline sąlyga sprendimą baigtinių skirtumų metodu. Išnagrinėtas kintamųjų krypčių metodo algoritmas tokiam uždaviniui spręsti. Išnagrinėtas… (more)

Subjects/Keywords: Dvimatė parabolinė lygtis; Nelokalioji integralinė sąlyga; Baigtinių skirtumų metodas; Two-dimensional parabolic equation; Nonlocal integral condition; Finite difference method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jakubėlienė, K. (2013). Dvimatės parabolinės lygties su integraline sąlyga sprendimas baigtinių skirtumų metodu. (Doctoral Dissertation). Vilnius University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130521_163742-43540 ;

Chicago Manual of Style (16th Edition):

Jakubėlienė, Kristina. “Dvimatės parabolinės lygties su integraline sąlyga sprendimas baigtinių skirtumų metodu.” 2013. Doctoral Dissertation, Vilnius University. Accessed January 27, 2021. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130521_163742-43540 ;.

MLA Handbook (7th Edition):

Jakubėlienė, Kristina. “Dvimatės parabolinės lygties su integraline sąlyga sprendimas baigtinių skirtumų metodu.” 2013. Web. 27 Jan 2021.

Vancouver:

Jakubėlienė K. Dvimatės parabolinės lygties su integraline sąlyga sprendimas baigtinių skirtumų metodu. [Internet] [Doctoral dissertation]. Vilnius University; 2013. [cited 2021 Jan 27]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130521_163742-43540 ;.

Council of Science Editors:

Jakubėlienė K. Dvimatės parabolinės lygties su integraline sąlyga sprendimas baigtinių skirtumų metodu. [Doctoral Dissertation]. Vilnius University; 2013. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130521_163742-43540 ;


Vilnius University

29. Jakubėlienė, Kristina. Solution of a two-dimensional parabolic equation with an integral condition by the finite-difference method.

Degree: PhD, Mathematics, 2013, Vilnius University

The aim of the work is to analyze the finite difference method for solving two-dimensional parabolic equation with an integral boundary condition. The alternating direction… (more)

Subjects/Keywords: Two-dimensional parabolic equation; Nonlocal integral condition; Finite difference method; Dvimatė parabolinė lygtis; Nelokalioji integralinė sąlyga; Baigtinių skirtumų metodas

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jakubėlienė, K. (2013). Solution of a two-dimensional parabolic equation with an integral condition by the finite-difference method. (Doctoral Dissertation). Vilnius University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130521_163755-33966 ;

Chicago Manual of Style (16th Edition):

Jakubėlienė, Kristina. “Solution of a two-dimensional parabolic equation with an integral condition by the finite-difference method.” 2013. Doctoral Dissertation, Vilnius University. Accessed January 27, 2021. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130521_163755-33966 ;.

MLA Handbook (7th Edition):

Jakubėlienė, Kristina. “Solution of a two-dimensional parabolic equation with an integral condition by the finite-difference method.” 2013. Web. 27 Jan 2021.

Vancouver:

Jakubėlienė K. Solution of a two-dimensional parabolic equation with an integral condition by the finite-difference method. [Internet] [Doctoral dissertation]. Vilnius University; 2013. [cited 2021 Jan 27]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130521_163755-33966 ;.

Council of Science Editors:

Jakubėlienė K. Solution of a two-dimensional parabolic equation with an integral condition by the finite-difference method. [Doctoral Dissertation]. Vilnius University; 2013. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130521_163755-33966 ;

30. Bal, Kaushik. Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations : Contribution à l'étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers.

Degree: Docteur es, Mathématiques, 2011, Pau

Les travaux réalisés dans cette thèse concernent l’étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers. Par singularité, nous signifions que le problème fait intervenir une… (more)

Subjects/Keywords: Mathématiques; Equations aux dérivées partielles; Opérateur elliptique; Opérateur parabolique; Mathematics; Partial differential equation; Elliptic operators; Parabolic operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bal, K. (2011). Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations : Contribution à l'étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers. (Doctoral Dissertation). Pau. Retrieved from http://www.theses.fr/2011PAUU3032

Chicago Manual of Style (16th Edition):

Bal, Kaushik. “Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations : Contribution à l'étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers.” 2011. Doctoral Dissertation, Pau. Accessed January 27, 2021. http://www.theses.fr/2011PAUU3032.

MLA Handbook (7th Edition):

Bal, Kaushik. “Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations : Contribution à l'étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers.” 2011. Web. 27 Jan 2021.

Vancouver:

Bal K. Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations : Contribution à l'étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers. [Internet] [Doctoral dissertation]. Pau; 2011. [cited 2021 Jan 27]. Available from: http://www.theses.fr/2011PAUU3032.

Council of Science Editors:

Bal K. Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations : Contribution à l'étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers. [Doctoral Dissertation]. Pau; 2011. Available from: http://www.theses.fr/2011PAUU3032

[1] [2] [3] [4]

.