Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · date | New search

You searched for subject:(PDE Constraints). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Laurent-Brouty, Nicolas. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.

Degree: Docteur es, Mathématiques, 2019, Université Côte d'Azur (ComUE)

 Cette thèse se consacre à la modélisation mathématique du trafic routier à l'aide des lois de conservation hyperboliques. Nous nous intéressons plus particulièrement à l’application… (more)

Subjects/Keywords: Lois de conservation hyperboliques; Systèmes de conservation hyperboliques avec relaxation; Modèles macroscopiques de trafic routier; Suivi de fronts d'onde; Systèmes de Temple; Couplage EDP-EDO; Contraintes de flux; Trafic routier sur les réseaux; Équations d'Hamilton-Jacobi; Méthodes de point fixe; Hyperbolic conservation laws; Hyperbolic systems of conservation laws with relaxation; Macroscopic traffic flow models; Wave-front tracking; Temple class systems; PDE-ODE coupling; Flux constraints; Traffic flow on networks; Hamilton-Jacobi equations; Fixed-point problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Laurent-Brouty, N. (2019). Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. (Doctoral Dissertation). Université Côte d'Azur (ComUE). Retrieved from http://www.theses.fr/2019AZUR4056

Chicago Manual of Style (16th Edition):

Laurent-Brouty, Nicolas. “Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.” 2019. Doctoral Dissertation, Université Côte d'Azur (ComUE). Accessed April 13, 2021. http://www.theses.fr/2019AZUR4056.

MLA Handbook (7th Edition):

Laurent-Brouty, Nicolas. “Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.” 2019. Web. 13 Apr 2021.

Vancouver:

Laurent-Brouty N. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. [Internet] [Doctoral dissertation]. Université Côte d'Azur (ComUE); 2019. [cited 2021 Apr 13]. Available from: http://www.theses.fr/2019AZUR4056.

Council of Science Editors:

Laurent-Brouty N. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. [Doctoral Dissertation]. Université Côte d'Azur (ComUE); 2019. Available from: http://www.theses.fr/2019AZUR4056


Brno University of Technology

2. Mrázková, Eva. Approximations in Stochastic Optimization and Their Applications: Approximations in Stochastic Optimization and Their Applications.

Degree: 2019, Brno University of Technology

 Many optimum design problems in engineering areas lead to optimization models constrained by ordinary (ODE) or partial (PDE) differential equations, and furthermore, several elements of… (more)

Subjects/Keywords: optimální inženýrský návrh; ODR a PDR omezení; stochastické programování; optimalizace s pravděpodobnostními omezeními; vícekriteriální optimalizace; metoda Monte Carlo; PHA algoritmus; optimum engineering design; ODE and PDE constraints; stochastic programming; chance constrained programming; multi-objective programming; Monte Carlo method; progressive hedging algorithm

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mrázková, E. (2019). Approximations in Stochastic Optimization and Their Applications: Approximations in Stochastic Optimization and Their Applications. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/1571

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mrázková, Eva. “Approximations in Stochastic Optimization and Their Applications: Approximations in Stochastic Optimization and Their Applications.” 2019. Thesis, Brno University of Technology. Accessed April 13, 2021. http://hdl.handle.net/11012/1571.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mrázková, Eva. “Approximations in Stochastic Optimization and Their Applications: Approximations in Stochastic Optimization and Their Applications.” 2019. Web. 13 Apr 2021.

Vancouver:

Mrázková E. Approximations in Stochastic Optimization and Their Applications: Approximations in Stochastic Optimization and Their Applications. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/11012/1571.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mrázková E. Approximations in Stochastic Optimization and Their Applications: Approximations in Stochastic Optimization and Their Applications. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/1571

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Mejeur, Joel M. Function Space Nonlinear Rescaling Methods for Elliptic Control Problems with Point-wise State and Control Constraints .

Degree: 2017, George Mason University

State inequality constraints in PDE Constrained Optimization (PDECO) arise in many areas of science and engineering. Unfortunately these constraints, and the resulting Lagrange multipliers, are known to negatively influence the behavior of many existing optimization methods. Advisors/Committee Members: Griva, Igor (advisor).

Subjects/Keywords: Applied mathematics; Augmented Lagrangian; Control Constraints; Elliptic Control; Nonlinear Rescaling; PDE Constrained Optimization; State Constraints

…Director: Dr. Igor Griva State inequality constraints in PDE Constrained Optimization (… …optimization for problems with Partial Differential Equation (PDE) constraints has been an… …constraints, and therefore optimization problems do often arise with these PDE constraints. Elliptic… …List of Tables Table Page 7.1 7.2 State and Control Constraints… …AND CONTROL CONSTRAINTS Joel M Mejeur, PhD George Mason University, 2017 Dissertation… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mejeur, J. M. (2017). Function Space Nonlinear Rescaling Methods for Elliptic Control Problems with Point-wise State and Control Constraints . (Thesis). George Mason University. Retrieved from http://hdl.handle.net/1920/11279

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mejeur, Joel M. “Function Space Nonlinear Rescaling Methods for Elliptic Control Problems with Point-wise State and Control Constraints .” 2017. Thesis, George Mason University. Accessed April 13, 2021. http://hdl.handle.net/1920/11279.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mejeur, Joel M. “Function Space Nonlinear Rescaling Methods for Elliptic Control Problems with Point-wise State and Control Constraints .” 2017. Web. 13 Apr 2021.

Vancouver:

Mejeur JM. Function Space Nonlinear Rescaling Methods for Elliptic Control Problems with Point-wise State and Control Constraints . [Internet] [Thesis]. George Mason University; 2017. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/1920/11279.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mejeur JM. Function Space Nonlinear Rescaling Methods for Elliptic Control Problems with Point-wise State and Control Constraints . [Thesis]. George Mason University; 2017. Available from: http://hdl.handle.net/1920/11279

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Letona Bolivar, Cristina Felicitas. On a Class of Parametrized Domain Optimization Problems with Mixed Boundary Condition Types.

Degree: PhD, Mathematics, 2016, Virginia Tech

 The methods for solving domain optimization problems depends on the case of study. There are methods that have been developed for the discretized problem, but… (more)

Subjects/Keywords: Domain Optimization; Shape Derivatives; PDE Constraints; Mixed Boundary Conditions.

…optimization problems with elliptic PDE constraints. As for any other optimization problem, solving a… …These studies vary in the choice of functionals or the form of the PDE constraints. The… …boundary conditions. Few results on finding the minimizing domain subject to PDE constraints with… …optimization problems that contain specific PDE constraints. Thus, the definition of the admissible… …setting to the domain optimization problem subject to PDE constraints. In that chapter, we begin… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Letona Bolivar, C. F. (2016). On a Class of Parametrized Domain Optimization Problems with Mixed Boundary Condition Types. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/73308

Chicago Manual of Style (16th Edition):

Letona Bolivar, Cristina Felicitas. “On a Class of Parametrized Domain Optimization Problems with Mixed Boundary Condition Types.” 2016. Doctoral Dissertation, Virginia Tech. Accessed April 13, 2021. http://hdl.handle.net/10919/73308.

MLA Handbook (7th Edition):

Letona Bolivar, Cristina Felicitas. “On a Class of Parametrized Domain Optimization Problems with Mixed Boundary Condition Types.” 2016. Web. 13 Apr 2021.

Vancouver:

Letona Bolivar CF. On a Class of Parametrized Domain Optimization Problems with Mixed Boundary Condition Types. [Internet] [Doctoral dissertation]. Virginia Tech; 2016. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/10919/73308.

Council of Science Editors:

Letona Bolivar CF. On a Class of Parametrized Domain Optimization Problems with Mixed Boundary Condition Types. [Doctoral Dissertation]. Virginia Tech; 2016. Available from: http://hdl.handle.net/10919/73308

5. Köster, Michael. A Hierarchical Flow Solver for Optimisation with PDE Constraints.

Degree: 2011, Technische Universität Dortmund

 Active flow control plays a central role in many industrial applications such as e.g. control of crystal growth processes, where the flow in the melt… (more)

Subjects/Keywords: Block-Glätter; Czochralski; Elliptisch; EOJ Stabilisierung; Finite Elemente; Hierarchisch; Hierarchisches Lösungskonzept; Inexaktes Newton-Verfahren; Instationär; Inverse Probleme; Kantenbasierte Stabilisierung; Kristallwachstum; Krylov; lineare Komplexität; Mehrgitter; Mehrgitter-Krylov; Monolithisch; Navier-Stokes; Nichtparametrische Finite Elemente; Optimierung; Raum-Zeit; Sattelpunkt; Schurkomplement-Vorkonditionierer; Stokes; Unstrukturierte Gitter; Vanka; Verteilte Kontrolle; Wärmeleitung; Wärmeleitungsgleichung; Block smoother; CFD; Crank-Nicolson; Crystal growth; Distributed Control; Edge-oriented stabilisation; Elliptic; EOJ stabilisation; FEAT; FEATFLOW; Finite Elements; First discretise then optimise; First discretize then optimize; First optimise then discretise; First optimize then discretize; Flow-Around-Cylinder; Full Newton-SAND; Heat equation; Hierarchical; Hierarchical solution concept; Inexact Newton; Inverse Problems; KKT system; Large-Scale; linear complexity; Monolithic; Multigrid; Multigrid-Krylov; Multilevel; Nonparametric finite elements; Nonstationary; OPTFLOW; Optimisation; Optimization; PDE Constraints; saddle point; SAND; Schur complement preconditioning; Space-time; SQP; Theta schema; Theta scheme; Time-dependent; Transient; Unstructured Grids; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Köster, M. (2011). A Hierarchical Flow Solver for Optimisation with PDE Constraints. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-6950

Chicago Manual of Style (16th Edition):

Köster, Michael. “A Hierarchical Flow Solver for Optimisation with PDE Constraints.” 2011. Doctoral Dissertation, Technische Universität Dortmund. Accessed April 13, 2021. http://dx.doi.org/10.17877/DE290R-6950.

MLA Handbook (7th Edition):

Köster, Michael. “A Hierarchical Flow Solver for Optimisation with PDE Constraints.” 2011. Web. 13 Apr 2021.

Vancouver:

Köster M. A Hierarchical Flow Solver for Optimisation with PDE Constraints. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2011. [cited 2021 Apr 13]. Available from: http://dx.doi.org/10.17877/DE290R-6950.

Council of Science Editors:

Köster M. A Hierarchical Flow Solver for Optimisation with PDE Constraints. [Doctoral Dissertation]. Technische Universität Dortmund; 2011. Available from: http://dx.doi.org/10.17877/DE290R-6950

6. Köster, Michael. A Hierarchical Flow Solver for Optimisation with PDE Constraints.

Degree: 2011, Technische Universität Dortmund

 Active flow control plays a central role in many industrial applications such as e.g. control of crystal growth processes, where the flow in the melt… (more)

Subjects/Keywords: Block-Glätter; Block smoother; CFD; Crank-Nicolson; Crystal growth; Czochralski; Distributed Control; Edge-oriented stabilisation; Elliptic; Elliptisch; EOJ stabilisation; EOJ Stabilisierung; FEAT; FEATFLOW; Finite Elemente; Finite Elements; First discretise then optimise; First discretize then optimize; First optimise then discretise; First optimize then discretize; Flow-Around-Cylinder; Full Newton-SAND; Heat equation; Hierarchical; Hierarchical solution concept; Hierarchisch; Hierarchisches Lösungskonzept; Inexact Newton; Inexaktes Newton-Verfahren; Instationär; Inverse Probleme; Inverse Problems; Kantenbasierte Stabilisierung; KKT system; Kristallwachstum; Krylov; Large-Scale; linear complexity; lineare Komplexität; Mehrgitter; Mehrgitter-Krylov; Monolithic; Monolithisch; Multigrid; Multigrid-Krylov; Multilevel; Navier-Stokes; Nichtparametrische Finite Elemente; Nonparametric finite elements; Nonstationary; OPTFLOW; Optimierung; Optimisation; Optimization; PDE Constraints; Raum-Zeit; saddle point; SAND; Sattelpunkt; Schur complement preconditioning; Schurkomplement-Vorkonditionierer; Space-time; SQP; Stokes; Theta schema; Theta scheme; Time-dependent; Transient; Unstructured Grids; Unstrukturierte Gitter; Vanka; Verteilte Kontrolle; Wärmeleitung; Wärmeleitungsgleichung; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Köster, M. (2011). A Hierarchical Flow Solver for Optimisation with PDE Constraints. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/29239

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Köster, Michael. “A Hierarchical Flow Solver for Optimisation with PDE Constraints.” 2011. Thesis, Technische Universität Dortmund. Accessed April 13, 2021. http://hdl.handle.net/2003/29239.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Köster, Michael. “A Hierarchical Flow Solver for Optimisation with PDE Constraints.” 2011. Web. 13 Apr 2021.

Vancouver:

Köster M. A Hierarchical Flow Solver for Optimisation with PDE Constraints. [Internet] [Thesis]. Technische Universität Dortmund; 2011. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2003/29239.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Köster M. A Hierarchical Flow Solver for Optimisation with PDE Constraints. [Thesis]. Technische Universität Dortmund; 2011. Available from: http://hdl.handle.net/2003/29239

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.