You searched for subject:(Oseen equations)
.
Showing records 1 – 6 of
6 total matches.
No search limiters apply to these results.

University of Texas – Austin
1.
-6327-2527.
Hybridized discontinuous Galerkin methods for magnetohydrodynamics.
Degree: PhD, Computational Science, Engineering, and Mathematics, 2018, University of Texas – Austin
URL: http://dx.doi.org/10.26153/tsw/2865
► Discontinuous Galerkin (DG) methods combine the advantages of classical finite element and finite volume methods. Like finite volume methods, through the use of discontinuous spaces…
(more)
▼ Discontinuous Galerkin (DG) methods combine the advantages of classical finite element and finite volume methods. Like finite volume methods, through the use of discontinuous spaces in the discrete functional setting, we automatically have local conservation, an essential property for a numerical method to behave well when applied to hyperbolic conservation laws. Like classical finite element methods, DG methods allow for higher order approximations with compact stencils. For time-dependent problems with implicit time stepping and for steady-state problems, DG methods give a larger globally coupled linear system than continuous Galerkin methods (especially for three dimensional problems and low polynomial orders). The primary motivation of the hybridized (or hybridizable) discontinuous Galerkin (HDG) methods is to reduce the number of globally coupled unknowns in DG methods when implicit time stepping or direct-to-steady-state solutions are desired. This is accomplished by the introduction of new “trace unknowns” defined on the mesh skeleton, the definition of one-sided numerical fluxes, and the enforcement of local conservation. This results in a globally coupled linear system where the local “volume unknowns” can be eliminated in a Schur complement procedure, resulting in a reduced globally coupled system in terms of only the trace unknowns.
Magnetohydrodynamics (MHD) is the study of the flow of electrically conducting fluids under the influence of magnetic fields. The MHD
equations are used to describe important physical phenomena including laboratory plasmas (plasma confinement in fusion energy devices), astrophysical plasmas (solar coronas, planetary magnetospheres) and liquid metal flows (metallurgy processes, the Earth’s molten core, cooling for nuclear reactors). Incompressible MHD, which is the main focus of this work, is relevant in low Lundquist number liquid metals, in high Lundquist number, large guide field fusion plasmas, and in low Mach number compressible flows. The
equations of MHD are highly nonlinear, and are characterized by physical phenomena spanning wide ranges of length and time scales. For numerical methods, this presents challenges in both spatial and temporal discretization. In terms of temporal discretization, fully implicit numerical methods are attractive in their robustness; they allow for stable, high-order time integration over long time scales of interest.
Advisors/Committee Members: Bui-Thanh, Tan (advisor), Arbogast, Todd (committee member), Demkowicz, Leszek (committee member), Ghattas, Omar (committee member), Shadid, John (committee member), Waelbroeck, François (committee member).
Subjects/Keywords: Finite element methods; Discontinuous Galerkin methods; Hybridized discontinuous Galerkin methods; Stokes
equations; Oseen equations; Magnetohydrodynamics; Resistive magnetohydrodynamics
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
-6327-2527. (2018). Hybridized discontinuous Galerkin methods for magnetohydrodynamics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/2865
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Chicago Manual of Style (16th Edition):
-6327-2527. “Hybridized discontinuous Galerkin methods for magnetohydrodynamics.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021.
http://dx.doi.org/10.26153/tsw/2865.
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
MLA Handbook (7th Edition):
-6327-2527. “Hybridized discontinuous Galerkin methods for magnetohydrodynamics.” 2018. Web. 18 Jan 2021.
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Vancouver:
-6327-2527. Hybridized discontinuous Galerkin methods for magnetohydrodynamics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Jan 18].
Available from: http://dx.doi.org/10.26153/tsw/2865.
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Council of Science Editors:
-6327-2527. Hybridized discontinuous Galerkin methods for magnetohydrodynamics. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://dx.doi.org/10.26153/tsw/2865
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

McMaster University
2.
Gustafsson, Carl Fredrik Jonathan.
Computational Investigation of Steady Navier-Stokes Flows Past a Circular Obstacle in Two – Dimensional Unbounded Domain.
Degree: PhD, 2012, McMaster University
URL: http://hdl.handle.net/11375/12764
► This thesis is a numerical investigation of two-dimensional steady flows past a circular obstacle. In the fluid dynamics research there are few computational results…
(more)
▼ This thesis is a numerical investigation of two-dimensional steady flows past a circular obstacle. In the fluid dynamics research there are few computational results concerning the structure of the steady wake flows at Reynolds numbers larger than 100, and the state-of-the-art results go back to the work of Fornberg (1980) Fornberg (1985). The radial velocity component approaches its asymptotic value relatively slowly if the solution is ``physically reasonable''. This presents a difficulty when using the standard approach such as domain truncation. To get around this problem, in the present research we will develop a spectral technique for the solution of the steady Navier-Stokes system. We introduce the ``bootstrap" method which is motivated by the mathematical fact that solutions of the Oseen system have the same asymptotic structure at infinity as the solutions of the steady Navier-Stokes system with the same boundary conditions. Thus, in the ``bootstrap" method, the streamfunction is calculated as a perturbation to the solution to the Oseen system. Solutions are calculated for a range of Reynolds number and we also investigate the solutions behaviour when the Reynolds number goes to infinity. The thesis compares the numerical results obtained using the proposed spectral ``bootstrap" method and a finite – difference approach for unbounded domains against previous results. For Reynolds numbers lower than 100, the wake is slender and similar to the flow hypothesized by Kirchoff (1869) and Levi-Civita (1907). For large Reynolds numbers the wake becomes wider and appears more similar to the Prandtl-Batchelor flow, see Batchelor (1956).
Doctor of Science (PhD)
Advisors/Committee Members: Protas, Bartosz, Computational Engineering and Science.
Subjects/Keywords: Fluid Mechanics; steady Navier-Stokes Equation; Oseen Equation; Spectral Methods; Fluid Dynamics; Numerical Analysis and Computation; Partial Differential Equations; Fluid Dynamics
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Gustafsson, C. F. J. (2012). Computational Investigation of Steady Navier-Stokes Flows Past a Circular Obstacle in Two – Dimensional Unbounded Domain. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/12764
Chicago Manual of Style (16th Edition):
Gustafsson, Carl Fredrik Jonathan. “Computational Investigation of Steady Navier-Stokes Flows Past a Circular Obstacle in Two – Dimensional Unbounded Domain.” 2012. Doctoral Dissertation, McMaster University. Accessed January 18, 2021.
http://hdl.handle.net/11375/12764.
MLA Handbook (7th Edition):
Gustafsson, Carl Fredrik Jonathan. “Computational Investigation of Steady Navier-Stokes Flows Past a Circular Obstacle in Two – Dimensional Unbounded Domain.” 2012. Web. 18 Jan 2021.
Vancouver:
Gustafsson CFJ. Computational Investigation of Steady Navier-Stokes Flows Past a Circular Obstacle in Two – Dimensional Unbounded Domain. [Internet] [Doctoral dissertation]. McMaster University; 2012. [cited 2021 Jan 18].
Available from: http://hdl.handle.net/11375/12764.
Council of Science Editors:
Gustafsson CFJ. Computational Investigation of Steady Navier-Stokes Flows Past a Circular Obstacle in Two – Dimensional Unbounded Domain. [Doctoral Dissertation]. McMaster University; 2012. Available from: http://hdl.handle.net/11375/12764

Université de Grenoble
3.
Cherel, David.
Décomposition de domaine pour des systèmes issus des équations de Navier-Stokes : Domain decomposition for systems deriving from Navier-Stokes equations.
Degree: Docteur es, Mathématiques Appliquées, 2012, Université de Grenoble
URL: http://www.theses.fr/2012GRENM109
► Les équations fondamentales décrivant la dynamique de l'océan sont en théorie les équations de Navier-Stokes sur une sphère en rotation, auxquelles il faut a jouter…
(more)
▼ Les équations fondamentales décrivant la dynamique de l'océan sont en théorie les équations de Navier-Stokes sur une sphère en rotation, auxquelles il faut a jouter une équation d'état pour la densité, et des équations de transport-diffusion pour les traceurs. Toutefois, un certain nombre de considérations physiques et de limitations pratiques ont nécessité le développement de modèles plus simples. En effet, un certain nombre d'hypothèses simplificatrices sont pleinement justifiées du point de vue de la physique des mouvements océaniques, dont les principales sont les approximations de couche mince et de Boussinesq. D'autre part, étant donné les dimensions des bassins océaniques (plusieurs centaines à plusieurs milliers de kilomètres), les coûts de calculs sont un facteur pratique extrêmement limitant. On est, à l'heure actuelle, capable de simuler l'océan mondial avec une résolution de l'ordre de dix kilomètres, en utilisant des modèles dits aux équations primitives, dont le coût de calcul est bien inférieur à celui des équations de Navier-Stokes. On est donc bien loin d'une modélisation complète des phénomènes décrits par ces équations, qui nécessiterait en théorie de considérer des échelles de l'ordre du millimètre. Les équations primitives sont issues des équations complètes de la mécanique des fluides en effectuant l'approximation hydrostatique, justifiée par la faible profondeur des domaines considérés au regard de leur dimension horizontale. Dans cette thèse, nous considérerons les équations de Navier-Stokes (NS) qui sont le coeur du modèle complet évoqué ci-dessus, sans prendre en compte les équations de la densité et des traceurs (salinité, température, etc.). Nous utiliserons l'approximation hydrostatique dans le chapitre 10, et le modèle sera naturellement appelé Navier-Stokes hydrostatique (NSH). Il correspond aux équations primitives dans lesquelles on ne prendrait pas en compte la densité et les traceurs. C'est dans ce cadre que se situe le travail présenté dans cette thèse, avec l'objectif à moyen terme de pouvoir coupler de façon rigoureuse et efficace les équations de Navier-Stokes avec les équations primitives. Dans une première partie, on présentera quelques rappels sur les équations de Navier-Stokes, leur discrétisation, ainsi que le cas-test de la cavité entraînée qui sera utilisé dans tout ce document. Dans une deuxième partie, on met en œuvre les méthodes de Schwarz sur les équations de Stokes et Navier-Stokes, en dérivant notamment des conditions absorbantes exactes et approchées pour ces systèmes. Enfin, dans une troisième partie, on proposera des pistes vers le couplage Navier-Stokes/Navier-Stokes hydrostatique décrit ci-dessus.
Fundamental equations describing the ocean dynamic are theoretically Navier-Stokes equations over a rotating sphere, whom need to add a state equation for the fluid density, and advection-diffusion equations for tracers. However, some physical considerations and practical limitations required to developped more simple models. Indeed, some simplifying hypotheses are well…
Advisors/Committee Members: Blayo, Éric (thesis director), Rousseau, Antoine (thesis director).
Subjects/Keywords: Décomposition de domaines; Équations de Navier-Stokes; Équations de Navier-Stokes hydrostatiques; Équations d'Oseen; Domain decomposition; Navier-Stokes equations; Hydrostatic Navier-Stokes equations; Oseen equations; 510
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Cherel, D. (2012). Décomposition de domaine pour des systèmes issus des équations de Navier-Stokes : Domain decomposition for systems deriving from Navier-Stokes equations. (Doctoral Dissertation). Université de Grenoble. Retrieved from http://www.theses.fr/2012GRENM109
Chicago Manual of Style (16th Edition):
Cherel, David. “Décomposition de domaine pour des systèmes issus des équations de Navier-Stokes : Domain decomposition for systems deriving from Navier-Stokes equations.” 2012. Doctoral Dissertation, Université de Grenoble. Accessed January 18, 2021.
http://www.theses.fr/2012GRENM109.
MLA Handbook (7th Edition):
Cherel, David. “Décomposition de domaine pour des systèmes issus des équations de Navier-Stokes : Domain decomposition for systems deriving from Navier-Stokes equations.” 2012. Web. 18 Jan 2021.
Vancouver:
Cherel D. Décomposition de domaine pour des systèmes issus des équations de Navier-Stokes : Domain decomposition for systems deriving from Navier-Stokes equations. [Internet] [Doctoral dissertation]. Université de Grenoble; 2012. [cited 2021 Jan 18].
Available from: http://www.theses.fr/2012GRENM109.
Council of Science Editors:
Cherel D. Décomposition de domaine pour des systèmes issus des équations de Navier-Stokes : Domain decomposition for systems deriving from Navier-Stokes equations. [Doctoral Dissertation]. Université de Grenoble; 2012. Available from: http://www.theses.fr/2012GRENM109
4.
Meslameni, Mohamed.
Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. : Stokes and Oseen equations in an exterior domain with different boundary conditions.
Degree: Docteur es, Mathématiques appliquées, 2013, Pau
URL: http://www.theses.fr/2013PAUU3002
► On s’intéresse aux équations stationnaires de Navier-Stokes linéarisées, il s'agit ici des équations d'Oseen et des équations de Stokes posées dans des domaines infinis, comme…
(more)
▼ On s’intéresse aux équations stationnaires de Navier-Stokes linéarisées, il s'agit ici des équations d'Oseen et des équations de Stokes posées dans des domaines infinis, comme les domaines extérieurs, en dimension trois et l'espace tout entier. Le but est d'étudier l'existence de solutions généralisés et de solutions fortes dans un cadre général non nécessairement hilbertien. On s'intéresse aussi au cas des solutions très faibles. Dans ce travail, on considère aussi bien des conditions aux limites classiques de type Dirichlet que des conditions aux limites non standard portant sur certaines composantes du champ de vitesses, du tourbillon, voir du champ de pression. Les espaces de Sobolev classiques ne sont pas adaptés à l'étude de ces problèmes pour une telle géométrie. Pour une bonne analyse mathématique, nous avons choisi de travailler dans le cadre des espaces de Sobolev avec poids, ce qui permet en particulier de mieux contrôler le comportement à l'infini de la solution.
In this work, we study the linearized Navier-Stokes equations in an exterior domain or in the whole space at the steady state, that is, the Stokes equations and the Oseen equations. We give existence, uniqueness and regularity of solutions. The case of very weak solutions is also treated. We consider not only the Dirichlet boundary conditions but also the Non Standard boundary conditions, on some components of the velocity field, vorticity and also on the pressure. Since the domain is not bounded, the classical Sobolev spaces are not adequate. Therefore, a specific functional framework is necessary which also has to take into account the behaviour of the functions at infinity. Our approach rests on the use of weighted Sobolev spaces.
Advisors/Committee Members: Amrouche, Cherif (thesis director).
Subjects/Keywords: Problème de Stokes; Problème d'Oseen; Espaces de Sobolev avec poids; Mécanique des fluides; Stokes equations; Oseen equations; Weighted Sobolev spaces; Fluid mechanics
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Meslameni, M. (2013). Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. : Stokes and Oseen equations in an exterior domain with different boundary conditions. (Doctoral Dissertation). Pau. Retrieved from http://www.theses.fr/2013PAUU3002
Chicago Manual of Style (16th Edition):
Meslameni, Mohamed. “Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. : Stokes and Oseen equations in an exterior domain with different boundary conditions.” 2013. Doctoral Dissertation, Pau. Accessed January 18, 2021.
http://www.theses.fr/2013PAUU3002.
MLA Handbook (7th Edition):
Meslameni, Mohamed. “Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. : Stokes and Oseen equations in an exterior domain with different boundary conditions.” 2013. Web. 18 Jan 2021.
Vancouver:
Meslameni M. Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. : Stokes and Oseen equations in an exterior domain with different boundary conditions. [Internet] [Doctoral dissertation]. Pau; 2013. [cited 2021 Jan 18].
Available from: http://www.theses.fr/2013PAUU3002.
Council of Science Editors:
Meslameni M. Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. : Stokes and Oseen equations in an exterior domain with different boundary conditions. [Doctoral Dissertation]. Pau; 2013. Available from: http://www.theses.fr/2013PAUU3002
5.
Rejaiba, Ahmed.
Equations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier : Stokes and Navier-Stokes equations with Navier boundary conditions.
Degree: Docteur es, Mathématiques Appliquées, 2014, Pau
URL: http://www.theses.fr/2014PAUU3050
► Résumé : Cette thèse est consacrée à l'étude des équations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier dans un ouvert…
(more)
▼ Résumé : Cette thèse est consacrée à l'étude des équations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier dans un ouvert borné de . Le manuscrit ici est composé de trois chapitres. Dans le premier, nous considérons les équations de Stokes stationnaires avec des conditions aux limites de Navier. Nous démontrons l'existence, l'unicité et la régularité de la solution d'abord dans un cadre hilbertien puis dans le cadre de la théorie . Nous traitons aussi le cas de solutions très faibles. Dans le deuxième chapitre, nous nous intéressons aux équations de Navier-Stokes avec la condition de Navier. Sous certaines hypothèses sur les données, nous démontrons l'existence de solution faible dans , avec en utilisant un théorème du point fixe appliqué à un problème d'Oseen. Nous démontrons examinons ensuite les questions de régularité des solutions en particulier dans . Dans le dernier chapitre, nous étudions le problème d'évolution de Stokes avec la condition de Navier. La résolution de ce problème se fait au moyen de la théorie des semi-groupes analytiques qui jouent un rôle important pour établir l'existence et l'unicité de la solution dans le cas homogène. Nous traitons le cas du problème non homogène par le biais des puissances imaginaires de l'opérateur de Stokes.
This thesis is devoted to the study of the Stokes equations and Navier-Stokes equations with Navier boundary conditions in a bounded domain of . The work contains three chapters: In the first chapter, we consider the stationary Stokes equations with Navier boundary condition. We show the existence, uniqueness and regularity of the solution in the Hilbert case and in the -theory. We prove also the case of very weak solutions. In the second chapter, we focus on the Navier-Stokes equations with the Navier boundary condition. We show the existence of the weak solution in , with by a fixed point theorem over the Oseen equation. We show also the existence of the strong solution in . In chapter three, we study the evolution Stokes problem with Navier boundary condition. For this, we apply the analytic semi-groups theory, which plays a crucial role in the study of existence and uniqueness of solution in the case of the homogeneous evolution problem. We treat the case of non-homogeneous problem through imaginary powers of the Stokes operator.
Advisors/Committee Members: Amrouche, Cherif (thesis director).
Subjects/Keywords: Equations de Stokes; Equations de Navier-Stokes; Equations d'Oseen; Conditions de Navier; Inégalité de Korn; Théorie Lp; Théorie des semi-groupes; Stokes equations; Navier-Stokes equations; Oseen equations; Navier boundary conditions; Korn inequality; Lp Theory; Semi-groups theory.
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Rejaiba, A. (2014). Equations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier : Stokes and Navier-Stokes equations with Navier boundary conditions. (Doctoral Dissertation). Pau. Retrieved from http://www.theses.fr/2014PAUU3050
Chicago Manual of Style (16th Edition):
Rejaiba, Ahmed. “Equations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier : Stokes and Navier-Stokes equations with Navier boundary conditions.” 2014. Doctoral Dissertation, Pau. Accessed January 18, 2021.
http://www.theses.fr/2014PAUU3050.
MLA Handbook (7th Edition):
Rejaiba, Ahmed. “Equations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier : Stokes and Navier-Stokes equations with Navier boundary conditions.” 2014. Web. 18 Jan 2021.
Vancouver:
Rejaiba A. Equations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier : Stokes and Navier-Stokes equations with Navier boundary conditions. [Internet] [Doctoral dissertation]. Pau; 2014. [cited 2021 Jan 18].
Available from: http://www.theses.fr/2014PAUU3050.
Council of Science Editors:
Rejaiba A. Equations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier : Stokes and Navier-Stokes equations with Navier boundary conditions. [Doctoral Dissertation]. Pau; 2014. Available from: http://www.theses.fr/2014PAUU3050

Indian Institute of Science
6.
Pal, Birupaksha.
Projection based Variational Multiscale Methods for Incompressible Navier-Stokes Equations to Model Turbulent Flows in Time-dependent Domains.
Degree: PhD, Faculty of Engineering, 2018, Indian Institute of Science
URL: http://etd.iisc.ac.in/handle/2005/3714
► Numerical solution of differential equations having multitude of scales in the solution field is one of the most challenging research areas, but highly demanded in…
(more)
▼ Numerical solution of differential
equations having multitude of scales in the solution field is one of the most challenging research areas, but highly demanded in scientific and industrial applications. One of the natural approaches for handling such problems is to separate the scales and approximate the solution of the segregated scales with appropriate numerical method.
Variational multiscale method (VMS) is a predominant method in the paradigm of scale separation schemes.
In our work we have used the VMS technique to develop a numerical scheme for computations of turbulent flows in time-dependent domains. VMS allows separation of the entire range of scales in the flow field into two or three groups, thereby enabling a different numerical treatment for the different groups. In the context of computational fluid dynamics(CFD), VMS is a significant new improvement over the classical large eddy simulation (LES). VMS does away with the commutation errors arising due to filtering in LES. Further, in a three-scale VMS approach the model for the subgrid scale can be contained to only a part of the resolved scales instead of effecting the entire range of resolved scales.
The projection based VMS scheme that we have developed gives a robust and efficient method for solving problems of turbulent fluid flows in deforming domains, governed by incompressible Navier {Stokes
equations. In addition to the existing challenges due to turbulence, the computational complexity of
the problem increases further when the considered domain is time-dependent. In this work, we have used an arbitrary Lagrangian-Eulerian (ALE) based VMS scheme to account for the domain deformation. In the proposed scheme, the large scales are represented by an additional tensor valued space. The resolved large and small scales are computed in a single unified equation, and the effect of unresolved scales is confined only to the resolved small scales, by using a projection operator. The popular Smagorinsky eddy viscosity model is used to approximate the effects of unresolved scales. The used ALE approach consists of an elastic mesh update technique. Moreover, a computationally efficient scheme is obtained by the choice of orthogonal finite element basis function for the resolved large scales, which allows to reformulate the ALE-VMS system matrix into the standard form of the NSE system matrix. Thus, any existing Navier{Stokes solver can be utilized for this scheme, with modifications. Further, the stability and error estimates of the scheme using a linear model of the NSE are also derived. Finally, the proposed scheme has been validated by a number of numerical examples over a wide range of problems.
Advisors/Committee Members: Ganesan, Sashikumaar (advisor).
Subjects/Keywords: Turbulent Flow; Incompressible Navier-Stokes Equations; Turbulene Modeling; Magnetohydrodynamics; Turbulent Fluid Flow; Variational Multiscale Method (VMS); Navier{Stokes Equations; Computational Fluid Dynamics (CFD); Arbitrary Lagrangian Eulerian; Time Dependent Domains; Aerofoil; ALE-Oseen Equation; VMS Formulation; Computer Science
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Pal, B. (2018). Projection based Variational Multiscale Methods for Incompressible Navier-Stokes Equations to Model Turbulent Flows in Time-dependent Domains. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3714
Chicago Manual of Style (16th Edition):
Pal, Birupaksha. “Projection based Variational Multiscale Methods for Incompressible Navier-Stokes Equations to Model Turbulent Flows in Time-dependent Domains.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed January 18, 2021.
http://etd.iisc.ac.in/handle/2005/3714.
MLA Handbook (7th Edition):
Pal, Birupaksha. “Projection based Variational Multiscale Methods for Incompressible Navier-Stokes Equations to Model Turbulent Flows in Time-dependent Domains.” 2018. Web. 18 Jan 2021.
Vancouver:
Pal B. Projection based Variational Multiscale Methods for Incompressible Navier-Stokes Equations to Model Turbulent Flows in Time-dependent Domains. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2021 Jan 18].
Available from: http://etd.iisc.ac.in/handle/2005/3714.
Council of Science Editors:
Pal B. Projection based Variational Multiscale Methods for Incompressible Navier-Stokes Equations to Model Turbulent Flows in Time-dependent Domains. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3714
.