Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Organic memristors). Showing records 1 – 2 of 2 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Nawrocki, Robert A. Fabrication And Application Of A Polymer Neuromorphic Circuitry Based On Polymer Memristive Devices And Polymer Transistors.

Degree: PhD, Engineering, 2014, U of Denver

Neuromorphic engineering is a discipline that aims to address the shortcomings of today's serial computers, namely large power consumption, susceptibility to physical damage, as well as the need for explicit programming, by applying biologically-inspired principles to develop neural systems with applications such as machine learning and perception, autonomous robotics and generic artificial intelligence. This doctoral dissertation presents work performed fabricating a previously developed type of polymer neuromorphic architecture, termed Polymer Neuromorphic Circuitry (PNC), inspired by the McCulloch-Pitts model of an artificial neuron. The major contribution of this dissertation is a development of processing techniques necessary to realize the Polymer Neuromorphic Circuitry, which required a development of individual polymer electronics elements, as well as customization of fabrication processes necessary for the realization of the circuitry on separate substrates as well as on a single substrate. This is the first demonstration of a fabrication of an entire neuron, and more importantly, a network of such neurons, that includes both the weighting functionality of a synapse and the somatic summing, all realized with polymer electronics technology. Polymer electronics is a new branch of electronics that is based on conductive and semi-conductive polymers. These new elements hold a great advantage over the conventional, inorganic electronics in the form of physical flexibility, low cost and ease of fabrication, manufacturing compatibility with many substrate materials, as well as greater biological compatibility. These advantages were the primary motivation for the choice to fabricate all of the electrical components required to realize the PNC, namely polymer transistors, polymer memristive devices, and polymer resistors, with polymer electronics components. The efficacy of this design is validated by demonstrating that the activation function of a single neuron approximates the sigmoidal function commonly employed by artificial neural networks. The utility of the neuromorphic circuitry is further corroborated by illustrating that a network of such neurons, and even a single neuron, are capable of performing linear classification for a real-life problem. Advisors/Committee Members: Richard M. Voyles, Sean E. Shaheen.

Subjects/Keywords: Memristive Devices; Memristors; Neuromorphic Engineering; Organic Electronics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nawrocki, R. A. (2014). Fabrication And Application Of A Polymer Neuromorphic Circuitry Based On Polymer Memristive Devices And Polymer Transistors. (Doctoral Dissertation). U of Denver. Retrieved from https://digitalcommons.du.edu/etd/470

Chicago Manual of Style (16th Edition):

Nawrocki, Robert A. “Fabrication And Application Of A Polymer Neuromorphic Circuitry Based On Polymer Memristive Devices And Polymer Transistors.” 2014. Doctoral Dissertation, U of Denver. Accessed December 12, 2019. https://digitalcommons.du.edu/etd/470.

MLA Handbook (7th Edition):

Nawrocki, Robert A. “Fabrication And Application Of A Polymer Neuromorphic Circuitry Based On Polymer Memristive Devices And Polymer Transistors.” 2014. Web. 12 Dec 2019.

Vancouver:

Nawrocki RA. Fabrication And Application Of A Polymer Neuromorphic Circuitry Based On Polymer Memristive Devices And Polymer Transistors. [Internet] [Doctoral dissertation]. U of Denver; 2014. [cited 2019 Dec 12]. Available from: https://digitalcommons.du.edu/etd/470.

Council of Science Editors:

Nawrocki RA. Fabrication And Application Of A Polymer Neuromorphic Circuitry Based On Polymer Memristive Devices And Polymer Transistors. [Doctoral Dissertation]. U of Denver; 2014. Available from: https://digitalcommons.du.edu/etd/470


Université Paris-Sud – Paris XI

2. Cabaret, Théo. Etude, réalisation et caractérisation de memristors organiques électro-greffés en tant que nanosynapses de circuits neuro-inspirés : Study, fabrication and characterization of electro-grafted organic memristors as nanosynapses for neuro inspired circuits.

Degree: Docteur es, Physique‎, 2014, Université Paris-Sud – Paris XI

Cette thèse s'inscrit dans le contexte de l'étude des circuits neuromorphiques utilisant des dispositifs memristifs comme synapses. Son objectif principal est d'évaluer les mérites d'une nouvelle classe de mémoires organiques développées au LICSEN (CEA Saclay/IRAMIS) et, plus particulièrement, leur adéquation avec les propositions d'implémentation et les règles d'apprentissage proposées par l'équipe NanoArchi de l'IEF (Univ. Paris-Sud, Orsay). Les memristors étudiés sont basés sur l'electro-greffage en films minces de complexes organiques redox pour la formation de jonctions métal/molécules/métal robustes et scalables. Outre la fabrication de memristors, le travail inclut d'importants efforts de caractérisation électrique (vitesse, non-volatilité, scalabilité, robustesse, etc.) visant d'une part à étudier les mécanismes de commutation dans ces nouveaux matériaux memristifs organiques, et d'autres part, à évaluer leur potentiel en tant que synapses. Cette thèse présente également une étude préparatoire à la réalisation d'un démonstrateur de circuit mixte de type réseaux de neurones combinant nano-memristors et électronique conventionnelle (programmabilité des dispositifs en mode impulsionnel, réalisation d'assemblées de dispositifs, variabilité). De plus, la démonstration de la compatibilité de ces memristors avec la propriété STDP (Spike Timing Dependent Plasticity) ainsi que de l’apprentissage d’un « réflexe conditionné » ouvrent la voie aux apprentissages non-supervisés.

This PhD project takes place in the context of the study of neuromorphic circuits using memristor devices as synapses. The main objective is to evaluate a new class of organic memories developed at LICSEN (CEA Saclay/IRAMIS) and particularly their compatibility with the learning rules and the implementation strategy proposed by the Nanoarchi group at IEF (Univ. Paris-Sud, Orsay). These new memristors are based on the electro-grafting of organic redox complexes thin films to form robust and scalable metal/molecules/metal junctions. In addition to memristor fabrication, this work includes detailed electrical characterization studies (speed, retention property, scalability, robustness, etc.) aiming at, on the one hand, establishing the commutation mechanism in these new memristors and, on the other hand, evaluating their potential as synapses. This work also proposes a preparatory study of a neural-network type mixed-circuit demonstrator combining nano-memristors and conventional electronic (programmability of devices by spikes, fabrication of assemblies of memristors, variability). Moreover the demonstration of the compatibility of such memristors with the STDP (Spike Timing Dependent Plasticity) property and of the learning of a “conditioned reflex” opens the way to future unsupervised learning studies.

Advisors/Committee Members: Klein, Jacques-Olivier (thesis director).

Subjects/Keywords: Memristors organiques; Mémoires résistives; Circuit neuro-inspiré; STDP; Nanotubes de carbone; Organic memristors; Resistive memory; Neuro inspired circuit; STDP; Carbon nanotubes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cabaret, T. (2014). Etude, réalisation et caractérisation de memristors organiques électro-greffés en tant que nanosynapses de circuits neuro-inspirés : Study, fabrication and characterization of electro-grafted organic memristors as nanosynapses for neuro inspired circuits. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2014PA112168

Chicago Manual of Style (16th Edition):

Cabaret, Théo. “Etude, réalisation et caractérisation de memristors organiques électro-greffés en tant que nanosynapses de circuits neuro-inspirés : Study, fabrication and characterization of electro-grafted organic memristors as nanosynapses for neuro inspired circuits.” 2014. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed December 12, 2019. http://www.theses.fr/2014PA112168.

MLA Handbook (7th Edition):

Cabaret, Théo. “Etude, réalisation et caractérisation de memristors organiques électro-greffés en tant que nanosynapses de circuits neuro-inspirés : Study, fabrication and characterization of electro-grafted organic memristors as nanosynapses for neuro inspired circuits.” 2014. Web. 12 Dec 2019.

Vancouver:

Cabaret T. Etude, réalisation et caractérisation de memristors organiques électro-greffés en tant que nanosynapses de circuits neuro-inspirés : Study, fabrication and characterization of electro-grafted organic memristors as nanosynapses for neuro inspired circuits. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2014. [cited 2019 Dec 12]. Available from: http://www.theses.fr/2014PA112168.

Council of Science Editors:

Cabaret T. Etude, réalisation et caractérisation de memristors organiques électro-greffés en tant que nanosynapses de circuits neuro-inspirés : Study, fabrication and characterization of electro-grafted organic memristors as nanosynapses for neuro inspired circuits. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2014. Available from: http://www.theses.fr/2014PA112168

.