Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(Optical Cryoimaging). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Wisconsin – Milwaukee

1. Ghanian, Zahra. Quantitative Optical Studies of Oxidative Stress in Rodent Models of Eye and Lung Injuries.

Degree: PhD, Engineering, 2016, University of Wisconsin – Milwaukee

Optical imaging techniques have emerged as essential tools for reliable assessment of organ structure, biochemistry, and metabolic function. The recognition of metabolic markers for disease diagnosis has rekindled significant interest in the development of optical methods to measure the metabolism of the organ. The objective of my research was to employ optical imaging tools and to implement signal and image processing techniques capable of quantifying cellular metabolism for the diagnosis of diseases in human organs such as eyes and lungs. To accomplish this goal, three different tools, cryoimager, fluorescent microscope, and optical coherence tomography system were utilized to study the physiological metabolic markers and early structural changes due to injury in vitro, ex vivo, and at cryogenic temperatures. Cryogenic studies of eye injuries in animal models were performed using a fluorescence cryoimager to monitor two endogenous mitochondrial fluorophores, NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide). The mitochondrial redox ratio (NADH/ FAD), which is correlated with oxidative stress level, is an optical biomarker. The spatial distribution of mitochondrial redox ratio in injured eyes with different durations of the disease was delineated. This spatiotemporal information was helpful to investigate the heterogeneity of the ocular oxidative stress in the eyes during diseases and its association with retinopathy. To study the metabolism of the eye tissue, the retinal layer was targeted, which required high resolution imaging of the eye as well as developing a segmentation algorithm to quantitatively monitor and measure the metabolic redox state of the retina. To achieve a high signal to noise ratio in fluorescence image acquisition, the imaging was performed at cryogenic temperatures, which increased the quantum yield of the intrinsic fluorophores. Microscopy studies of cells were accomplished by using an inverted fluorescence microscope. Fixed slides of the retina tissue as well as exogenous fluorophores in live lung cells were imaged using fluorescent and time-lapse microscopy. Image processing techniques were developed to quantify subtle changes in the morphological parameters of the retinal vasculature network for the early detection of the injury. This implemented image cytometry tool was capable of segmenting vascular cells, and calculating vasculature features including: area, caliber, branch points, fractal dimension, and acellular capillaries, and classifying the healthy and injured retinas. Using time-lapse microscopy, the dynamics of cellular ROS (Reactive Oxygen Species) concentration was quantified and modeled in ROS-mediated lung injuries. A new methodology and an experimental protocol were designed to quantify changes of oxidative stress in different stress conditions and to localize the site of ROS in an uncoupled state of pulmonary artery endothelial cells (PAECs). Ex vivo studies of lung were conducted using a spectral-domain optical… Advisors/Committee Members: Mahsa Ranji.

Subjects/Keywords: Disease Diagnosis; Fluorescence Microscopy; Image Analysis; Optical Coherence Tomography; Optical Cryoimaging; Oxidative Stress; Bioimaging and Biomedical Optics; Biomedical Engineering and Bioengineering; Optics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ghanian, Z. (2016). Quantitative Optical Studies of Oxidative Stress in Rodent Models of Eye and Lung Injuries. (Doctoral Dissertation). University of Wisconsin – Milwaukee. Retrieved from https://dc.uwm.edu/etd/1368

Chicago Manual of Style (16th Edition):

Ghanian, Zahra. “Quantitative Optical Studies of Oxidative Stress in Rodent Models of Eye and Lung Injuries.” 2016. Doctoral Dissertation, University of Wisconsin – Milwaukee. Accessed July 17, 2019. https://dc.uwm.edu/etd/1368.

MLA Handbook (7th Edition):

Ghanian, Zahra. “Quantitative Optical Studies of Oxidative Stress in Rodent Models of Eye and Lung Injuries.” 2016. Web. 17 Jul 2019.

Vancouver:

Ghanian Z. Quantitative Optical Studies of Oxidative Stress in Rodent Models of Eye and Lung Injuries. [Internet] [Doctoral dissertation]. University of Wisconsin – Milwaukee; 2016. [cited 2019 Jul 17]. Available from: https://dc.uwm.edu/etd/1368.

Council of Science Editors:

Ghanian Z. Quantitative Optical Studies of Oxidative Stress in Rodent Models of Eye and Lung Injuries. [Doctoral Dissertation]. University of Wisconsin – Milwaukee; 2016. Available from: https://dc.uwm.edu/etd/1368

.