Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Object segmentation). Showing records 1 – 30 of 217 total matches.

[1] [2] [3] [4] [5] [6] [7] [8]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Languages

Country

▼ Search Limiters


Queens University

1. Lam, Joseph. Object Recognition by Registration of Repeatable 3D Interest Segments .

Degree: Electrical and Computer Engineering, 2015, Queens University

 3D object recognition using depth data remains a difficult problem in computer vision. In this thesis, an object recognition system based on registering repeatable 3D… (more)

Subjects/Keywords: 3D Segmentation ; Object Recognition ; Registration

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lam, J. (2015). Object Recognition by Registration of Repeatable 3D Interest Segments . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/12728

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lam, Joseph. “Object Recognition by Registration of Repeatable 3D Interest Segments .” 2015. Thesis, Queens University. Accessed August 07, 2020. http://hdl.handle.net/1974/12728.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lam, Joseph. “Object Recognition by Registration of Repeatable 3D Interest Segments .” 2015. Web. 07 Aug 2020.

Vancouver:

Lam J. Object Recognition by Registration of Repeatable 3D Interest Segments . [Internet] [Thesis]. Queens University; 2015. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/1974/12728.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lam J. Object Recognition by Registration of Repeatable 3D Interest Segments . [Thesis]. Queens University; 2015. Available from: http://hdl.handle.net/1974/12728

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Louisville

2. Farag, Amal A. Modeling small objects under uncertainties : novel algorithms and applications.

Degree: PhD, 2012, University of Louisville

 Active Shape Models (ASM), Active Appearance Models (AAM) and Active Tensor Models (ATM) are common approaches to model elastic (deformable) objects. These models require an… (more)

Subjects/Keywords: Object modeling; Object categorization; Object segmentation; Lung nodules; Object detection

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Farag, A. A. (2012). Modeling small objects under uncertainties : novel algorithms and applications. (Doctoral Dissertation). University of Louisville. Retrieved from 10.18297/etd/423 ; https://ir.library.louisville.edu/etd/423

Chicago Manual of Style (16th Edition):

Farag, Amal A. “Modeling small objects under uncertainties : novel algorithms and applications.” 2012. Doctoral Dissertation, University of Louisville. Accessed August 07, 2020. 10.18297/etd/423 ; https://ir.library.louisville.edu/etd/423.

MLA Handbook (7th Edition):

Farag, Amal A. “Modeling small objects under uncertainties : novel algorithms and applications.” 2012. Web. 07 Aug 2020.

Vancouver:

Farag AA. Modeling small objects under uncertainties : novel algorithms and applications. [Internet] [Doctoral dissertation]. University of Louisville; 2012. [cited 2020 Aug 07]. Available from: 10.18297/etd/423 ; https://ir.library.louisville.edu/etd/423.

Council of Science Editors:

Farag AA. Modeling small objects under uncertainties : novel algorithms and applications. [Doctoral Dissertation]. University of Louisville; 2012. Available from: 10.18297/etd/423 ; https://ir.library.louisville.edu/etd/423


UCLA

3. Taylor, Brian. Leveraging Occlusion Cues for Causal Video Object Segmentation.

Degree: Computer Science, 2016, UCLA

 This thesis describes a framework leveraging occlusions as a cue for detecting objects and accurately localizing their boundaries throughout the course of a video. Triggered… (more)

Subjects/Keywords: Computer science; depth layer segmentation; object tracking; occlusions; video object segmentation; video segmentation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Taylor, B. (2016). Leveraging Occlusion Cues for Causal Video Object Segmentation. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/3xz0z5k9

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Taylor, Brian. “Leveraging Occlusion Cues for Causal Video Object Segmentation.” 2016. Thesis, UCLA. Accessed August 07, 2020. http://www.escholarship.org/uc/item/3xz0z5k9.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Taylor, Brian. “Leveraging Occlusion Cues for Causal Video Object Segmentation.” 2016. Web. 07 Aug 2020.

Vancouver:

Taylor B. Leveraging Occlusion Cues for Causal Video Object Segmentation. [Internet] [Thesis]. UCLA; 2016. [cited 2020 Aug 07]. Available from: http://www.escholarship.org/uc/item/3xz0z5k9.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Taylor B. Leveraging Occlusion Cues for Causal Video Object Segmentation. [Thesis]. UCLA; 2016. Available from: http://www.escholarship.org/uc/item/3xz0z5k9

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universiteit Utrecht

4. Deiman, J. Automatic Tracking, Segmentation, Removal and Replay of Traffic in Panoramic 360-Degree Videos for Virtual Reality.

Degree: 2016, Universiteit Utrecht

 The Netherlands Aerospace Centre (NLR) has a virtual reality setup which allows users to experience an airplane fly-over with realistically simulated sound. They want to… (more)

Subjects/Keywords: object detection; object tracking; object segmentation; inpainting; virtual reality; panoramic video

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Deiman, J. (2016). Automatic Tracking, Segmentation, Removal and Replay of Traffic in Panoramic 360-Degree Videos for Virtual Reality. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/334268

Chicago Manual of Style (16th Edition):

Deiman, J. “Automatic Tracking, Segmentation, Removal and Replay of Traffic in Panoramic 360-Degree Videos for Virtual Reality.” 2016. Masters Thesis, Universiteit Utrecht. Accessed August 07, 2020. http://dspace.library.uu.nl:8080/handle/1874/334268.

MLA Handbook (7th Edition):

Deiman, J. “Automatic Tracking, Segmentation, Removal and Replay of Traffic in Panoramic 360-Degree Videos for Virtual Reality.” 2016. Web. 07 Aug 2020.

Vancouver:

Deiman J. Automatic Tracking, Segmentation, Removal and Replay of Traffic in Panoramic 360-Degree Videos for Virtual Reality. [Internet] [Masters thesis]. Universiteit Utrecht; 2016. [cited 2020 Aug 07]. Available from: http://dspace.library.uu.nl:8080/handle/1874/334268.

Council of Science Editors:

Deiman J. Automatic Tracking, Segmentation, Removal and Replay of Traffic in Panoramic 360-Degree Videos for Virtual Reality. [Masters Thesis]. Universiteit Utrecht; 2016. Available from: http://dspace.library.uu.nl:8080/handle/1874/334268


University of Washington

5. Huang, Tsung-Wei. Automatic Video Analysis for Electronic Monitoring of Fishery Activities.

Degree: PhD, 2019, University of Washington

 Recently, automated imagery analysis techniques have drawn increasing attention in fishery science and industry. Compared to traditional human observing and monitoring, automated imagery analysis techniques… (more)

Subjects/Keywords: object classification; object segmentation; object tracking; Electrical engineering; Electrical engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, T. (2019). Automatic Video Analysis for Electronic Monitoring of Fishery Activities. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/44796

Chicago Manual of Style (16th Edition):

Huang, Tsung-Wei. “Automatic Video Analysis for Electronic Monitoring of Fishery Activities.” 2019. Doctoral Dissertation, University of Washington. Accessed August 07, 2020. http://hdl.handle.net/1773/44796.

MLA Handbook (7th Edition):

Huang, Tsung-Wei. “Automatic Video Analysis for Electronic Monitoring of Fishery Activities.” 2019. Web. 07 Aug 2020.

Vancouver:

Huang T. Automatic Video Analysis for Electronic Monitoring of Fishery Activities. [Internet] [Doctoral dissertation]. University of Washington; 2019. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/1773/44796.

Council of Science Editors:

Huang T. Automatic Video Analysis for Electronic Monitoring of Fishery Activities. [Doctoral Dissertation]. University of Washington; 2019. Available from: http://hdl.handle.net/1773/44796

6. Zou, Wenbin. Semantic-oriented Object Segmentation : Segmentation d'objet pour l'interprétation sémantique.

Degree: Docteur es, Traitement du signal et de l'image, 2014, Rennes, INSA

Cette thèse porte sur les problèmes de segmentation d’objets et la segmentation sémantique qui visent soit à séparer des objets du fond, soit à l’attribution… (more)

Subjects/Keywords: Segmentation d’objets; Segmentation sémantique; Détection de saillance; Object segmentation; Semantic segmentation; Saliency detection; 621.367

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zou, W. (2014). Semantic-oriented Object Segmentation : Segmentation d'objet pour l'interprétation sémantique. (Doctoral Dissertation). Rennes, INSA. Retrieved from http://www.theses.fr/2014ISAR0007

Chicago Manual of Style (16th Edition):

Zou, Wenbin. “Semantic-oriented Object Segmentation : Segmentation d'objet pour l'interprétation sémantique.” 2014. Doctoral Dissertation, Rennes, INSA. Accessed August 07, 2020. http://www.theses.fr/2014ISAR0007.

MLA Handbook (7th Edition):

Zou, Wenbin. “Semantic-oriented Object Segmentation : Segmentation d'objet pour l'interprétation sémantique.” 2014. Web. 07 Aug 2020.

Vancouver:

Zou W. Semantic-oriented Object Segmentation : Segmentation d'objet pour l'interprétation sémantique. [Internet] [Doctoral dissertation]. Rennes, INSA; 2014. [cited 2020 Aug 07]. Available from: http://www.theses.fr/2014ISAR0007.

Council of Science Editors:

Zou W. Semantic-oriented Object Segmentation : Segmentation d'objet pour l'interprétation sémantique. [Doctoral Dissertation]. Rennes, INSA; 2014. Available from: http://www.theses.fr/2014ISAR0007


Australian National University

7. Zhang, Haoyang. Learning to Generate and Refine Object Proposals .

Degree: 2018, Australian National University

 Visual object recognition is a fundamental and challenging problem in computer vision. To build a practical recognition system, one is first confronted with high computation… (more)

Subjects/Keywords: object proposal; object candidate; object detection; object instance segmentation; convolutional neural network (CNN)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, H. (2018). Learning to Generate and Refine Object Proposals . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/143520

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhang, Haoyang. “Learning to Generate and Refine Object Proposals .” 2018. Thesis, Australian National University. Accessed August 07, 2020. http://hdl.handle.net/1885/143520.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhang, Haoyang. “Learning to Generate and Refine Object Proposals .” 2018. Web. 07 Aug 2020.

Vancouver:

Zhang H. Learning to Generate and Refine Object Proposals . [Internet] [Thesis]. Australian National University; 2018. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/1885/143520.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhang H. Learning to Generate and Refine Object Proposals . [Thesis]. Australian National University; 2018. Available from: http://hdl.handle.net/1885/143520

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – Merced

8. Safar, Simon. Learning shape priors with neural networks.

Degree: Electrical Engineering and Computer Science, 2014, University of California – Merced

 We propose two methods for object segmentation by combining learned shape priors with local features. The first, Max-Margin Boltzmann Machines, learns shapes in an unsupervised… (more)

Subjects/Keywords: Computer science; image; learning; object; segmentation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Safar, S. (2014). Learning shape priors with neural networks. (Thesis). University of California – Merced. Retrieved from http://www.escholarship.org/uc/item/709186x7

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Safar, Simon. “Learning shape priors with neural networks.” 2014. Thesis, University of California – Merced. Accessed August 07, 2020. http://www.escholarship.org/uc/item/709186x7.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Safar, Simon. “Learning shape priors with neural networks.” 2014. Web. 07 Aug 2020.

Vancouver:

Safar S. Learning shape priors with neural networks. [Internet] [Thesis]. University of California – Merced; 2014. [cited 2020 Aug 07]. Available from: http://www.escholarship.org/uc/item/709186x7.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Safar S. Learning shape priors with neural networks. [Thesis]. University of California – Merced; 2014. Available from: http://www.escholarship.org/uc/item/709186x7

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


King Abdullah University of Science and Technology

9. Lao, Dong. Minimum Delay Moving Object Detection.

Degree: 2017, King Abdullah University of Science and Technology

 This thesis presents a general framework and method for detection of an object in a video based on apparent motion. The object moves, at some… (more)

Subjects/Keywords: object detection; motion segmentation; optimal delay

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lao, D. (2017). Minimum Delay Moving Object Detection. (Thesis). King Abdullah University of Science and Technology. Retrieved from http://hdl.handle.net/10754/623619

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lao, Dong. “Minimum Delay Moving Object Detection.” 2017. Thesis, King Abdullah University of Science and Technology. Accessed August 07, 2020. http://hdl.handle.net/10754/623619.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lao, Dong. “Minimum Delay Moving Object Detection.” 2017. Web. 07 Aug 2020.

Vancouver:

Lao D. Minimum Delay Moving Object Detection. [Internet] [Thesis]. King Abdullah University of Science and Technology; 2017. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/10754/623619.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lao D. Minimum Delay Moving Object Detection. [Thesis]. King Abdullah University of Science and Technology; 2017. Available from: http://hdl.handle.net/10754/623619

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universitat Autònoma de Barcelona

10. Gonfaus, Josep M. Towards Deep Image Understanding: From pixels to semantics.

Degree: Departament de Ciències de la Computació, 2012, Universitat Autònoma de Barcelona

 Understand the content of the images is one of the great challenges of computer vision. Being able to recognize which are the objects in the… (more)

Subjects/Keywords: Object recognition; Localization; Segmentation; Tecnologies; 004

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gonfaus, J. M. (2012). Towards Deep Image Understanding: From pixels to semantics. (Thesis). Universitat Autònoma de Barcelona. Retrieved from http://hdl.handle.net/10803/117584

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gonfaus, Josep M. “Towards Deep Image Understanding: From pixels to semantics.” 2012. Thesis, Universitat Autònoma de Barcelona. Accessed August 07, 2020. http://hdl.handle.net/10803/117584.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gonfaus, Josep M. “Towards Deep Image Understanding: From pixels to semantics.” 2012. Web. 07 Aug 2020.

Vancouver:

Gonfaus JM. Towards Deep Image Understanding: From pixels to semantics. [Internet] [Thesis]. Universitat Autònoma de Barcelona; 2012. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/10803/117584.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gonfaus JM. Towards Deep Image Understanding: From pixels to semantics. [Thesis]. Universitat Autònoma de Barcelona; 2012. Available from: http://hdl.handle.net/10803/117584

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

11. Jain, Suyog Dutt. Human machine collaboration for foreground segmentation in images and videos.

Degree: PhD, Computer Science, 2018, University of Texas – Austin

 Foreground segmentation is defined as the problem of generating pixel level foreground masks for all the objects in a given image or video. Accurate foreground… (more)

Subjects/Keywords: Computer vision; Crowdsourcing; Human machine collaboration; Image and video segmentation; Image segmentation; Video segmentation; Foreground segmentation; Object segmentation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jain, S. D. (2018). Human machine collaboration for foreground segmentation in images and videos. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/63453

Chicago Manual of Style (16th Edition):

Jain, Suyog Dutt. “Human machine collaboration for foreground segmentation in images and videos.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed August 07, 2020. http://hdl.handle.net/2152/63453.

MLA Handbook (7th Edition):

Jain, Suyog Dutt. “Human machine collaboration for foreground segmentation in images and videos.” 2018. Web. 07 Aug 2020.

Vancouver:

Jain SD. Human machine collaboration for foreground segmentation in images and videos. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/2152/63453.

Council of Science Editors:

Jain SD. Human machine collaboration for foreground segmentation in images and videos. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/63453


University of Illinois – Urbana-Champaign

12. Xu, Ning. Image and video object selection.

Degree: PhD, Electrical & Computer Engr, 2017, University of Illinois – Urbana-Champaign

 Image and video object selection present fundamental research problems in the computer vision field and have many practical applications. They are important technologies in image… (more)

Subjects/Keywords: Object selection; Computer vision; Deep learning; Image segmentation; Video segmentation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xu, N. (2017). Image and video object selection. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/99515

Chicago Manual of Style (16th Edition):

Xu, Ning. “Image and video object selection.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed August 07, 2020. http://hdl.handle.net/2142/99515.

MLA Handbook (7th Edition):

Xu, Ning. “Image and video object selection.” 2017. Web. 07 Aug 2020.

Vancouver:

Xu N. Image and video object selection. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/2142/99515.

Council of Science Editors:

Xu N. Image and video object selection. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/99515


Temple University

13. Ma, Tianyang. Graph-based Inference with Constraints for Object Detection and Segmentation.

Degree: PhD, 2013, Temple University

Computer and Information Science

For many fundamental problems of computer vision, adopting a graph-based framework can be straight-forward and very effective. In this thesis, I… (more)

Subjects/Keywords: Computer science;

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ma, T. (2013). Graph-based Inference with Constraints for Object Detection and Segmentation. (Doctoral Dissertation). Temple University. Retrieved from http://digital.library.temple.edu/u?/p245801coll10,231622

Chicago Manual of Style (16th Edition):

Ma, Tianyang. “Graph-based Inference with Constraints for Object Detection and Segmentation.” 2013. Doctoral Dissertation, Temple University. Accessed August 07, 2020. http://digital.library.temple.edu/u?/p245801coll10,231622.

MLA Handbook (7th Edition):

Ma, Tianyang. “Graph-based Inference with Constraints for Object Detection and Segmentation.” 2013. Web. 07 Aug 2020.

Vancouver:

Ma T. Graph-based Inference with Constraints for Object Detection and Segmentation. [Internet] [Doctoral dissertation]. Temple University; 2013. [cited 2020 Aug 07]. Available from: http://digital.library.temple.edu/u?/p245801coll10,231622.

Council of Science Editors:

Ma T. Graph-based Inference with Constraints for Object Detection and Segmentation. [Doctoral Dissertation]. Temple University; 2013. Available from: http://digital.library.temple.edu/u?/p245801coll10,231622


University of Alberta

14. Saini, Amritpal S. Real time spatio temporal segmentation of RGBD cloud and applications.

Degree: MS, Department of Computing Science, 2015, University of Alberta

 There is considerable research work going on segmentation of RGB-D clouds due its applications in tasks like scene understanding, robotics etc. The availability of inexpensive… (more)

Subjects/Keywords: Segmentation; Object discovery; Object detection; GPU; Point cloud; RGBD; Micorsoft Kinect

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Saini, A. S. (2015). Real time spatio temporal segmentation of RGBD cloud and applications. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/k3569693x

Chicago Manual of Style (16th Edition):

Saini, Amritpal S. “Real time spatio temporal segmentation of RGBD cloud and applications.” 2015. Masters Thesis, University of Alberta. Accessed August 07, 2020. https://era.library.ualberta.ca/files/k3569693x.

MLA Handbook (7th Edition):

Saini, Amritpal S. “Real time spatio temporal segmentation of RGBD cloud and applications.” 2015. Web. 07 Aug 2020.

Vancouver:

Saini AS. Real time spatio temporal segmentation of RGBD cloud and applications. [Internet] [Masters thesis]. University of Alberta; 2015. [cited 2020 Aug 07]. Available from: https://era.library.ualberta.ca/files/k3569693x.

Council of Science Editors:

Saini AS. Real time spatio temporal segmentation of RGBD cloud and applications. [Masters Thesis]. University of Alberta; 2015. Available from: https://era.library.ualberta.ca/files/k3569693x


University of Manitoba

15. Naha, Shujon. Zero-shot Learning for Visual Recognition Problems.

Degree: Computer Science, 2015, University of Manitoba

 In this thesis we discuss different aspects of zero-shot learning and propose solutions for three challenging visual recognition problems: 1) unknown object recognition from images… (more)

Subjects/Keywords: Zero-shot Learning; Computer Vision; Object Recognition; Action Recognition; Object Segmentation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Naha, S. (2015). Zero-shot Learning for Visual Recognition Problems. (Masters Thesis). University of Manitoba. Retrieved from http://hdl.handle.net/1993/31806

Chicago Manual of Style (16th Edition):

Naha, Shujon. “Zero-shot Learning for Visual Recognition Problems.” 2015. Masters Thesis, University of Manitoba. Accessed August 07, 2020. http://hdl.handle.net/1993/31806.

MLA Handbook (7th Edition):

Naha, Shujon. “Zero-shot Learning for Visual Recognition Problems.” 2015. Web. 07 Aug 2020.

Vancouver:

Naha S. Zero-shot Learning for Visual Recognition Problems. [Internet] [Masters thesis]. University of Manitoba; 2015. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/1993/31806.

Council of Science Editors:

Naha S. Zero-shot Learning for Visual Recognition Problems. [Masters Thesis]. University of Manitoba; 2015. Available from: http://hdl.handle.net/1993/31806


Australian National University

16. Wang, Tao. Context-driven Object Detection and Segmentation with Auxiliary Information .

Degree: 2016, Australian National University

 One fundamental problem in computer vision and robotics is to localize objects of interest in an image. The task can either be formulated as an… (more)

Subjects/Keywords: object detection; glass object segmentation; semi-supervised boosting

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, T. (2016). Context-driven Object Detection and Segmentation with Auxiliary Information . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/110355

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wang, Tao. “Context-driven Object Detection and Segmentation with Auxiliary Information .” 2016. Thesis, Australian National University. Accessed August 07, 2020. http://hdl.handle.net/1885/110355.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wang, Tao. “Context-driven Object Detection and Segmentation with Auxiliary Information .” 2016. Web. 07 Aug 2020.

Vancouver:

Wang T. Context-driven Object Detection and Segmentation with Auxiliary Information . [Internet] [Thesis]. Australian National University; 2016. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/1885/110355.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang T. Context-driven Object Detection and Segmentation with Auxiliary Information . [Thesis]. Australian National University; 2016. Available from: http://hdl.handle.net/1885/110355

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

17. Yin, Zhaozheng. Persistent Object Tracking by Figure-Ground Segmentation.

Degree: PhD, Computer Science and Engineering, 2009, Penn State University

 To persistently track objects through changes in appearance and environment, a tracker's object appearance model must be adapted over time. However, adaptation must be done… (more)

Subjects/Keywords: motion segmentation; figure-ground segmentation; feature selection and fusion; tracking failure recovery; object tracking

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yin, Z. (2009). Persistent Object Tracking by Figure-Ground Segmentation. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/9876

Chicago Manual of Style (16th Edition):

Yin, Zhaozheng. “Persistent Object Tracking by Figure-Ground Segmentation.” 2009. Doctoral Dissertation, Penn State University. Accessed August 07, 2020. https://etda.libraries.psu.edu/catalog/9876.

MLA Handbook (7th Edition):

Yin, Zhaozheng. “Persistent Object Tracking by Figure-Ground Segmentation.” 2009. Web. 07 Aug 2020.

Vancouver:

Yin Z. Persistent Object Tracking by Figure-Ground Segmentation. [Internet] [Doctoral dissertation]. Penn State University; 2009. [cited 2020 Aug 07]. Available from: https://etda.libraries.psu.edu/catalog/9876.

Council of Science Editors:

Yin Z. Persistent Object Tracking by Figure-Ground Segmentation. [Doctoral Dissertation]. Penn State University; 2009. Available from: https://etda.libraries.psu.edu/catalog/9876


The Ohio State University

18. Sharma, Vinay. Simultaneous object detection and segmentation using top-down and bottom-up processing.

Degree: PhD, Computer and Information Science, 2008, The Ohio State University

 This thesis addresses the fundamental tasks of detecting objects in images, recovering their location, and determining their silhouette shape. We focus on object detection techniques… (more)

Subjects/Keywords: Computer Science; Object detection; Object segmentation; Simultaneous detection and segmentation; Thermal imagery; IR imagery; EO-IR fusion

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sharma, V. (2008). Simultaneous object detection and segmentation using top-down and bottom-up processing. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1196372113

Chicago Manual of Style (16th Edition):

Sharma, Vinay. “Simultaneous object detection and segmentation using top-down and bottom-up processing.” 2008. Doctoral Dissertation, The Ohio State University. Accessed August 07, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1196372113.

MLA Handbook (7th Edition):

Sharma, Vinay. “Simultaneous object detection and segmentation using top-down and bottom-up processing.” 2008. Web. 07 Aug 2020.

Vancouver:

Sharma V. Simultaneous object detection and segmentation using top-down and bottom-up processing. [Internet] [Doctoral dissertation]. The Ohio State University; 2008. [cited 2020 Aug 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1196372113.

Council of Science Editors:

Sharma V. Simultaneous object detection and segmentation using top-down and bottom-up processing. [Doctoral Dissertation]. The Ohio State University; 2008. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1196372113

19. Petit, Antoine. Robust visual detection and tracking of complex objects : applications to space autonomous rendez-vous and proximity operations : Détection et suivi visuels robustes d'objets complexes : applications au rendezvous spatial autonome.

Degree: Docteur es, Traitement du signal et télécommunications, 2013, Rennes 1

Dans cette thèse nous étudions le fait de localiser complètement un objet connu par vision artificielle, en utilisant une caméra monoculaire, ce qui constitue un… (more)

Subjects/Keywords: Suivi visuel; Détection d’objets; Segmentation; Robotique spatiale; Visual tracking; Object detection; Moving object segmentation; Space robotics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Petit, A. (2013). Robust visual detection and tracking of complex objects : applications to space autonomous rendez-vous and proximity operations : Détection et suivi visuels robustes d'objets complexes : applications au rendezvous spatial autonome. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2013REN1S190

Chicago Manual of Style (16th Edition):

Petit, Antoine. “Robust visual detection and tracking of complex objects : applications to space autonomous rendez-vous and proximity operations : Détection et suivi visuels robustes d'objets complexes : applications au rendezvous spatial autonome.” 2013. Doctoral Dissertation, Rennes 1. Accessed August 07, 2020. http://www.theses.fr/2013REN1S190.

MLA Handbook (7th Edition):

Petit, Antoine. “Robust visual detection and tracking of complex objects : applications to space autonomous rendez-vous and proximity operations : Détection et suivi visuels robustes d'objets complexes : applications au rendezvous spatial autonome.” 2013. Web. 07 Aug 2020.

Vancouver:

Petit A. Robust visual detection and tracking of complex objects : applications to space autonomous rendez-vous and proximity operations : Détection et suivi visuels robustes d'objets complexes : applications au rendezvous spatial autonome. [Internet] [Doctoral dissertation]. Rennes 1; 2013. [cited 2020 Aug 07]. Available from: http://www.theses.fr/2013REN1S190.

Council of Science Editors:

Petit A. Robust visual detection and tracking of complex objects : applications to space autonomous rendez-vous and proximity operations : Détection et suivi visuels robustes d'objets complexes : applications au rendezvous spatial autonome. [Doctoral Dissertation]. Rennes 1; 2013. Available from: http://www.theses.fr/2013REN1S190

20. Wang, Qiong. Salient object detection and segmentation in videos : Détection d'objets saillants et segmentation dans des vidéos.

Degree: Docteur es, Signal, Image, Vision, 2019, Rennes, INSA

Cette thèse est centrée sur le problème de la détection d'objets saillants et de leur segmentation dans une vidéo en vue de détecter les objets… (more)

Subjects/Keywords: Vidéo; Détection d'objet saillant; Segmentation d'instance d'objet; Apprentissage en profondeur; Video; Salient object detection; Object instance segmentation; Deep-learning; 006.7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, Q. (2019). Salient object detection and segmentation in videos : Détection d'objets saillants et segmentation dans des vidéos. (Doctoral Dissertation). Rennes, INSA. Retrieved from http://www.theses.fr/2019ISAR0003

Chicago Manual of Style (16th Edition):

Wang, Qiong. “Salient object detection and segmentation in videos : Détection d'objets saillants et segmentation dans des vidéos.” 2019. Doctoral Dissertation, Rennes, INSA. Accessed August 07, 2020. http://www.theses.fr/2019ISAR0003.

MLA Handbook (7th Edition):

Wang, Qiong. “Salient object detection and segmentation in videos : Détection d'objets saillants et segmentation dans des vidéos.” 2019. Web. 07 Aug 2020.

Vancouver:

Wang Q. Salient object detection and segmentation in videos : Détection d'objets saillants et segmentation dans des vidéos. [Internet] [Doctoral dissertation]. Rennes, INSA; 2019. [cited 2020 Aug 07]. Available from: http://www.theses.fr/2019ISAR0003.

Council of Science Editors:

Wang Q. Salient object detection and segmentation in videos : Détection d'objets saillants et segmentation dans des vidéos. [Doctoral Dissertation]. Rennes, INSA; 2019. Available from: http://www.theses.fr/2019ISAR0003


Vanderbilt University

21. Costello, Christopher John. Location Recognition Using a Very High Dimensional Feature Space.

Degree: PhD, Electrical Engineering, 2011, Vanderbilt University

 This work is focused on creating an autonomous location recognition system that is capable of determining its location based on the percepts observed in the… (more)

Subjects/Keywords: Object segmentation; Object tracking; Location recognition; Computer vision; Very high dimensional feature space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Costello, C. J. (2011). Location Recognition Using a Very High Dimensional Feature Space. (Doctoral Dissertation). Vanderbilt University. Retrieved from http://etd.library.vanderbilt.edu/available/etd-08112011-141322/ ;

Chicago Manual of Style (16th Edition):

Costello, Christopher John. “Location Recognition Using a Very High Dimensional Feature Space.” 2011. Doctoral Dissertation, Vanderbilt University. Accessed August 07, 2020. http://etd.library.vanderbilt.edu/available/etd-08112011-141322/ ;.

MLA Handbook (7th Edition):

Costello, Christopher John. “Location Recognition Using a Very High Dimensional Feature Space.” 2011. Web. 07 Aug 2020.

Vancouver:

Costello CJ. Location Recognition Using a Very High Dimensional Feature Space. [Internet] [Doctoral dissertation]. Vanderbilt University; 2011. [cited 2020 Aug 07]. Available from: http://etd.library.vanderbilt.edu/available/etd-08112011-141322/ ;.

Council of Science Editors:

Costello CJ. Location Recognition Using a Very High Dimensional Feature Space. [Doctoral Dissertation]. Vanderbilt University; 2011. Available from: http://etd.library.vanderbilt.edu/available/etd-08112011-141322/ ;


University of Houston

22. -8617-9683. A Computational Study of Visual Attention on Objects and Gestures during Infancy.

Degree: PhD, Computer Science, 2017, University of Houston

 Understanding the pathway to the development of visual attention and the role of vision in object name learning during infancy have been one of the… (more)

Subjects/Keywords: Object name learning; Infant visual attention; Head camera; Object segmentation; Motion analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-8617-9683. (2017). A Computational Study of Visual Attention on Objects and Gestures during Infancy. (Doctoral Dissertation). University of Houston. Retrieved from http://hdl.handle.net/10657/4809

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-8617-9683. “A Computational Study of Visual Attention on Objects and Gestures during Infancy.” 2017. Doctoral Dissertation, University of Houston. Accessed August 07, 2020. http://hdl.handle.net/10657/4809.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-8617-9683. “A Computational Study of Visual Attention on Objects and Gestures during Infancy.” 2017. Web. 07 Aug 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-8617-9683. A Computational Study of Visual Attention on Objects and Gestures during Infancy. [Internet] [Doctoral dissertation]. University of Houston; 2017. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/10657/4809.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-8617-9683. A Computational Study of Visual Attention on Objects and Gestures during Infancy. [Doctoral Dissertation]. University of Houston; 2017. Available from: http://hdl.handle.net/10657/4809

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


Linköping University

23. Ilestrand, Maja. Automatic Eartag Recognition on Dairy Cows in Real Barn Environment.

Degree: Computer Vision, 2017, Linköping University

  All dairy cows in Europe wear unique identification tags in their ears. These eartags are standardized and contains the cows identification numbers, today only… (more)

Subjects/Keywords: OCR; object detection; object segmentation; template matching; SVM; kNN; eigenfaces; Signal Processing; Signalbehandling

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ilestrand, M. (2017). Automatic Eartag Recognition on Dairy Cows in Real Barn Environment. (Thesis). Linköping University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139245

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ilestrand, Maja. “Automatic Eartag Recognition on Dairy Cows in Real Barn Environment.” 2017. Thesis, Linköping University. Accessed August 07, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139245.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ilestrand, Maja. “Automatic Eartag Recognition on Dairy Cows in Real Barn Environment.” 2017. Web. 07 Aug 2020.

Vancouver:

Ilestrand M. Automatic Eartag Recognition on Dairy Cows in Real Barn Environment. [Internet] [Thesis]. Linköping University; 2017. [cited 2020 Aug 07]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139245.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ilestrand M. Automatic Eartag Recognition on Dairy Cows in Real Barn Environment. [Thesis]. Linköping University; 2017. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139245

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Delft University of Technology

24. De Lange, L.F.M. (author). Viewpoint dependent model for multi-view object recognition.

Degree: 2016, Delft University of Technology

The life expectancy of humans increases due to better medical care, food quality and personal hygiene. The demand for domestic robots performing (simple) household chores… (more)

Subjects/Keywords: object recognition; sequence alignment; viewpoint dependency; visual odometry; egomotion; plane segmentation; object model

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

De Lange, L. F. M. (. (2016). Viewpoint dependent model for multi-view object recognition. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:8dd8fd34-ed98-43f3-a58e-150719f83edc

Chicago Manual of Style (16th Edition):

De Lange, L F M (author). “Viewpoint dependent model for multi-view object recognition.” 2016. Masters Thesis, Delft University of Technology. Accessed August 07, 2020. http://resolver.tudelft.nl/uuid:8dd8fd34-ed98-43f3-a58e-150719f83edc.

MLA Handbook (7th Edition):

De Lange, L F M (author). “Viewpoint dependent model for multi-view object recognition.” 2016. Web. 07 Aug 2020.

Vancouver:

De Lange LFM(. Viewpoint dependent model for multi-view object recognition. [Internet] [Masters thesis]. Delft University of Technology; 2016. [cited 2020 Aug 07]. Available from: http://resolver.tudelft.nl/uuid:8dd8fd34-ed98-43f3-a58e-150719f83edc.

Council of Science Editors:

De Lange LFM(. Viewpoint dependent model for multi-view object recognition. [Masters Thesis]. Delft University of Technology; 2016. Available from: http://resolver.tudelft.nl/uuid:8dd8fd34-ed98-43f3-a58e-150719f83edc

25. Palazzo, Simone. Hybrid human-machine vision systems for automated object segmentation and categorization.

Degree: 2017, Università degli Studi di Catania

 Emulating human perception is a foundational component in the research towards artificial intelligence (AI). Computer vision, in particular, is now one of the most active… (more)

Subjects/Keywords: Area 09 - Ingegneria industriale e dell'informazione; computer vision,interactive,object segmentation,object classification,eeg

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Palazzo, S. (2017). Hybrid human-machine vision systems for automated object segmentation and categorization. (Thesis). Università degli Studi di Catania. Retrieved from http://hdl.handle.net/10761/3985

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Palazzo, Simone. “Hybrid human-machine vision systems for automated object segmentation and categorization.” 2017. Thesis, Università degli Studi di Catania. Accessed August 07, 2020. http://hdl.handle.net/10761/3985.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Palazzo, Simone. “Hybrid human-machine vision systems for automated object segmentation and categorization.” 2017. Web. 07 Aug 2020.

Vancouver:

Palazzo S. Hybrid human-machine vision systems for automated object segmentation and categorization. [Internet] [Thesis]. Università degli Studi di Catania; 2017. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/10761/3985.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Palazzo S. Hybrid human-machine vision systems for automated object segmentation and categorization. [Thesis]. Università degli Studi di Catania; 2017. Available from: http://hdl.handle.net/10761/3985

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade do Rio Grande do Sul

26. Monma, Yumi. Algoritmo rápido para segmentação de vídeos utilizando agrupamento de clusters.

Degree: 2014, Universidade do Rio Grande do Sul

Este trabalho propõe um algoritmo rápido para segmentação de partes móveis em vídeo, tendo como base a detecção de volumes fechados no espaço tridimensional. O… (more)

Subjects/Keywords: Digital signal processing; Processamento digital de sinais; Video segmentation; Algoritmos; Processamento de imagens; Movement-based segmentation; Object-based segmentation; Ensemble clustering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Monma, Y. (2014). Algoritmo rápido para segmentação de vídeos utilizando agrupamento de clusters. (Thesis). Universidade do Rio Grande do Sul. Retrieved from http://hdl.handle.net/10183/116648

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Monma, Yumi. “Algoritmo rápido para segmentação de vídeos utilizando agrupamento de clusters.” 2014. Thesis, Universidade do Rio Grande do Sul. Accessed August 07, 2020. http://hdl.handle.net/10183/116648.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Monma, Yumi. “Algoritmo rápido para segmentação de vídeos utilizando agrupamento de clusters.” 2014. Web. 07 Aug 2020.

Vancouver:

Monma Y. Algoritmo rápido para segmentação de vídeos utilizando agrupamento de clusters. [Internet] [Thesis]. Universidade do Rio Grande do Sul; 2014. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/10183/116648.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Monma Y. Algoritmo rápido para segmentação de vídeos utilizando agrupamento de clusters. [Thesis]. Universidade do Rio Grande do Sul; 2014. Available from: http://hdl.handle.net/10183/116648

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Brno University of Technology

27. Horák, Jan. Poloautomatická segmentace obrazu: Semi-Automatic Image Segmentation.

Degree: 2018, Brno University of Technology

 This work describes design and implementation of a tool for creating photomontages. The tool is based on methods of semi-automatic image segmentation. Work outlines problems… (more)

Subjects/Keywords: Segmentace obraz; interaktivní segmentace; poloautomatická segmentace; fotomontáž; extrakce objektu.; Image segmentation; interactive segmentation; semi-automatic segmentation; photomontage; object extraction.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Horák, J. (2018). Poloautomatická segmentace obrazu: Semi-Automatic Image Segmentation. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/52287

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Horák, Jan. “Poloautomatická segmentace obrazu: Semi-Automatic Image Segmentation.” 2018. Thesis, Brno University of Technology. Accessed August 07, 2020. http://hdl.handle.net/11012/52287.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Horák, Jan. “Poloautomatická segmentace obrazu: Semi-Automatic Image Segmentation.” 2018. Web. 07 Aug 2020.

Vancouver:

Horák J. Poloautomatická segmentace obrazu: Semi-Automatic Image Segmentation. [Internet] [Thesis]. Brno University of Technology; 2018. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/11012/52287.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Horák J. Poloautomatická segmentace obrazu: Semi-Automatic Image Segmentation. [Thesis]. Brno University of Technology; 2018. Available from: http://hdl.handle.net/11012/52287

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Washington

28. Chuang, Meng-Che. Automatic Video Analysis for Fisheries Survey Systems.

Degree: PhD, 2015, University of Washington

 Fisheries survey with the use of cameras has drawn increasing attention since it enables a non-lethal and high-resolution sampling of the fish stocks. This dissertation… (more)

Subjects/Keywords: fisheries; object recognition; object segmentation; object tracking; underwater imagery; video analysis; Electrical engineering; Computer science; electrical engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chuang, M. (2015). Automatic Video Analysis for Fisheries Survey Systems. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/33815

Chicago Manual of Style (16th Edition):

Chuang, Meng-Che. “Automatic Video Analysis for Fisheries Survey Systems.” 2015. Doctoral Dissertation, University of Washington. Accessed August 07, 2020. http://hdl.handle.net/1773/33815.

MLA Handbook (7th Edition):

Chuang, Meng-Che. “Automatic Video Analysis for Fisheries Survey Systems.” 2015. Web. 07 Aug 2020.

Vancouver:

Chuang M. Automatic Video Analysis for Fisheries Survey Systems. [Internet] [Doctoral dissertation]. University of Washington; 2015. [cited 2020 Aug 07]. Available from: http://hdl.handle.net/1773/33815.

Council of Science Editors:

Chuang M. Automatic Video Analysis for Fisheries Survey Systems. [Doctoral Dissertation]. University of Washington; 2015. Available from: http://hdl.handle.net/1773/33815


University of California – Berkeley

29. Shyr, Alex. Incorporating Supervision for Visual Recognition and Segmentation.

Degree: Electrical Engineering & Computer Sciences, 2011, University of California – Berkeley

 Unsupervised algorithms which do not make use of labels are commonly found in computer vision and are widely applicable to all problem settings.In the presence… (more)

Subjects/Keywords: Computer science; Computer Vision; Nonparametric; Object Recognition; Segmentation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shyr, A. (2011). Incorporating Supervision for Visual Recognition and Segmentation. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/5926x8pm

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Shyr, Alex. “Incorporating Supervision for Visual Recognition and Segmentation.” 2011. Thesis, University of California – Berkeley. Accessed August 07, 2020. http://www.escholarship.org/uc/item/5926x8pm.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Shyr, Alex. “Incorporating Supervision for Visual Recognition and Segmentation.” 2011. Web. 07 Aug 2020.

Vancouver:

Shyr A. Incorporating Supervision for Visual Recognition and Segmentation. [Internet] [Thesis]. University of California – Berkeley; 2011. [cited 2020 Aug 07]. Available from: http://www.escholarship.org/uc/item/5926x8pm.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shyr A. Incorporating Supervision for Visual Recognition and Segmentation. [Thesis]. University of California – Berkeley; 2011. Available from: http://www.escholarship.org/uc/item/5926x8pm

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Alberta

30. Saha, Baidya Nath. The evolution of snake toward automation for multiple blob-object segmentation.

Degree: PhD, Department of Computing Science, 2011, University of Alberta

 For the last two decades “active contour” or “snake” has been effective as an interactive image segmentation tool in a wide range of applications, especially… (more)

Subjects/Keywords: multiple object detection; active contour or snake; automatic segmentation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Saha, B. N. (2011). The evolution of snake toward automation for multiple blob-object segmentation. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/7s75dd92h

Chicago Manual of Style (16th Edition):

Saha, Baidya Nath. “The evolution of snake toward automation for multiple blob-object segmentation.” 2011. Doctoral Dissertation, University of Alberta. Accessed August 07, 2020. https://era.library.ualberta.ca/files/7s75dd92h.

MLA Handbook (7th Edition):

Saha, Baidya Nath. “The evolution of snake toward automation for multiple blob-object segmentation.” 2011. Web. 07 Aug 2020.

Vancouver:

Saha BN. The evolution of snake toward automation for multiple blob-object segmentation. [Internet] [Doctoral dissertation]. University of Alberta; 2011. [cited 2020 Aug 07]. Available from: https://era.library.ualberta.ca/files/7s75dd92h.

Council of Science Editors:

Saha BN. The evolution of snake toward automation for multiple blob-object segmentation. [Doctoral Dissertation]. University of Alberta; 2011. Available from: https://era.library.ualberta.ca/files/7s75dd92h

[1] [2] [3] [4] [5] [6] [7] [8]

.