Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Noncommutative torus). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Université Paris-Sud – Paris XI

1. Cagnache, Eric. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.

Degree: Docteur es, Physique mathématique, 2012, Université Paris-Sud – Paris XI

La géométrie non commutative, du fait qu'elle permet de généraliser des objets géométriques sous forme algébrique, offre des perspectives intéressantes pour réunir la théorie quantique… (more)

Subjects/Keywords: Géométrie non commutative; Triplets spectraux; Espace de Moyal; Tore non commutatif; Distance; Noncommutative geometry; Spectral triples; Moyal space; Noncommutative torus; Distance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cagnache, E. (2012). Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2012PA112115

Chicago Manual of Style (16th Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed March 06, 2021. http://www.theses.fr/2012PA112115.

MLA Handbook (7th Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Web. 06 Mar 2021.

Vancouver:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2012. [cited 2021 Mar 06]. Available from: http://www.theses.fr/2012PA112115.

Council of Science Editors:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2012. Available from: http://www.theses.fr/2012PA112115


University of Victoria

2. Duwenig, Anna. Poincaré self-duality of A_θ.

Degree: Department of Mathematics and Statistics, 2020, University of Victoria

 The irrational rotation algebra A_θ is known to be Poincaré self-dual in the KK-theoretic sense. The spectral triple representing the required K-homology fundamental class was… (more)

Subjects/Keywords: irrational rotation algebra; KK-theory; abstract transversal; groupoid; Kronecker Flow; noncommutative torus; Poincaré duality; Kasparov product; unbounded operator; noncommutative geometry; bivariant K-theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Duwenig, A. (2020). Poincaré self-duality of A_θ. (Thesis). University of Victoria. Retrieved from http://hdl.handle.net/1828/11678

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Duwenig, Anna. “Poincaré self-duality of A_θ.” 2020. Thesis, University of Victoria. Accessed March 06, 2021. http://hdl.handle.net/1828/11678.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Duwenig, Anna. “Poincaré self-duality of A_θ.” 2020. Web. 06 Mar 2021.

Vancouver:

Duwenig A. Poincaré self-duality of A_θ. [Internet] [Thesis]. University of Victoria; 2020. [cited 2021 Mar 06]. Available from: http://hdl.handle.net/1828/11678.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Duwenig A. Poincaré self-duality of A_θ. [Thesis]. University of Victoria; 2020. Available from: http://hdl.handle.net/1828/11678

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Norkvist, Axel Tiger. The noncommutative torus as a minimal submanifold of the noncommutative 3-sphere.

Degree: Faculty of Science & Engineering, 2018, Linköping UniversityLinköping University

  In this thesis an algebraic structure, called real calculus, is used as a way to represent noncommutative manifolds in an algebraic setting. Several classical… (more)

Subjects/Keywords: Noncommutative Geometry; Real Calculus Homomorphism; Minimal Embedding; Noncommutative Torus; Noncommutative 3-sphere; Other Mathematics; Annan matematik

…viii Contents 4 The noncommutative torus embedded into the noncommutative 3-sphere 43 5… …Chapter 3, the noncommutative torus and the noncommutative 3-sphere are introduced and described… …in detail before moving on to Chapter 4, where the noncommutative torus is shown to be a… …49 Chapter 1 Introduction In the mathematical field of noncommutative geometry, a… …central idea is to study a noncommutative ∗ -algebra by using geometric tools and concepts. To… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Sample image

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Norkvist, A. T. (2018). The noncommutative torus as a minimal submanifold of the noncommutative 3-sphere. (Thesis). Linköping UniversityLinköping University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150891

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Norkvist, Axel Tiger. “The noncommutative torus as a minimal submanifold of the noncommutative 3-sphere.” 2018. Thesis, Linköping UniversityLinköping University. Accessed March 06, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150891.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Norkvist, Axel Tiger. “The noncommutative torus as a minimal submanifold of the noncommutative 3-sphere.” 2018. Web. 06 Mar 2021.

Vancouver:

Norkvist AT. The noncommutative torus as a minimal submanifold of the noncommutative 3-sphere. [Internet] [Thesis]. Linköping UniversityLinköping University; 2018. [cited 2021 Mar 06]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150891.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Norkvist AT. The noncommutative torus as a minimal submanifold of the noncommutative 3-sphere. [Thesis]. Linköping UniversityLinköping University; 2018. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150891

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Gautier-Baudhuit, Franck. Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry.

Degree: Docteur es, Mathématiques Fondamentales, 2017, Université Clermont Auvergne‎ (2017-2020)

Cette thèse s'intéresse à des familles de fonctions zêta spectrales (séries de Dirichlet) qui peuvent être associées à certaines algèbres d'opérateurs sur des espaces de… (more)

Subjects/Keywords: Algèbres de Lie nilpotentes; Fonctions zêta spectrales; Géométrie différentielle; Géométrie non commutative; Laplacien; Opérateurs différentiels; Opérateurs de Schrödinger; Prolongement méromorphe; Représentation de Kirillov; Tore non commutatif; Triplets spectraux; Nilpotent Lie algébras; Spectral zeta function; Differential geometry; Noncommutative geometry; Laplacian; Differential geometry; Schrödinger operators; Meromorphic continuation; Kirillov representation; Noncommutative torus; Spectral triples

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gautier-Baudhuit, F. (2017). Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry. (Doctoral Dissertation). Université Clermont Auvergne‎ (2017-2020). Retrieved from http://www.theses.fr/2017CLFAC042

Chicago Manual of Style (16th Edition):

Gautier-Baudhuit, Franck. “Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry.” 2017. Doctoral Dissertation, Université Clermont Auvergne‎ (2017-2020). Accessed March 06, 2021. http://www.theses.fr/2017CLFAC042.

MLA Handbook (7th Edition):

Gautier-Baudhuit, Franck. “Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry.” 2017. Web. 06 Mar 2021.

Vancouver:

Gautier-Baudhuit F. Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry. [Internet] [Doctoral dissertation]. Université Clermont Auvergne‎ (2017-2020); 2017. [cited 2021 Mar 06]. Available from: http://www.theses.fr/2017CLFAC042.

Council of Science Editors:

Gautier-Baudhuit F. Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry. [Doctoral Dissertation]. Université Clermont Auvergne‎ (2017-2020); 2017. Available from: http://www.theses.fr/2017CLFAC042

.