Advanced search options
You searched for subject:(Noncommutative torus)
.
Showing records 1 – 4 of
4 total matches.
▼ Search Limiters
Université Paris-Sud – Paris XI
1. Cagnache, Eric. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.
Degree: Docteur es, Physique mathématique, 2012, Université Paris-Sud – Paris XI
URL: http://www.theses.fr/2012PA112115
Subjects/Keywords: Géométrie non commutative; Triplets spectraux; Espace de Moyal; Tore non commutatif; Distance; Noncommutative geometry; Spectral triples; Moyal space; Noncommutative torus; Distance
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Cagnache, E. (2012). Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2012PA112115
Chicago Manual of Style (16th Edition):
Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed March 06, 2021. http://www.theses.fr/2012PA112115.
MLA Handbook (7th Edition):
Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Web. 06 Mar 2021.
Vancouver:
Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2012. [cited 2021 Mar 06]. Available from: http://www.theses.fr/2012PA112115.
Council of Science Editors:
Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2012. Available from: http://www.theses.fr/2012PA112115
University of Victoria
2. Duwenig, Anna. Poincaré self-duality of A_θ.
Degree: Department of Mathematics and Statistics, 2020, University of Victoria
URL: http://hdl.handle.net/1828/11678
Subjects/Keywords: irrational rotation algebra; KK-theory; abstract transversal; groupoid; Kronecker Flow; noncommutative torus; Poincaré duality; Kasparov product; unbounded operator; noncommutative geometry; bivariant K-theory
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Duwenig, A. (2020). Poincaré self-duality of A_θ. (Thesis). University of Victoria. Retrieved from http://hdl.handle.net/1828/11678
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Duwenig, Anna. “Poincaré self-duality of A_θ.” 2020. Thesis, University of Victoria. Accessed March 06, 2021. http://hdl.handle.net/1828/11678.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Duwenig, Anna. “Poincaré self-duality of A_θ.” 2020. Web. 06 Mar 2021.
Vancouver:
Duwenig A. Poincaré self-duality of A_θ. [Internet] [Thesis]. University of Victoria; 2020. [cited 2021 Mar 06]. Available from: http://hdl.handle.net/1828/11678.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Duwenig A. Poincaré self-duality of A_θ. [Thesis]. University of Victoria; 2020. Available from: http://hdl.handle.net/1828/11678
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
3. Norkvist, Axel Tiger. The noncommutative torus as a minimal submanifold of the noncommutative 3-sphere.
Degree: Faculty of Science & Engineering, 2018, Linköping UniversityLinköping University
URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150891
Subjects/Keywords: Noncommutative Geometry; Real Calculus Homomorphism; Minimal Embedding; Noncommutative Torus; Noncommutative 3-sphere; Other Mathematics; Annan matematik
…viii Contents 4 The noncommutative torus embedded into the noncommutative 3-sphere 43 5… …Chapter 3, the noncommutative torus and the noncommutative 3-sphere are introduced and described… …in detail before moving on to Chapter 4, where the noncommutative torus is shown to be a… …49 Chapter 1 Introduction In the mathematical field of noncommutative geometry, a… …central idea is to study a noncommutative ∗ -algebra by using geometric tools and concepts. To…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Norkvist, A. T. (2018). The noncommutative torus as a minimal submanifold of the noncommutative 3-sphere. (Thesis). Linköping UniversityLinköping University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150891
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Norkvist, Axel Tiger. “The noncommutative torus as a minimal submanifold of the noncommutative 3-sphere.” 2018. Thesis, Linköping UniversityLinköping University. Accessed March 06, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150891.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Norkvist, Axel Tiger. “The noncommutative torus as a minimal submanifold of the noncommutative 3-sphere.” 2018. Web. 06 Mar 2021.
Vancouver:
Norkvist AT. The noncommutative torus as a minimal submanifold of the noncommutative 3-sphere. [Internet] [Thesis]. Linköping UniversityLinköping University; 2018. [cited 2021 Mar 06]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150891.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Norkvist AT. The noncommutative torus as a minimal submanifold of the noncommutative 3-sphere. [Thesis]. Linköping UniversityLinköping University; 2018. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150891
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
4. Gautier-Baudhuit, Franck. Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry.
Degree: Docteur es, Mathématiques Fondamentales, 2017, Université Clermont Auvergne (2017-2020)
URL: http://www.theses.fr/2017CLFAC042
Subjects/Keywords: Algèbres de Lie nilpotentes; Fonctions zêta spectrales; Géométrie différentielle; Géométrie non commutative; Laplacien; Opérateurs différentiels; Opérateurs de Schrödinger; Prolongement méromorphe; Représentation de Kirillov; Tore non commutatif; Triplets spectraux; Nilpotent Lie algébras; Spectral zeta function; Differential geometry; Noncommutative geometry; Laplacian; Differential geometry; Schrödinger operators; Meromorphic continuation; Kirillov representation; Noncommutative torus; Spectral triples
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Gautier-Baudhuit, F. (2017). Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry. (Doctoral Dissertation). Université Clermont Auvergne (2017-2020). Retrieved from http://www.theses.fr/2017CLFAC042
Chicago Manual of Style (16th Edition):
Gautier-Baudhuit, Franck. “Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry.” 2017. Doctoral Dissertation, Université Clermont Auvergne (2017-2020). Accessed March 06, 2021. http://www.theses.fr/2017CLFAC042.
MLA Handbook (7th Edition):
Gautier-Baudhuit, Franck. “Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry.” 2017. Web. 06 Mar 2021.
Vancouver:
Gautier-Baudhuit F. Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry. [Internet] [Doctoral dissertation]. Université Clermont Auvergne (2017-2020); 2017. [cited 2021 Mar 06]. Available from: http://www.theses.fr/2017CLFAC042.
Council of Science Editors:
Gautier-Baudhuit F. Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry. [Doctoral Dissertation]. Université Clermont Auvergne (2017-2020); 2017. Available from: http://www.theses.fr/2017CLFAC042