Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Noncommutative tori). Showing records 1 – 8 of 8 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of California – Berkeley

1. Do, Hanh Duc. MONOIDAL STRUCTURE IN MIRROR SYMMETRY AND NONCOMMUTATIVE GEOMETRY.

Degree: Mathematics, 2013, University of California – Berkeley

 In the thesis, we initial first steps in understanding Quantum Mirror Symmetry and noncommutative compactification of moduli spaces of tori. To obtain a global invariant… (more)

Subjects/Keywords: Mathematics; bundle; C*-algebra; noncommutative geometry; noncommutative tori; Poisson geometry; quantization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Do, H. D. (2013). MONOIDAL STRUCTURE IN MIRROR SYMMETRY AND NONCOMMUTATIVE GEOMETRY. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/39b741zt

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Do, Hanh Duc. “MONOIDAL STRUCTURE IN MIRROR SYMMETRY AND NONCOMMUTATIVE GEOMETRY.” 2013. Thesis, University of California – Berkeley. Accessed September 26, 2020. http://www.escholarship.org/uc/item/39b741zt.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Do, Hanh Duc. “MONOIDAL STRUCTURE IN MIRROR SYMMETRY AND NONCOMMUTATIVE GEOMETRY.” 2013. Web. 26 Sep 2020.

Vancouver:

Do HD. MONOIDAL STRUCTURE IN MIRROR SYMMETRY AND NONCOMMUTATIVE GEOMETRY. [Internet] [Thesis]. University of California – Berkeley; 2013. [cited 2020 Sep 26]. Available from: http://www.escholarship.org/uc/item/39b741zt.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Do HD. MONOIDAL STRUCTURE IN MIRROR SYMMETRY AND NONCOMMUTATIVE GEOMETRY. [Thesis]. University of California – Berkeley; 2013. Available from: http://www.escholarship.org/uc/item/39b741zt

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

2. Yashinski, Allan Anthony. Periodic cyclic homology and smooth deformations.

Degree: 2013, Penn State University

 Given a formal deformation of an algebra, Getzler defined a connection on the periodic cyclic homology of the deformation, which he called the Gauss-Manin connection.… (more)

Subjects/Keywords: deformations; cyclic homology; Gauss-Manin connection; noncommutative tori; noncommutative geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yashinski, A. A. (2013). Periodic cyclic homology and smooth deformations. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/18724

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yashinski, Allan Anthony. “Periodic cyclic homology and smooth deformations.” 2013. Thesis, Penn State University. Accessed September 26, 2020. https://submit-etda.libraries.psu.edu/catalog/18724.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yashinski, Allan Anthony. “Periodic cyclic homology and smooth deformations.” 2013. Web. 26 Sep 2020.

Vancouver:

Yashinski AA. Periodic cyclic homology and smooth deformations. [Internet] [Thesis]. Penn State University; 2013. [cited 2020 Sep 26]. Available from: https://submit-etda.libraries.psu.edu/catalog/18724.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yashinski AA. Periodic cyclic homology and smooth deformations. [Thesis]. Penn State University; 2013. Available from: https://submit-etda.libraries.psu.edu/catalog/18724

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Sadeghi, Sajad. On Logarithmic Sobolev Inequality And A Scalar Curvature Formula For Noncommutative Tori.

Degree: 2016, University of Western Ontario

 In the first part of this thesis, a noncommutative analogue of Gross' logarithmic Sobolev inequality for the noncommutative 2-torus is investigated. More precisely, Weissler's result… (more)

Subjects/Keywords: Logarithmic Sobolev Inequality; Scalar Curvature; Noncommutative Tori; Pseudodifferential Operators; Conformal Perturbation; Asymptotic Expansion; Analysis; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sadeghi, S. (2016). On Logarithmic Sobolev Inequality And A Scalar Curvature Formula For Noncommutative Tori. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3947

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sadeghi, Sajad. “On Logarithmic Sobolev Inequality And A Scalar Curvature Formula For Noncommutative Tori.” 2016. Thesis, University of Western Ontario. Accessed September 26, 2020. https://ir.lib.uwo.ca/etd/3947.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sadeghi, Sajad. “On Logarithmic Sobolev Inequality And A Scalar Curvature Formula For Noncommutative Tori.” 2016. Web. 26 Sep 2020.

Vancouver:

Sadeghi S. On Logarithmic Sobolev Inequality And A Scalar Curvature Formula For Noncommutative Tori. [Internet] [Thesis]. University of Western Ontario; 2016. [cited 2020 Sep 26]. Available from: https://ir.lib.uwo.ca/etd/3947.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sadeghi S. On Logarithmic Sobolev Inequality And A Scalar Curvature Formula For Noncommutative Tori. [Thesis]. University of Western Ontario; 2016. Available from: https://ir.lib.uwo.ca/etd/3947

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Fathi Baghbadorani, Ali. On Spectral Invariants of Dirac Operators on Noncommutative Tori and Curvature of the Determinant Line Bundle for the Noncommutative Two Torus.

Degree: 2015, University of Western Ontario

 We extend the canonical trace of Kontsevich and Vishik to the algebra of non-integer order classical pseudodifferntial operators on noncommutative tori. We consider the spin… (more)

Subjects/Keywords: Noncommutative tori; Kontsevich-Vishik canonical trace; eta invariant; Cauchy-Riemann operators; Quillen determinant line bundle; Analysis; Geometry and Topology; Other Mathematics

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fathi Baghbadorani, A. (2015). On Spectral Invariants of Dirac Operators on Noncommutative Tori and Curvature of the Determinant Line Bundle for the Noncommutative Two Torus. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/2764

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Fathi Baghbadorani, Ali. “On Spectral Invariants of Dirac Operators on Noncommutative Tori and Curvature of the Determinant Line Bundle for the Noncommutative Two Torus.” 2015. Thesis, University of Western Ontario. Accessed September 26, 2020. https://ir.lib.uwo.ca/etd/2764.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Fathi Baghbadorani, Ali. “On Spectral Invariants of Dirac Operators on Noncommutative Tori and Curvature of the Determinant Line Bundle for the Noncommutative Two Torus.” 2015. Web. 26 Sep 2020.

Vancouver:

Fathi Baghbadorani A. On Spectral Invariants of Dirac Operators on Noncommutative Tori and Curvature of the Determinant Line Bundle for the Noncommutative Two Torus. [Internet] [Thesis]. University of Western Ontario; 2015. [cited 2020 Sep 26]. Available from: https://ir.lib.uwo.ca/etd/2764.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fathi Baghbadorani A. On Spectral Invariants of Dirac Operators on Noncommutative Tori and Curvature of the Determinant Line Bundle for the Noncommutative Two Torus. [Thesis]. University of Western Ontario; 2015. Available from: https://ir.lib.uwo.ca/etd/2764

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Kansas

5. Chen, Wei-Da. Riemannian Geometry on Some Noncommutative Spaces.

Degree: PhD, Mathematics, 2017, University of Kansas

 This dissertation enquires into how the theory and mechanism of Riemannian geometry can be introduced into and integrated with the existent ones in noncommutative geometry,… (more)

Subjects/Keywords: Mathematics; Chern-Gauß-Bonnet Theorem; Levi-Civita Connections; Noncommutative Tori; Quantum Discs; Quantum Spheres; Riemann Curvatures

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, W. (2017). Riemannian Geometry on Some Noncommutative Spaces. (Doctoral Dissertation). University of Kansas. Retrieved from http://hdl.handle.net/1808/27018

Chicago Manual of Style (16th Edition):

Chen, Wei-Da. “Riemannian Geometry on Some Noncommutative Spaces.” 2017. Doctoral Dissertation, University of Kansas. Accessed September 26, 2020. http://hdl.handle.net/1808/27018.

MLA Handbook (7th Edition):

Chen, Wei-Da. “Riemannian Geometry on Some Noncommutative Spaces.” 2017. Web. 26 Sep 2020.

Vancouver:

Chen W. Riemannian Geometry on Some Noncommutative Spaces. [Internet] [Doctoral dissertation]. University of Kansas; 2017. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/1808/27018.

Council of Science Editors:

Chen W. Riemannian Geometry on Some Noncommutative Spaces. [Doctoral Dissertation]. University of Kansas; 2017. Available from: http://hdl.handle.net/1808/27018

6. Yin, Zhi. Espaces de Hardy en probabilités et analyse harmonique quantiques : Hardy spaces in probability and quantum harmonic analysis.

Degree: Docteur es, Mathématiques et applications, 2012, Besançon; Wuhan Institute of Physics and Mathematics (Wuhan)

Cette thèse présente quelques résultats de la théorie des probabilités quantiques et de l’analyse harmonique à valeurs operateurs. La thèse est composée des trois parties.Dans… (more)

Subjects/Keywords: Espaces Lp non commutatifs; Martingales non commutatives; Décomposition atomique; Espaces de Hardy et BMO à valeurs opérateurs; Ondellettes; Tore quantique; Séries de Fourier; Multiplicateurs de Fourier complètement bornés; Noncommutative Lp-spaces; Noncommutative martingales; Atomic decomposition; Operatorvalued Hardy and BMO spaces; Wavelets; Quantum tori; Fourier series; Completely bounded Fourier multipliers; 539

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yin, Z. (2012). Espaces de Hardy en probabilités et analyse harmonique quantiques : Hardy spaces in probability and quantum harmonic analysis. (Doctoral Dissertation). Besançon; Wuhan Institute of Physics and Mathematics (Wuhan). Retrieved from http://www.theses.fr/2012BESA2005

Chicago Manual of Style (16th Edition):

Yin, Zhi. “Espaces de Hardy en probabilités et analyse harmonique quantiques : Hardy spaces in probability and quantum harmonic analysis.” 2012. Doctoral Dissertation, Besançon; Wuhan Institute of Physics and Mathematics (Wuhan). Accessed September 26, 2020. http://www.theses.fr/2012BESA2005.

MLA Handbook (7th Edition):

Yin, Zhi. “Espaces de Hardy en probabilités et analyse harmonique quantiques : Hardy spaces in probability and quantum harmonic analysis.” 2012. Web. 26 Sep 2020.

Vancouver:

Yin Z. Espaces de Hardy en probabilités et analyse harmonique quantiques : Hardy spaces in probability and quantum harmonic analysis. [Internet] [Doctoral dissertation]. Besançon; Wuhan Institute of Physics and Mathematics (Wuhan); 2012. [cited 2020 Sep 26]. Available from: http://www.theses.fr/2012BESA2005.

Council of Science Editors:

Yin Z. Espaces de Hardy en probabilités et analyse harmonique quantiques : Hardy spaces in probability and quantum harmonic analysis. [Doctoral Dissertation]. Besançon; Wuhan Institute of Physics and Mathematics (Wuhan); 2012. Available from: http://www.theses.fr/2012BESA2005

7. Xia, Runlian. Les espaces de Hardy locaux à valeurs opératorielle et les applications sur les opérateurs pseudo-différentiels : Function spaces on quantum tori and their applications to pseudo-differential operators.

Degree: Docteur es, Mathématiques et applications, 2017, Bourgogne Franche-Comté

Le but de cette thèse est d’étudier l’analyse sur les espaces hpc(Rd,M), la version locale des espaces de Hardy à valeurs opératorielles construits par Tao… (more)

Subjects/Keywords: Algèbre de Von Neumann; Espaces L_p noncommutative; Tore quantique; Espaces de Triebel-Lizorkin à valeurs opératorielle; Decomposition atomique; Opérateur pseudo-différentiel; Von Neumann algebras; Noncommutaitve L_p spaces; Quantum tori; Operator-valued Triebel-Lizorkin spaces; Atomic decomposition; Pseudo-differential operator; 512; 46L52; 46E40; 30H10; 30H35; 42H20; 46B10; 41A05; 35S05

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xia, R. (2017). Les espaces de Hardy locaux à valeurs opératorielle et les applications sur les opérateurs pseudo-différentiels : Function spaces on quantum tori and their applications to pseudo-differential operators. (Doctoral Dissertation). Bourgogne Franche-Comté. Retrieved from http://www.theses.fr/2017UBFCD084

Chicago Manual of Style (16th Edition):

Xia, Runlian. “Les espaces de Hardy locaux à valeurs opératorielle et les applications sur les opérateurs pseudo-différentiels : Function spaces on quantum tori and their applications to pseudo-differential operators.” 2017. Doctoral Dissertation, Bourgogne Franche-Comté. Accessed September 26, 2020. http://www.theses.fr/2017UBFCD084.

MLA Handbook (7th Edition):

Xia, Runlian. “Les espaces de Hardy locaux à valeurs opératorielle et les applications sur les opérateurs pseudo-différentiels : Function spaces on quantum tori and their applications to pseudo-differential operators.” 2017. Web. 26 Sep 2020.

Vancouver:

Xia R. Les espaces de Hardy locaux à valeurs opératorielle et les applications sur les opérateurs pseudo-différentiels : Function spaces on quantum tori and their applications to pseudo-differential operators. [Internet] [Doctoral dissertation]. Bourgogne Franche-Comté; 2017. [cited 2020 Sep 26]. Available from: http://www.theses.fr/2017UBFCD084.

Council of Science Editors:

Xia R. Les espaces de Hardy locaux à valeurs opératorielle et les applications sur les opérateurs pseudo-différentiels : Function spaces on quantum tori and their applications to pseudo-differential operators. [Doctoral Dissertation]. Bourgogne Franche-Comté; 2017. Available from: http://www.theses.fr/2017UBFCD084


University of Illinois – Urbana-Champaign

8. Rezvani, Sepideh. Approximating rotation algebras and inclusions of C*-algebras.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

 In the first part of this thesis, we will follow Kirchberg’s categorical perspective to establish new notions of WEP and QWEP relative to a C∗-algebra,… (more)

Subjects/Keywords: C*-algebras; Weak expectation property (WEP); Quotient weak expectation property (QWEP); A-WEP; A-QWEP; Relatively weak injectivity; Order-unit space; Noncommutative tori; Compact quantum metric space; Conditionally negative length function; Heat semigroup; Poisson semigroup; Rotation algebra; Continuous field of compact quantum metric spaces; Gromov–Hausdorff distance; Completely bounded quantum Gromov–Hausdorff distance; Gromov–Hausdorff propinquity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rezvani, S. (2017). Approximating rotation algebras and inclusions of C*-algebras. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/97307

Chicago Manual of Style (16th Edition):

Rezvani, Sepideh. “Approximating rotation algebras and inclusions of C*-algebras.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed September 26, 2020. http://hdl.handle.net/2142/97307.

MLA Handbook (7th Edition):

Rezvani, Sepideh. “Approximating rotation algebras and inclusions of C*-algebras.” 2017. Web. 26 Sep 2020.

Vancouver:

Rezvani S. Approximating rotation algebras and inclusions of C*-algebras. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2142/97307.

Council of Science Editors:

Rezvani S. Approximating rotation algebras and inclusions of C*-algebras. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/97307

.