Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Noncommutative Geometry)`

.
Showing records 1 – 30 of
78 total matches.

Search Limiters

Dates

- 2017 – 2021 (17)
- 2012 – 2016 (35)
- 2007 – 2011 (24)

▼ Search Limiters

Universiteit Utrecht

1. Kluck, F.V. A metric in the space of spectral triples.

Degree: 2014, Universiteit Utrecht

URL: http://dspace.library.uu.nl:8080/handle/1874/291827

► In 1996, Alain Connes introduced the spectral triple, which encodes the information of a spin manifold in a way that allows for a *noncommutative* generalization.…
(more)

Subjects/Keywords: spectral triple; noncommutative geometry; correspondences

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kluck, F. V. (2014). A metric in the space of spectral triples. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/291827

Chicago Manual of Style (16^{th} Edition):

Kluck, F V. “A metric in the space of spectral triples.” 2014. Masters Thesis, Universiteit Utrecht. Accessed January 16, 2021. http://dspace.library.uu.nl:8080/handle/1874/291827.

MLA Handbook (7^{th} Edition):

Kluck, F V. “A metric in the space of spectral triples.” 2014. Web. 16 Jan 2021.

Vancouver:

Kluck FV. A metric in the space of spectral triples. [Internet] [Masters thesis]. Universiteit Utrecht; 2014. [cited 2021 Jan 16]. Available from: http://dspace.library.uu.nl:8080/handle/1874/291827.

Council of Science Editors:

Kluck FV. A metric in the space of spectral triples. [Masters Thesis]. Universiteit Utrecht; 2014. Available from: http://dspace.library.uu.nl:8080/handle/1874/291827

University of Texas – Austin

2. Orem, Hendrik Nikolas. Coordinate systems and associative algebras.

Degree: PhD, Mathematics, 2015, University of Texas – Austin

URL: http://hdl.handle.net/2152/31505

► This dissertation applies and extends the techniques of formal algebraic *geometry* in the setting of certain "smooth" associative algebras and their globalizations, *noncommutative* manifolds, roughly…
(more)

Subjects/Keywords: Noncommutative algebra; Algebraic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Orem, H. N. (2015). Coordinate systems and associative algebras. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/31505

Chicago Manual of Style (16^{th} Edition):

Orem, Hendrik Nikolas. “Coordinate systems and associative algebras.” 2015. Doctoral Dissertation, University of Texas – Austin. Accessed January 16, 2021. http://hdl.handle.net/2152/31505.

MLA Handbook (7^{th} Edition):

Orem, Hendrik Nikolas. “Coordinate systems and associative algebras.” 2015. Web. 16 Jan 2021.

Vancouver:

Orem HN. Coordinate systems and associative algebras. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2015. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/2152/31505.

Council of Science Editors:

Orem HN. Coordinate systems and associative algebras. [Doctoral Dissertation]. University of Texas – Austin; 2015. Available from: http://hdl.handle.net/2152/31505

University of California – San Diego

3. Won, Robert. The graded module category of a generalized Weyl algebra.

Degree: Mathematics, 2016, University of California – San Diego

URL: http://www.escholarship.org/uc/item/5352x739

► The first Weyl algebra, A, is naturally Z-graded by letting deg x = 1 and deg y = -1. Sue Sierra studied gr-A, the category…
(more)

Subjects/Keywords: Mathematics; algebraic geometry; noncommutative geometry; noncommutative projective geometry; noncommutative projective schemes; noncommutative ring theory; ring theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Won, R. (2016). The graded module category of a generalized Weyl algebra. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/5352x739

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Won, Robert. “The graded module category of a generalized Weyl algebra.” 2016. Thesis, University of California – San Diego. Accessed January 16, 2021. http://www.escholarship.org/uc/item/5352x739.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Won, Robert. “The graded module category of a generalized Weyl algebra.” 2016. Web. 16 Jan 2021.

Vancouver:

Won R. The graded module category of a generalized Weyl algebra. [Internet] [Thesis]. University of California – San Diego; 2016. [cited 2021 Jan 16]. Available from: http://www.escholarship.org/uc/item/5352x739.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Won R. The graded module category of a generalized Weyl algebra. [Thesis]. University of California – San Diego; 2016. Available from: http://www.escholarship.org/uc/item/5352x739

Not specified: Masters Thesis or Doctoral Dissertation

University of California – Berkeley

4.
Do, Hanh Duc.
MONOIDAL STRUCTURE IN MIRROR SYMMETRY AND *NONCOMMUTATIVE* * GEOMETRY*.

Degree: Mathematics, 2013, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/39b741zt

► In the thesis, we initial first steps in understanding Quantum Mirror Symmetry and *noncommutative* compactification of moduli spaces of tori. To obtain a global invariant…
(more)

Subjects/Keywords: Mathematics; bundle; C*-algebra; noncommutative geometry; noncommutative tori; Poisson geometry; quantization

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Do, H. D. (2013). MONOIDAL STRUCTURE IN MIRROR SYMMETRY AND NONCOMMUTATIVE GEOMETRY. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/39b741zt

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Do, Hanh Duc. “MONOIDAL STRUCTURE IN MIRROR SYMMETRY AND NONCOMMUTATIVE GEOMETRY.” 2013. Thesis, University of California – Berkeley. Accessed January 16, 2021. http://www.escholarship.org/uc/item/39b741zt.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Do, Hanh Duc. “MONOIDAL STRUCTURE IN MIRROR SYMMETRY AND NONCOMMUTATIVE GEOMETRY.” 2013. Web. 16 Jan 2021.

Vancouver:

Do HD. MONOIDAL STRUCTURE IN MIRROR SYMMETRY AND NONCOMMUTATIVE GEOMETRY. [Internet] [Thesis]. University of California – Berkeley; 2013. [cited 2021 Jan 16]. Available from: http://www.escholarship.org/uc/item/39b741zt.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Do HD. MONOIDAL STRUCTURE IN MIRROR SYMMETRY AND NONCOMMUTATIVE GEOMETRY. [Thesis]. University of California – Berkeley; 2013. Available from: http://www.escholarship.org/uc/item/39b741zt

Not specified: Masters Thesis or Doctoral Dissertation

University of Western Ontario

5.
Moatadelro, Ali.
* Noncommutative* complex

Degree: 2011, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/229

► In this thesis, we study complex structures of quantum projectivespaces that was initiated in [19] for the quantum projective line, ℂP^{1}_{q}. In Chapters 2 and…
(more)

Subjects/Keywords: Noncommutative geometry; noncommutative complex geometry; positive Hochschild cocycle; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Moatadelro, A. (2011). Noncommutative complex geometry of quantum projective spaces. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/229

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Moatadelro, Ali. “Noncommutative complex geometry of quantum projective spaces.” 2011. Thesis, University of Western Ontario. Accessed January 16, 2021. https://ir.lib.uwo.ca/etd/229.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Moatadelro, Ali. “Noncommutative complex geometry of quantum projective spaces.” 2011. Web. 16 Jan 2021.

Vancouver:

Moatadelro A. Noncommutative complex geometry of quantum projective spaces. [Internet] [Thesis]. University of Western Ontario; 2011. [cited 2021 Jan 16]. Available from: https://ir.lib.uwo.ca/etd/229.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Moatadelro A. Noncommutative complex geometry of quantum projective spaces. [Thesis]. University of Western Ontario; 2011. Available from: https://ir.lib.uwo.ca/etd/229

Not specified: Masters Thesis or Doctoral Dissertation

Penn State University

6. Yashinski, Allan Anthony. Periodic cyclic homology and smooth deformations.

Degree: 2013, Penn State University

URL: https://submit-etda.libraries.psu.edu/catalog/18724

► Given a formal deformation of an algebra, Getzler defined a connection on the periodic cyclic homology of the deformation, which he called the Gauss-Manin connection.…
(more)

Subjects/Keywords: deformations; cyclic homology; Gauss-Manin connection; noncommutative tori; noncommutative geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yashinski, A. A. (2013). Periodic cyclic homology and smooth deformations. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/18724

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Yashinski, Allan Anthony. “Periodic cyclic homology and smooth deformations.” 2013. Thesis, Penn State University. Accessed January 16, 2021. https://submit-etda.libraries.psu.edu/catalog/18724.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Yashinski, Allan Anthony. “Periodic cyclic homology and smooth deformations.” 2013. Web. 16 Jan 2021.

Vancouver:

Yashinski AA. Periodic cyclic homology and smooth deformations. [Internet] [Thesis]. Penn State University; 2013. [cited 2021 Jan 16]. Available from: https://submit-etda.libraries.psu.edu/catalog/18724.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yashinski AA. Periodic cyclic homology and smooth deformations. [Thesis]. Penn State University; 2013. Available from: https://submit-etda.libraries.psu.edu/catalog/18724

Not specified: Masters Thesis or Doctoral Dissertation

University of Alberta

7.
Emelideme, Kingsley.
Study of Microscopic Black Holes at the LHC using
*Noncommutative* inspired * Geometry*.

Degree: MS, Department of Physics, 2013, University of Alberta

URL: https://era.library.ualberta.ca/files/sq87bv65r

► :A study for a *noncommutative* (NC) black hole was performed using data recorded by the ATLAS detector using proton-proton collisions at a centre-of-mass energy of…
(more)

Subjects/Keywords: Noncommutative geometry; LHC; Microscopic black holes; ATLAS

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Emelideme, K. (2013). Study of Microscopic Black Holes at the LHC using Noncommutative inspired Geometry. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/sq87bv65r

Chicago Manual of Style (16^{th} Edition):

Emelideme, Kingsley. “Study of Microscopic Black Holes at the LHC using Noncommutative inspired Geometry.” 2013. Masters Thesis, University of Alberta. Accessed January 16, 2021. https://era.library.ualberta.ca/files/sq87bv65r.

MLA Handbook (7^{th} Edition):

Emelideme, Kingsley. “Study of Microscopic Black Holes at the LHC using Noncommutative inspired Geometry.” 2013. Web. 16 Jan 2021.

Vancouver:

Emelideme K. Study of Microscopic Black Holes at the LHC using Noncommutative inspired Geometry. [Internet] [Masters thesis]. University of Alberta; 2013. [cited 2021 Jan 16]. Available from: https://era.library.ualberta.ca/files/sq87bv65r.

Council of Science Editors:

Emelideme K. Study of Microscopic Black Holes at the LHC using Noncommutative inspired Geometry. [Masters Thesis]. University of Alberta; 2013. Available from: https://era.library.ualberta.ca/files/sq87bv65r

8.
Van Den Dungen, Koen.
Lorentzian *geometry* and physics in Kasparov's theory
.

Degree: 2015, Australian National University

URL: http://hdl.handle.net/1885/15240

► We study two geometric themes, Lorentzian *geometry* and gauge theory, from the perspective of Connes’ *noncommutative* *geometry* and (the unbounded version of) Kasparov’s KK-theory. Lorentzian…
(more)

Subjects/Keywords: Connes' noncommutative geometry; Kasparov's KK-theory; Lorentzian

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Van Den Dungen, K. (2015). Lorentzian geometry and physics in Kasparov's theory . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/15240

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Van Den Dungen, Koen. “Lorentzian geometry and physics in Kasparov's theory .” 2015. Thesis, Australian National University. Accessed January 16, 2021. http://hdl.handle.net/1885/15240.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Van Den Dungen, Koen. “Lorentzian geometry and physics in Kasparov's theory .” 2015. Web. 16 Jan 2021.

Vancouver:

Van Den Dungen K. Lorentzian geometry and physics in Kasparov's theory . [Internet] [Thesis]. Australian National University; 2015. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/1885/15240.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Van Den Dungen K. Lorentzian geometry and physics in Kasparov's theory . [Thesis]. Australian National University; 2015. Available from: http://hdl.handle.net/1885/15240

Not specified: Masters Thesis or Doctoral Dissertation

9. Sun, Chen. Constraining New Physics with Colliders and Neutrinos.

Degree: PhD, Physics, 2017, Virginia Tech

URL: http://hdl.handle.net/10919/77923

► In this work, we examine how neutrino and collider experiments can each and together put constraints on new physics more stringently than ever. Constraints arise…
(more)

Subjects/Keywords: New Physics; Collider; Neutrino; Noncommutative Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sun, C. (2017). Constraining New Physics with Colliders and Neutrinos. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/77923

Chicago Manual of Style (16^{th} Edition):

Sun, Chen. “Constraining New Physics with Colliders and Neutrinos.” 2017. Doctoral Dissertation, Virginia Tech. Accessed January 16, 2021. http://hdl.handle.net/10919/77923.

MLA Handbook (7^{th} Edition):

Sun, Chen. “Constraining New Physics with Colliders and Neutrinos.” 2017. Web. 16 Jan 2021.

Vancouver:

Sun C. Constraining New Physics with Colliders and Neutrinos. [Internet] [Doctoral dissertation]. Virginia Tech; 2017. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/10919/77923.

Council of Science Editors:

Sun C. Constraining New Physics with Colliders and Neutrinos. [Doctoral Dissertation]. Virginia Tech; 2017. Available from: http://hdl.handle.net/10919/77923

Rutgers University

10.
Krueger, August John, 1985-.
Structure and dynamics of *noncommutative* solitons: spectral theory and dispersive estimates.

Degree: PhD, Physics and Astronomy, 2014, Rutgers University

URL: https://rucore.libraries.rutgers.edu/rutgers-lib/45320/

►

We consider the Schrödinger equation with a Hamiltonian given by a second order o diﬀerence operator with nonconstant growing coeﬃcients, on the half one dimensional… (more)

Subjects/Keywords: Noncommutative differential geometry; Spectral theory (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Krueger, August John, 1. (2014). Structure and dynamics of noncommutative solitons: spectral theory and dispersive estimates. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/45320/

Chicago Manual of Style (16^{th} Edition):

Krueger, August John, 1985-. “Structure and dynamics of noncommutative solitons: spectral theory and dispersive estimates.” 2014. Doctoral Dissertation, Rutgers University. Accessed January 16, 2021. https://rucore.libraries.rutgers.edu/rutgers-lib/45320/.

MLA Handbook (7^{th} Edition):

Krueger, August John, 1985-. “Structure and dynamics of noncommutative solitons: spectral theory and dispersive estimates.” 2014. Web. 16 Jan 2021.

Vancouver:

Krueger, August John 1. Structure and dynamics of noncommutative solitons: spectral theory and dispersive estimates. [Internet] [Doctoral dissertation]. Rutgers University; 2014. [cited 2021 Jan 16]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45320/.

Council of Science Editors:

Krueger, August John 1. Structure and dynamics of noncommutative solitons: spectral theory and dispersive estimates. [Doctoral Dissertation]. Rutgers University; 2014. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45320/

Queen Mary, University of London

11.
Ó Buachalla, Réamonn.
Quantum groups and *noncommutative* complex * geometry*.

Degree: PhD, 2013, Queen Mary, University of London

URL: http://qmro.qmul.ac.uk/xmlui/handle/123456789/8675 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667158

► *Noncommutative* Riemannian *geometry* is an area that has seen intense activity over the past 25 years. Despite this, *noncommutative* complex *geometry* is only now beginning…
(more)

Subjects/Keywords: 516.3; Mathematics; Geometry; Noncommutative complex geometry; Quantum geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ó Buachalla, R. (2013). Quantum groups and noncommutative complex geometry. (Doctoral Dissertation). Queen Mary, University of London. Retrieved from http://qmro.qmul.ac.uk/xmlui/handle/123456789/8675 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667158

Chicago Manual of Style (16^{th} Edition):

Ó Buachalla, Réamonn. “Quantum groups and noncommutative complex geometry.” 2013. Doctoral Dissertation, Queen Mary, University of London. Accessed January 16, 2021. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8675 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667158.

MLA Handbook (7^{th} Edition):

Ó Buachalla, Réamonn. “Quantum groups and noncommutative complex geometry.” 2013. Web. 16 Jan 2021.

Vancouver:

Ó Buachalla R. Quantum groups and noncommutative complex geometry. [Internet] [Doctoral dissertation]. Queen Mary, University of London; 2013. [cited 2021 Jan 16]. Available from: http://qmro.qmul.ac.uk/xmlui/handle/123456789/8675 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667158.

Council of Science Editors:

Ó Buachalla R. Quantum groups and noncommutative complex geometry. [Doctoral Dissertation]. Queen Mary, University of London; 2013. Available from: http://qmro.qmul.ac.uk/xmlui/handle/123456789/8675 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667158

University of California – Berkeley

12. Peterka, Mira Alexander. Finitely-Generated Projective Modules over $theta$-deformed Spheres.

Degree: Mathematics, 2010, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/4cx22565

► We investigate the ``θ-deformed spheres" C(S^{3}_{θ}) and C(S^{4}_{θ}) for the case θ an irrational number. We show that all finitely-generated projective modules over C(S^{3}_{θ}) are…
(more)

Subjects/Keywords: Mathematics; Gauge Theory; K-theory; Noncommutative Geometry; Quantum Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Peterka, M. A. (2010). Finitely-Generated Projective Modules over $theta$-deformed Spheres. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/4cx22565

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Peterka, Mira Alexander. “Finitely-Generated Projective Modules over $theta$-deformed Spheres.” 2010. Thesis, University of California – Berkeley. Accessed January 16, 2021. http://www.escholarship.org/uc/item/4cx22565.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Peterka, Mira Alexander. “Finitely-Generated Projective Modules over $theta$-deformed Spheres.” 2010. Web. 16 Jan 2021.

Vancouver:

Peterka MA. Finitely-Generated Projective Modules over $theta$-deformed Spheres. [Internet] [Thesis]. University of California – Berkeley; 2010. [cited 2021 Jan 16]. Available from: http://www.escholarship.org/uc/item/4cx22565.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Peterka MA. Finitely-Generated Projective Modules over $theta$-deformed Spheres. [Thesis]. University of California – Berkeley; 2010. Available from: http://www.escholarship.org/uc/item/4cx22565

Not specified: Masters Thesis or Doctoral Dissertation

Vanderbilt University

13. Wu, Jianchao. The Novikov Conjecture, the Group of Volume Preserving Diffeomorphisms and Non-Positively Curved Hilbert Manifolds.

Degree: PhD, Mathematics, 2019, Vanderbilt University

URL: http://hdl.handle.net/1803/13472

► We prove that the Novikov conjecture is satisfied by any discrete torsion-free group admitting an isometric and metrically proper action on a non-positively curved complete…
(more)

Subjects/Keywords: C*-algebras; K-theory; noncommutative geometry; Novikov conjecture

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wu, J. (2019). The Novikov Conjecture, the Group of Volume Preserving Diffeomorphisms and Non-Positively Curved Hilbert Manifolds. (Doctoral Dissertation). Vanderbilt University. Retrieved from http://hdl.handle.net/1803/13472

Chicago Manual of Style (16^{th} Edition):

Wu, Jianchao. “The Novikov Conjecture, the Group of Volume Preserving Diffeomorphisms and Non-Positively Curved Hilbert Manifolds.” 2019. Doctoral Dissertation, Vanderbilt University. Accessed January 16, 2021. http://hdl.handle.net/1803/13472.

MLA Handbook (7^{th} Edition):

Wu, Jianchao. “The Novikov Conjecture, the Group of Volume Preserving Diffeomorphisms and Non-Positively Curved Hilbert Manifolds.” 2019. Web. 16 Jan 2021.

Vancouver:

Wu J. The Novikov Conjecture, the Group of Volume Preserving Diffeomorphisms and Non-Positively Curved Hilbert Manifolds. [Internet] [Doctoral dissertation]. Vanderbilt University; 2019. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/1803/13472.

Council of Science Editors:

Wu J. The Novikov Conjecture, the Group of Volume Preserving Diffeomorphisms and Non-Positively Curved Hilbert Manifolds. [Doctoral Dissertation]. Vanderbilt University; 2019. Available from: http://hdl.handle.net/1803/13472

University of Wollongong

14.
Andersson, Andreas.
The *noncommutative* Gohberg-Krein
theorem.

Degree: Doctor of Philosophy, 2015, University of Wollongong

URL: 010103 Category Theory, K Theory, Homological Algebra, 010108 Operator Algebras and Functional Analysis, 010199 Pure Mathematics not elsewhere classified, 010501 Algebraic Structures in Mathematical Physics ; https://ro.uow.edu.au/theses/4565

► We prove a *noncommutative* higher-dimensional generalization of the classical Gohberg- Krein theorem. The latter says that the index of a Toeplitz operator acting on…
(more)

Subjects/Keywords: Noncommutative geometry; operator algebras; k-theory; Toepltiz operators

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Andersson, A. (2015). The noncommutative Gohberg-Krein theorem. (Doctoral Dissertation). University of Wollongong. Retrieved from 010103 Category Theory, K Theory, Homological Algebra, 010108 Operator Algebras and Functional Analysis, 010199 Pure Mathematics not elsewhere classified, 010501 Algebraic Structures in Mathematical Physics ; https://ro.uow.edu.au/theses/4565

Chicago Manual of Style (16^{th} Edition):

Andersson, Andreas. “The noncommutative Gohberg-Krein theorem.” 2015. Doctoral Dissertation, University of Wollongong. Accessed January 16, 2021. 010103 Category Theory, K Theory, Homological Algebra, 010108 Operator Algebras and Functional Analysis, 010199 Pure Mathematics not elsewhere classified, 010501 Algebraic Structures in Mathematical Physics ; https://ro.uow.edu.au/theses/4565.

MLA Handbook (7^{th} Edition):

Andersson, Andreas. “The noncommutative Gohberg-Krein theorem.” 2015. Web. 16 Jan 2021.

Vancouver:

Andersson A. The noncommutative Gohberg-Krein theorem. [Internet] [Doctoral dissertation]. University of Wollongong; 2015. [cited 2021 Jan 16]. Available from: 010103 Category Theory, K Theory, Homological Algebra, 010108 Operator Algebras and Functional Analysis, 010199 Pure Mathematics not elsewhere classified, 010501 Algebraic Structures in Mathematical Physics ; https://ro.uow.edu.au/theses/4565.

Council of Science Editors:

Andersson A. The noncommutative Gohberg-Krein theorem. [Doctoral Dissertation]. University of Wollongong; 2015. Available from: 010103 Category Theory, K Theory, Homological Algebra, 010108 Operator Algebras and Functional Analysis, 010199 Pure Mathematics not elsewhere classified, 010501 Algebraic Structures in Mathematical Physics ; https://ro.uow.edu.au/theses/4565

Univerzitet u Beogradu

15. Nenadović, Luka V., 1979-. Особине класичне и квантне теорије поља на закривљеном некомутативном простору.

Degree: Fizički fakultet, 2018, Univerzitet u Beogradu

URL: https://fedorabg.bg.ac.rs/fedora/get/o:17648/bdef:Content/get

►

Fizika - Teorijska fizika visokih energija / Physics - Theoretical high energy physics

Posle kratakog istorijskog prikaza razvoja nekomutativne geometrije i upoznavaa sa osnovnim osobinama… (more)

Subjects/Keywords: noncommutative geometry; quantum field theory; gauge theory; renormalization; curved space

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nenadović, Luka V., 1. (2018). Особине класичне и квантне теорије поља на закривљеном некомутативном простору. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:17648/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Nenadović, Luka V., 1979-. “Особине класичне и квантне теорије поља на закривљеном некомутативном простору.” 2018. Thesis, Univerzitet u Beogradu. Accessed January 16, 2021. https://fedorabg.bg.ac.rs/fedora/get/o:17648/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Nenadović, Luka V., 1979-. “Особине класичне и квантне теорије поља на закривљеном некомутативном простору.” 2018. Web. 16 Jan 2021.

Vancouver:

Nenadović, Luka V. 1. Особине класичне и квантне теорије поља на закривљеном некомутативном простору. [Internet] [Thesis]. Univerzitet u Beogradu; 2018. [cited 2021 Jan 16]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:17648/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Nenadović, Luka V. 1. Особине класичне и квантне теорије поља на закривљеном некомутативном простору. [Thesis]. Univerzitet u Beogradu; 2018. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:17648/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

University of Washington

16. McMurdie, Christopher Robert. The C*-algebra of a finite T_0 topological space.

Degree: PhD, 2015, University of Washington

URL: http://hdl.handle.net/1773/34025

► We are concerned with the following motivating question: how can one extend the classical Gelfand-Naimark theorem to the simplest non-Hausdorff topological spaces? Our model space…
(more)

Subjects/Keywords: algebra; bimodule; geometry; Hilbert; noncommutative; poset; Mathematics; mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

McMurdie, C. R. (2015). The C*-algebra of a finite T_0 topological space. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/34025

Chicago Manual of Style (16^{th} Edition):

McMurdie, Christopher Robert. “The C*-algebra of a finite T_0 topological space.” 2015. Doctoral Dissertation, University of Washington. Accessed January 16, 2021. http://hdl.handle.net/1773/34025.

MLA Handbook (7^{th} Edition):

McMurdie, Christopher Robert. “The C*-algebra of a finite T_0 topological space.” 2015. Web. 16 Jan 2021.

Vancouver:

McMurdie CR. The C*-algebra of a finite T_0 topological space. [Internet] [Doctoral dissertation]. University of Washington; 2015. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/1773/34025.

Council of Science Editors:

McMurdie CR. The C*-algebra of a finite T_0 topological space. [Doctoral Dissertation]. University of Washington; 2015. Available from: http://hdl.handle.net/1773/34025

Australian National University

17.
Bourne, Christopher.
Topological states of matter and *noncommutative* * geometry*
.

Degree: 2015, Australian National University

URL: http://hdl.handle.net/1885/16960

► This thesis examines topological states of matter from the perspective of *noncommutative* *geometry* and KK-theory. Examples of such topological states of matter include the quantum…
(more)

Subjects/Keywords: Noncommutative geometry; KK-theory; topological insulators; topological phases

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bourne, C. (2015). Topological states of matter and noncommutative geometry . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/16960

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bourne, Christopher. “Topological states of matter and noncommutative geometry .” 2015. Thesis, Australian National University. Accessed January 16, 2021. http://hdl.handle.net/1885/16960.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bourne, Christopher. “Topological states of matter and noncommutative geometry .” 2015. Web. 16 Jan 2021.

Vancouver:

Bourne C. Topological states of matter and noncommutative geometry . [Internet] [Thesis]. Australian National University; 2015. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/1885/16960.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bourne C. Topological states of matter and noncommutative geometry . [Thesis]. Australian National University; 2015. Available from: http://hdl.handle.net/1885/16960

Not specified: Masters Thesis or Doctoral Dissertation

Tartu University

18. Bazunova, Nadezda. Differential calculus d3 = 0 on binary and ternary associative algebras .

Degree: 2011, Tartu University

URL: http://hdl.handle.net/10062/18102

► Antud väitekiri on pühendatud mittekommutatiivse geomeetria raames tekkinud diferent-siaalarvutusele diferentsiaaliga d, mis rahuldab tingimust d^{3}=0. Antud diferentsiaalarvutus tugineb gradueeritud Q-diferentsiaalalgebra mõistele, kus Q on kuupjuur…
(more)

Subjects/Keywords: mittekommutatiivne algebra; diferentsisaalgeomeetria; diferentsiaalarvutus; noncommutative algebra; differential geometry; differential calculus

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bazunova, N. (2011). Differential calculus d3 = 0 on binary and ternary associative algebras . (Thesis). Tartu University. Retrieved from http://hdl.handle.net/10062/18102

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bazunova, Nadezda. “Differential calculus d3 = 0 on binary and ternary associative algebras .” 2011. Thesis, Tartu University. Accessed January 16, 2021. http://hdl.handle.net/10062/18102.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bazunova, Nadezda. “Differential calculus d3 = 0 on binary and ternary associative algebras .” 2011. Web. 16 Jan 2021.

Vancouver:

Bazunova N. Differential calculus d3 = 0 on binary and ternary associative algebras . [Internet] [Thesis]. Tartu University; 2011. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/10062/18102.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bazunova N. Differential calculus d3 = 0 on binary and ternary associative algebras . [Thesis]. Tartu University; 2011. Available from: http://hdl.handle.net/10062/18102

Not specified: Masters Thesis or Doctoral Dissertation

Rutgers University

19. Leung, Wing Fung. A response theory of topological insulators.

Degree: Physics and Astronomy, 2013, Rutgers University

URL: https://rucore.libraries.rutgers.edu/rutgers-lib/41818/

Subjects/Keywords: Topological spaces; Noncommutative differential geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Leung, W. F. (2013). A response theory of topological insulators. (Thesis). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/41818/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Leung, Wing Fung. “A response theory of topological insulators.” 2013. Thesis, Rutgers University. Accessed January 16, 2021. https://rucore.libraries.rutgers.edu/rutgers-lib/41818/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Leung, Wing Fung. “A response theory of topological insulators.” 2013. Web. 16 Jan 2021.

Vancouver:

Leung WF. A response theory of topological insulators. [Internet] [Thesis]. Rutgers University; 2013. [cited 2021 Jan 16]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/41818/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Leung WF. A response theory of topological insulators. [Thesis]. Rutgers University; 2013. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/41818/

Not specified: Masters Thesis or Doctoral Dissertation

University of Texas – Austin

20. Wong, Michael Andrew. Dimer models and Hochschild cohomology.

Degree: PhD, Mathematics, 2018, University of Texas – Austin

URL: http://hdl.handle.net/2152/68467

► Dimer models have appeared in the context of *noncommutative* crepant resolutions and homological mirror symmetry for punctured Riemann surfaces. For a zigzag consistent dimer embedded…
(more)

Subjects/Keywords: Dimer models; Matrix factorizations; Hochschild cohomology; Mirror symmetry; Noncommutative geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wong, M. A. (2018). Dimer models and Hochschild cohomology. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/68467

Chicago Manual of Style (16^{th} Edition):

Wong, Michael Andrew. “Dimer models and Hochschild cohomology.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed January 16, 2021. http://hdl.handle.net/2152/68467.

MLA Handbook (7^{th} Edition):

Wong, Michael Andrew. “Dimer models and Hochschild cohomology.” 2018. Web. 16 Jan 2021.

Vancouver:

Wong MA. Dimer models and Hochschild cohomology. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/2152/68467.

Council of Science Editors:

Wong MA. Dimer models and Hochschild cohomology. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/68467

University of Texas – Austin

21. Ganev, Iordan Venelinov. The wonderful compactification for quantum groups.

Degree: PhD, Mathematics, 2016, University of Texas – Austin

URL: http://hdl.handle.net/2152/43716

► This thesis studies the asymptotics of quantum groups using an approach centered on the wonderful compactification. The wonderful compactification of a semisimple group was introduced…
(more)

Subjects/Keywords: Quantum groups; Noncommutative geometry; Compactification; Wonderful variety; Matrix coefficients; Differential operators

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ganev, I. V. (2016). The wonderful compactification for quantum groups. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/43716

Chicago Manual of Style (16^{th} Edition):

Ganev, Iordan Venelinov. “The wonderful compactification for quantum groups.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed January 16, 2021. http://hdl.handle.net/2152/43716.

MLA Handbook (7^{th} Edition):

Ganev, Iordan Venelinov. “The wonderful compactification for quantum groups.” 2016. Web. 16 Jan 2021.

Vancouver:

Ganev IV. The wonderful compactification for quantum groups. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/2152/43716.

Council of Science Editors:

Ganev IV. The wonderful compactification for quantum groups. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/43716

University of New South Wales

22. Bowne-Anderson , Hugo. The explicit construction of orders on surfaces.

Degree: Mathematics & Statistics, 2011, University of New South Wales

URL: http://handle.unsw.edu.au/1959.4/50907 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:9801/SOURCE02?view=true

► The study of orders over surfaces is an integral aspect of *noncommutative* algebraicgeometry. Although there is a substantial amount known about orders,relatively few concrete examples…
(more)

Subjects/Keywords: Numerically Calabi-Yau; Orders; Projective surfaces; Noncommutative; Algebraic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bowne-Anderson , H. (2011). The explicit construction of orders on surfaces. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/50907 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:9801/SOURCE02?view=true

Chicago Manual of Style (16^{th} Edition):

Bowne-Anderson , Hugo. “The explicit construction of orders on surfaces.” 2011. Doctoral Dissertation, University of New South Wales. Accessed January 16, 2021. http://handle.unsw.edu.au/1959.4/50907 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:9801/SOURCE02?view=true.

MLA Handbook (7^{th} Edition):

Bowne-Anderson , Hugo. “The explicit construction of orders on surfaces.” 2011. Web. 16 Jan 2021.

Vancouver:

Bowne-Anderson H. The explicit construction of orders on surfaces. [Internet] [Doctoral dissertation]. University of New South Wales; 2011. [cited 2021 Jan 16]. Available from: http://handle.unsw.edu.au/1959.4/50907 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:9801/SOURCE02?view=true.

Council of Science Editors:

Bowne-Anderson H. The explicit construction of orders on surfaces. [Doctoral Dissertation]. University of New South Wales; 2011. Available from: http://handle.unsw.edu.au/1959.4/50907 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:9801/SOURCE02?view=true

University of New South Wales

23. Lerner, Boris. Line bundles and curves on a del Pezzo order.

Degree: Mathematics & Statistics, 2012, University of New South Wales

URL: http://handle.unsw.edu.au/1959.4/51951 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:10621/SOURCE02?view=true

► Orders on surfaces provided a rich source of examples of *noncommutative* surfaces. The existence of the analogue of the Picard scheme for orders, has previously…
(more)

Subjects/Keywords: Picard scheme; Noncommutative algebraic geometry; Hilbert scheme; Line bundle

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lerner, B. (2012). Line bundles and curves on a del Pezzo order. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/51951 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:10621/SOURCE02?view=true

Chicago Manual of Style (16^{th} Edition):

Lerner, Boris. “Line bundles and curves on a del Pezzo order.” 2012. Doctoral Dissertation, University of New South Wales. Accessed January 16, 2021. http://handle.unsw.edu.au/1959.4/51951 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:10621/SOURCE02?view=true.

MLA Handbook (7^{th} Edition):

Lerner, Boris. “Line bundles and curves on a del Pezzo order.” 2012. Web. 16 Jan 2021.

Vancouver:

Lerner B. Line bundles and curves on a del Pezzo order. [Internet] [Doctoral dissertation]. University of New South Wales; 2012. [cited 2021 Jan 16]. Available from: http://handle.unsw.edu.au/1959.4/51951 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:10621/SOURCE02?view=true.

Council of Science Editors:

Lerner B. Line bundles and curves on a del Pezzo order. [Doctoral Dissertation]. University of New South Wales; 2012. Available from: http://handle.unsw.edu.au/1959.4/51951 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:10621/SOURCE02?view=true

Florida Atlantic University

24. Bulj, Djordje. A study of divisors and algebras on a double cover of the affine plane.

Degree: PhD, 2012, Florida Atlantic University

URL: http://purl.flvc.org/FAU/3355618

►

Summary: An algebraic surface defined by an equation of the form z2 = (x+a1y) ... (x + any) (x - 1) is studied, from both… (more)

Subjects/Keywords: Algebraic number theory; Geometry – Data processing; Noncommutative differential geometry; Mathematical physics; Curves, Algebraic; Commutative rings

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bulj, D. (2012). A study of divisors and algebras on a double cover of the affine plane. (Doctoral Dissertation). Florida Atlantic University. Retrieved from http://purl.flvc.org/FAU/3355618

Chicago Manual of Style (16^{th} Edition):

Bulj, Djordje. “A study of divisors and algebras on a double cover of the affine plane.” 2012. Doctoral Dissertation, Florida Atlantic University. Accessed January 16, 2021. http://purl.flvc.org/FAU/3355618.

MLA Handbook (7^{th} Edition):

Bulj, Djordje. “A study of divisors and algebras on a double cover of the affine plane.” 2012. Web. 16 Jan 2021.

Vancouver:

Bulj D. A study of divisors and algebras on a double cover of the affine plane. [Internet] [Doctoral dissertation]. Florida Atlantic University; 2012. [cited 2021 Jan 16]. Available from: http://purl.flvc.org/FAU/3355618.

Council of Science Editors:

Bulj D. A study of divisors and algebras on a double cover of the affine plane. [Doctoral Dissertation]. Florida Atlantic University; 2012. Available from: http://purl.flvc.org/FAU/3355618

University of Michigan

25. Walton, Chelsea M. On Degenerations and Deformations of Sklyanin Algebras.

Degree: PhD, Mathematics, 2011, University of Michigan

URL: http://hdl.handle.net/2027.42/86397

► A subfield of *noncommutative* algebra, entitled *noncommutative* projective algebraic *geometry*, was launched in the 1980s through Michael Artin, John Tate, William Schelter, and Michel van…
(more)

Subjects/Keywords: Noncommutative Algebra; Noncommutative Algebraic Geometry; Representation Theory; Sklyanin Algebra; Degenerate Sklyanin Algebra; Deformed Sklyanin Algebra; Mathematics; Science

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Walton, C. M. (2011). On Degenerations and Deformations of Sklyanin Algebras. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/86397

Chicago Manual of Style (16^{th} Edition):

Walton, Chelsea M. “On Degenerations and Deformations of Sklyanin Algebras.” 2011. Doctoral Dissertation, University of Michigan. Accessed January 16, 2021. http://hdl.handle.net/2027.42/86397.

MLA Handbook (7^{th} Edition):

Walton, Chelsea M. “On Degenerations and Deformations of Sklyanin Algebras.” 2011. Web. 16 Jan 2021.

Vancouver:

Walton CM. On Degenerations and Deformations of Sklyanin Algebras. [Internet] [Doctoral dissertation]. University of Michigan; 2011. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/2027.42/86397.

Council of Science Editors:

Walton CM. On Degenerations and Deformations of Sklyanin Algebras. [Doctoral Dissertation]. University of Michigan; 2011. Available from: http://hdl.handle.net/2027.42/86397

University of Adelaide

26.
Rennie, Adam Charles.
* Noncommutative* spin

Degree: 2001, University of Adelaide

URL: http://hdl.handle.net/2440/21674

Subjects/Keywords: Noncommutative algebras.; Noncommutative rings.; Geometry, Algebraic.; K-theory.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rennie, A. C. (2001). Noncommutative spin geometry / by Adam Rennie. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/21674

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Rennie, Adam Charles. “Noncommutative spin geometry / by Adam Rennie.” 2001. Thesis, University of Adelaide. Accessed January 16, 2021. http://hdl.handle.net/2440/21674.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Rennie, Adam Charles. “Noncommutative spin geometry / by Adam Rennie.” 2001. Web. 16 Jan 2021.

Vancouver:

Rennie AC. Noncommutative spin geometry / by Adam Rennie. [Internet] [Thesis]. University of Adelaide; 2001. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/2440/21674.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rennie AC. Noncommutative spin geometry / by Adam Rennie. [Thesis]. University of Adelaide; 2001. Available from: http://hdl.handle.net/2440/21674

Not specified: Masters Thesis or Doctoral Dissertation

Université Paris-Sud – Paris XI

27.
Cagnache, Eric.
Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential *noncommutative* *geometry* : application to physics.

Degree: Docteur es, Physique mathématique, 2012, Université Paris-Sud – Paris XI

URL: http://www.theses.fr/2012PA112115

►

La géométrie non commutative, du fait qu'elle permet de généraliser des objets géométriques sous forme algébrique, offre des perspectives intéressantes pour réunir la théorie quantique… (more)

Subjects/Keywords: Géométrie non commutative; Triplets spectraux; Espace de Moyal; Tore non commutatif; Distance; Noncommutative geometry; Spectral triples; Moyal space; Noncommutative torus; Distance

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cagnache, E. (2012). Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2012PA112115

Chicago Manual of Style (16^{th} Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed January 16, 2021. http://www.theses.fr/2012PA112115.

MLA Handbook (7^{th} Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Web. 16 Jan 2021.

Vancouver:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2012. [cited 2021 Jan 16]. Available from: http://www.theses.fr/2012PA112115.

Council of Science Editors:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2012. Available from: http://www.theses.fr/2012PA112115

University of Western Ontario

28.
Wilson, Mitsuru.
Gauss-Bonnet-Chern type theorem for the *noncommutative* four-sphere.

Degree: 2016, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/3937

► We introduce a pseudo-Riemannian calculus of modules over *noncommutative* al- gebras in order to investigate to what extent the differential *geometry* of classical Riemannian manifolds…
(more)

Subjects/Keywords: Curvature; Gauss-Bonnet-Chern theorem; Levi-Civita connection; noncommutative 4-sphere; noncommutative geometry; noncommutative 3-sphere; non- commutative toric manifolds; pseudo-Riemannian calculus.; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wilson, M. (2016). Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3937

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Wilson, Mitsuru. “Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere.” 2016. Thesis, University of Western Ontario. Accessed January 16, 2021. https://ir.lib.uwo.ca/etd/3937.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Wilson, Mitsuru. “Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere.” 2016. Web. 16 Jan 2021.

Vancouver:

Wilson M. Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere. [Internet] [Thesis]. University of Western Ontario; 2016. [cited 2021 Jan 16]. Available from: https://ir.lib.uwo.ca/etd/3937.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wilson M. Gauss-Bonnet-Chern type theorem for the noncommutative four-sphere. [Thesis]. University of Western Ontario; 2016. Available from: https://ir.lib.uwo.ca/etd/3937

Not specified: Masters Thesis or Doctoral Dissertation

University of Western Ontario

29.
Dong, Rui.
Ricci Curvature of *Noncommutative* Three Tori, Entropy, and Second Quantization.

Degree: 2019, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/6294

► In *noncommutative* *geometry*, the metric information of a *noncommutative* space is encoded in the data of a spectral triple (𝓐, \mathcal{H},D), where D plays the…
(more)

Subjects/Keywords: Noncommutative Geometry; Spectral Triples; Second Quantization; Spectral Geometry; Differential Geometry; Modified Bessel Functions; Chemical Potential; Entropy; Ricci Curvature; Scalar Curvature; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dong, R. (2019). Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/6294

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Dong, Rui. “Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.” 2019. Thesis, University of Western Ontario. Accessed January 16, 2021. https://ir.lib.uwo.ca/etd/6294.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Dong, Rui. “Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.” 2019. Web. 16 Jan 2021.

Vancouver:

Dong R. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. [Internet] [Thesis]. University of Western Ontario; 2019. [cited 2021 Jan 16]. Available from: https://ir.lib.uwo.ca/etd/6294.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dong R. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. [Thesis]. University of Western Ontario; 2019. Available from: https://ir.lib.uwo.ca/etd/6294

Not specified: Masters Thesis or Doctoral Dissertation

University of California – Berkeley

30. Tucker-Simmons, Matthew Bruce. Quantum Algebras Associated to Irreducible Generalized Flag Manifolds.

Degree: Mathematics, 2013, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/6rp9b9g1

► The first part of this thesis deals with certain properties of the quantum symmetric and exterior algebras of Type 1 representations of U_{q}(g) defined by…
(more)

Subjects/Keywords: Mathematics; Clifford algebras; Noncommutative geometry; Quantum groups; Quantum homogeneous spaces; Symmetric and exterior algebras

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Tucker-Simmons, M. B. (2013). Quantum Algebras Associated to Irreducible Generalized Flag Manifolds. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/6rp9b9g1

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Tucker-Simmons, Matthew Bruce. “Quantum Algebras Associated to Irreducible Generalized Flag Manifolds.” 2013. Thesis, University of California – Berkeley. Accessed January 16, 2021. http://www.escholarship.org/uc/item/6rp9b9g1.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Tucker-Simmons, Matthew Bruce. “Quantum Algebras Associated to Irreducible Generalized Flag Manifolds.” 2013. Web. 16 Jan 2021.

Vancouver:

Tucker-Simmons MB. Quantum Algebras Associated to Irreducible Generalized Flag Manifolds. [Internet] [Thesis]. University of California – Berkeley; 2013. [cited 2021 Jan 16]. Available from: http://www.escholarship.org/uc/item/6rp9b9g1.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Tucker-Simmons MB. Quantum Algebras Associated to Irreducible Generalized Flag Manifolds. [Thesis]. University of California – Berkeley; 2013. Available from: http://www.escholarship.org/uc/item/6rp9b9g1

Not specified: Masters Thesis or Doctoral Dissertation