Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Non Linear Schrodinger Equation)`

.
Showing records 1 – 30 of
38704 total matches.

◁ [1] [2] [3] [4] [5] … [1291] ▶

Search Limiters

Dates

- 2016 – 2020 (13159)
- 2011 – 2015 (15064)
- 2006 – 2010 (7296)
- 2001 – 2005 (2360)
- 1996 – 2000 (993)
- 1991 – 1995 (495)
- 1986 – 1990 (405)
- 1981 – 1985 (218)
- 1976 – 1980 (173)
- 1971 – 1975 (194)

Universities

- Brno University of Technology (1377)
- University of São Paulo (864)
- University of Florida (567)
- Virginia Tech (519)
- NSYSU (492)
- Delft University of Technology (470)
- Texas A&M University (444)
- Université de Montréal (440)
- University of Illinois – Urbana-Champaign (367)
- University of Texas – Austin (361)
- University of Michigan (337)
- University of Manchester (332)
- The Ohio State University (330)
- Universidade Estadual de Campinas (330)
- Pontifical Catholic University of Rio de Janeiro (329)

Department

- Mathematics (611)
- Mechanical Engineering (454)
- Electrical Engineering (393)
- Electrical and Computer Engineering (309)
- Physics (302)
- Mathématiques (274)
- Physique (273)
- Psychology (271)
- Informatique (254)
- Statistics (242)
- Civil Engineering (209)
- Chemistry (193)
- Computer Science (176)
- Mathématiques appliquées (162)
- Faculty of Engineering (158)

Degrees

- PhD (7287)
- Docteur es (4486)
- MS (2267)
- Master (903)
- MA (496)
- Mestrado (487)
- MS(M.S.) (84)
- MSin Engineering (83)
- EdD (78)
- MSc (73)
- MSc Engg (62)
- Licenciado en Comunicación (39)
- 博士(工学) (39)
- MFA (31)
- 博士（医学） (29)

Levels

- doctoral (14990)
- masters (6459)
- thesis (524)
- doctor of philosophy ph.d. (51)
- dissertation (46)
- 1 (37)
- título profesional (36)
- doctor of philosophy (ph.d.) (33)
- project (21)
- open access (10)

Languages

Country

- US (11778)
- France (4487)
- Brazil (3190)
- Canada (3027)
- Sweden (1853)
- UK (1609)
- Netherlands (1388)
- Australia (1386)
- Czech Republic (1386)
- Greece (1231)
- South Africa (1061)
- Portugal (928)
- India (731)
- New Zealand (511)
- Taiwan (492)

▼ Search Limiters

Anna University

1. Ram Prasad, A V. Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -.

Degree: Information and Communication Engineering, 2014, Anna University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/27345

►

newlineOptical networks have a significant role to play in the present and newlinefuture global telecommunication networking scenario due to the increasing newlinedemand for larger transmission… (more)

Subjects/Keywords: Dense Wavelength Division Multiplexing; Four Wave Mixing; Non Linear Schrodinger Equation; Optical networks

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ram Prasad, A. V. (2014). Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -. (Thesis). Anna University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/27345

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ram Prasad, A V. “Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -.” 2014. Thesis, Anna University. Accessed October 22, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/27345.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ram Prasad, A V. “Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -.” 2014. Web. 22 Oct 2020.

Vancouver:

Ram Prasad AV. Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -. [Internet] [Thesis]. Anna University; 2014. [cited 2020 Oct 22]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/27345.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ram Prasad AV. Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -. [Thesis]. Anna University; 2014. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/27345

Not specified: Masters Thesis or Doctoral Dissertation

McMaster University

2. Sakovich, Anton. Nonlinear waves in weakly-coupled lattices.

Degree: PhD, 2013, McMaster University

URL: http://hdl.handle.net/11375/12906

►

We consider existence and stability of breather solutions to discrete nonlinear *Schrodinger* (dNLS) and discrete Klein-Gordon (dKG) equations near the anti-continuum limit, the limit…
(more)

Subjects/Keywords: nonliner lattices; discrete nonlinear Schrodinger equation; Klein-Gordon lattice; nonlinear waves; discrete breathers; discrete solitons; Non-linear Dynamics; Ordinary Differential Equations and Applied Dynamics; Partial Differential Equations; Non-linear Dynamics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sakovich, A. (2013). Nonlinear waves in weakly-coupled lattices. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/12906

Chicago Manual of Style (16^{th} Edition):

Sakovich, Anton. “Nonlinear waves in weakly-coupled lattices.” 2013. Doctoral Dissertation, McMaster University. Accessed October 22, 2020. http://hdl.handle.net/11375/12906.

MLA Handbook (7^{th} Edition):

Sakovich, Anton. “Nonlinear waves in weakly-coupled lattices.” 2013. Web. 22 Oct 2020.

Vancouver:

Sakovich A. Nonlinear waves in weakly-coupled lattices. [Internet] [Doctoral dissertation]. McMaster University; 2013. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/11375/12906.

Council of Science Editors:

Sakovich A. Nonlinear waves in weakly-coupled lattices. [Doctoral Dissertation]. McMaster University; 2013. Available from: http://hdl.handle.net/11375/12906

NSYSU

3.
Lee, Yuanhan.
Block elimination algorithms for bordered *linear* systems and its applications.

Degree: Master, Applied Mathematics, 2013, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623

► Many applications need to solve a number of large bordered *linear* systems such as the prediction and correction processes in continuation method.If the original *linear*…
(more)

Subjects/Keywords: Block elimination algorithm; bordered linear system; nonlinear Schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, Y. (2013). Block elimination algorithms for bordered linear systems and its applications. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lee, Yuanhan. “Block elimination algorithms for bordered linear systems and its applications.” 2013. Thesis, NSYSU. Accessed October 22, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lee, Yuanhan. “Block elimination algorithms for bordered linear systems and its applications.” 2013. Web. 22 Oct 2020.

Vancouver:

Lee Y. Block elimination algorithms for bordered linear systems and its applications. [Internet] [Thesis]. NSYSU; 2013. [cited 2020 Oct 22]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lee Y. Block elimination algorithms for bordered linear systems and its applications. [Thesis]. NSYSU; 2013. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623

Not specified: Masters Thesis or Doctoral Dissertation

4. Tsagkarakis, Charilaos. Θεωρίες βαθμίδας με αυθόρμητη παραβίαση της συμμετρίας και μελέτη της μη γραμμικότητας με τη διαταρακτική μέθοδο των πολλαπλών κλιμάκων.

Degree: 2016, National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ)

URL: http://hdl.handle.net/10442/hedi/39387

►

The present thesis studies the classical nonlinear dynamics of spontaneously broken abelian and *non* abelian gauge theories. Approximate analytical solutions of the equations of motion…
(more)

Subjects/Keywords: Αβελιανό πρότυπο Higgs; Μη αβελιανό πρότυπο Higgs; Θεωρίες βαθμίδας; Μποζόνιο Higgs; Σολιτονικές λύσεις; Μη γραμμική εξίσωση Schrodinger; Φερμιόνια; Ταλαντούμενα φωτεινά σολιτόνια; Ταλαντούμενα σκοτεινά σολιτόνια; Υπεραγωγιμότητα; Abelian Higgs model; Non Abelian- Higgs Μodel; Gauge theory; Higgs boson; Non linear Schrodinger equation; Fermions; Oscillons; Oscillating kink solitons; Superconductivity

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Tsagkarakis, C. (2016). Θεωρίες βαθμίδας με αυθόρμητη παραβίαση της συμμετρίας και μελέτη της μη γραμμικότητας με τη διαταρακτική μέθοδο των πολλαπλών κλιμάκων. (Thesis). National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Retrieved from http://hdl.handle.net/10442/hedi/39387

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Tsagkarakis, Charilaos. “Θεωρίες βαθμίδας με αυθόρμητη παραβίαση της συμμετρίας και μελέτη της μη γραμμικότητας με τη διαταρακτική μέθοδο των πολλαπλών κλιμάκων.” 2016. Thesis, National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Accessed October 22, 2020. http://hdl.handle.net/10442/hedi/39387.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Tsagkarakis, Charilaos. “Θεωρίες βαθμίδας με αυθόρμητη παραβίαση της συμμετρίας και μελέτη της μη γραμμικότητας με τη διαταρακτική μέθοδο των πολλαπλών κλιμάκων.” 2016. Web. 22 Oct 2020.

Vancouver:

Tsagkarakis C. Θεωρίες βαθμίδας με αυθόρμητη παραβίαση της συμμετρίας και μελέτη της μη γραμμικότητας με τη διαταρακτική μέθοδο των πολλαπλών κλιμάκων. [Internet] [Thesis]. National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); 2016. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/10442/hedi/39387.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Tsagkarakis C. Θεωρίες βαθμίδας με αυθόρμητη παραβίαση της συμμετρίας και μελέτη της μη γραμμικότητας με τη διαταρακτική μέθοδο των πολλαπλών κλιμάκων. [Thesis]. National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); 2016. Available from: http://hdl.handle.net/10442/hedi/39387

Not specified: Masters Thesis or Doctoral Dissertation

Universidade Estadual de Campinas

5.
Rieznik, Andrés Anibal.
Modelagem da propagação não *linear* em fibras ópticas : sistemas de transmissão de dados e amplificadores paramétricos: Modeling *non* *linear* propagation in optical fibers : data transmission systems and optical parametric amplifiers.

Degree: 2008, Universidade Estadual de Campinas

URL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/277905

► Abstract: We introduce optimized models and algorithms for the simulation of *non* *linear* propagation in optical fibers using the split-step Fourier Method (SSFM). Dispersion and…
(more)

Subjects/Keywords: Ótica não-linear; Fibras óticas; Amplificadores paramétricos; Schrodinger, Equação não-linear de; Non-linear optics; Optical fibers; Parametric amplifiers; Non-linear Schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rieznik, A. A. (2008). Modelagem da propagação não linear em fibras ópticas : sistemas de transmissão de dados e amplificadores paramétricos: Modeling non linear propagation in optical fibers : data transmission systems and optical parametric amplifiers. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/277905

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Rieznik, Andrés Anibal. “Modelagem da propagação não linear em fibras ópticas : sistemas de transmissão de dados e amplificadores paramétricos: Modeling non linear propagation in optical fibers : data transmission systems and optical parametric amplifiers.” 2008. Thesis, Universidade Estadual de Campinas. Accessed October 22, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277905.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Rieznik, Andrés Anibal. “Modelagem da propagação não linear em fibras ópticas : sistemas de transmissão de dados e amplificadores paramétricos: Modeling non linear propagation in optical fibers : data transmission systems and optical parametric amplifiers.” 2008. Web. 22 Oct 2020.

Vancouver:

Rieznik AA. Modelagem da propagação não linear em fibras ópticas : sistemas de transmissão de dados e amplificadores paramétricos: Modeling non linear propagation in optical fibers : data transmission systems and optical parametric amplifiers. [Internet] [Thesis]. Universidade Estadual de Campinas; 2008. [cited 2020 Oct 22]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/277905.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rieznik AA. Modelagem da propagação não linear em fibras ópticas : sistemas de transmissão de dados e amplificadores paramétricos: Modeling non linear propagation in optical fibers : data transmission systems and optical parametric amplifiers. [Thesis]. Universidade Estadual de Campinas; 2008. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/277905

Not specified: Masters Thesis or Doctoral Dissertation

University of Illinois – Urbana-Champaign

6. Demirbas, Seckin. A study on certain periodic Schrödinger equations.

Degree: PhD, Mathematics, 2015, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/87978

In the first part of this thesis we consider the cubic Schrödinger equation
iu_{t+Delta} u =+/-|u|^{2u}, x in T_{theta}^{2}, t∈ [-T,T],
u(x,0)=u_{0}(x) in H^{s}(T_{theta}^{2}).
T is the time of existence of the solutions and T_{theta}^{2} is the irrational torus given by R^{2}/theta_{1} Z * θ_{2} Z for theta_{1}, theta_{2} > 0 and theta_{1}/theta_{2} irrational. Our main result is an improvement of the Strichartz estimates on irrational tori using a counting argument by Huxley [43], which estimates the number of lattice points on ellipsoids. With this Strichartz estimate, we obtain a local well-posedness result in H^{s} for s>131/416. We also use energy type estimates to control the H^{s} norm of the solution and obtain improved growth bounds for higher order Sobolev norms.
In the second and the third parts of this thesis, we study the Cauchy problem for the 1d periodic fractional Schrödinger equation:
iu_{t+}(-Delta)^{alpha} u =+/- |u|^{2u}, x in T, t in R,
u(x,0)=u_{0}(x) in H^{s}(T),
where alpha in (1/2,1). First, we prove a Strichartz type estimate for this equation. Using the arguments from Chapter 3, this estimate implies local well-posedness in H^{s} for s>(1-alpha)/2. However, we prove local well-posedness using direct X^(s,b) estimates. In addition, we show the existence of global-in-time infinite energy solutions. We also show that the nonlinear evolution of the equation is smoother than the initial data. As an important consequence of this smoothing estimate, we prove that there is global well-posedness in H^{s} for s>(10*alpha+1)/(12).
Finally, for the fractional Schrödinger equation, we define an invariant probability measure mu on H^{s} for s<alpha-1/2, called a Gibbs measure. We define mu so that for any epsilon>0 there is a set Omega, a subset of H^{s}, such that mu(Omega^{c})<epsilon and the equation is globally well-posed for initial data in Omega. We achieve this by showing that for the initial data in Omega, the H^{s} norms of the solutions stay finite for all times. This fills the gap between the local well-posedness and the global well-posedness range in almost sure sense for (1-alpha)/2<alpha-1/2, i.e. alpha>2/3.
*Advisors/Committee Members: Tzirakis, Nikolaos (advisor), Erdogan, Burak (advisor), Junge, Marius (Committee Chair), Bronski, Jared C. (committee member).*

Subjects/Keywords: Periodic Schrodinger equation; Fractional Schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Demirbas, S. (2015). A study on certain periodic Schrödinger equations. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/87978

Chicago Manual of Style (16^{th} Edition):

Demirbas, Seckin. “A study on certain periodic Schrödinger equations.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 22, 2020. http://hdl.handle.net/2142/87978.

MLA Handbook (7^{th} Edition):

Demirbas, Seckin. “A study on certain periodic Schrödinger equations.” 2015. Web. 22 Oct 2020.

Vancouver:

Demirbas S. A study on certain periodic Schrödinger equations. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/2142/87978.

Council of Science Editors:

Demirbas S. A study on certain periodic Schrödinger equations. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/87978

7. Godet, Nicolas. Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations.

Degree: Docteur es, Mathématiques - EM2C, 2012, Cergy-Pontoise

URL: http://www.theses.fr/2012CERG0619

►

Cette thèse porte sur l'étude des phénomènes d'explosion pour certaines équations aux dérivées partielles dispersives et plus particulièrement pour l'équation de *Schrodinger* *non* linéaire. Ces…
(more)

Subjects/Keywords: Edp; Équation de Schrodinger; Explosion; Pde; Schrodinger equation; Blow up

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Godet, N. (2012). Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations. (Doctoral Dissertation). Cergy-Pontoise. Retrieved from http://www.theses.fr/2012CERG0619

Chicago Manual of Style (16^{th} Edition):

Godet, Nicolas. “Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations.” 2012. Doctoral Dissertation, Cergy-Pontoise. Accessed October 22, 2020. http://www.theses.fr/2012CERG0619.

MLA Handbook (7^{th} Edition):

Godet, Nicolas. “Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations.” 2012. Web. 22 Oct 2020.

Vancouver:

Godet N. Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations. [Internet] [Doctoral dissertation]. Cergy-Pontoise; 2012. [cited 2020 Oct 22]. Available from: http://www.theses.fr/2012CERG0619.

Council of Science Editors:

Godet N. Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations. [Doctoral Dissertation]. Cergy-Pontoise; 2012. Available from: http://www.theses.fr/2012CERG0619

University of Oklahoma

8.
Adekoya, Oreoluwa.
PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR *SCHRODINGER* * EQUATION*.

Degree: PhD, 2019, University of Oklahoma

URL: http://hdl.handle.net/11244/319611

► We study the existence, uniqueness and stability of solutions to the initial-value problem for the periodic dispersion-managed nonlinear Schrödinger (DMNLS) *equation*, an *equation* that models…
(more)

Subjects/Keywords: Dispersion-managed; Dispersion; Nonlinear; Schrodinger; Periodic dispersion managed nonlinear schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Adekoya, O. (2019). PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/319611

Chicago Manual of Style (16^{th} Edition):

Adekoya, Oreoluwa. “PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION.” 2019. Doctoral Dissertation, University of Oklahoma. Accessed October 22, 2020. http://hdl.handle.net/11244/319611.

MLA Handbook (7^{th} Edition):

Adekoya, Oreoluwa. “PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION.” 2019. Web. 22 Oct 2020.

Vancouver:

Adekoya O. PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION. [Internet] [Doctoral dissertation]. University of Oklahoma; 2019. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/11244/319611.

Council of Science Editors:

Adekoya O. PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION. [Doctoral Dissertation]. University of Oklahoma; 2019. Available from: http://hdl.handle.net/11244/319611

University of Ontario Institute of Technology

9. Metherall, Brady. A new method of modelling tuneable lasers with functional composition.

Degree: 2019, University of Ontario Institute of Technology

URL: http://hdl.handle.net/10155/1073

► A new nonlinear model is proposed for tuneable lasers. Using the generalized nonlinear *Schrodinger* *equation* as a starting point, expressions for the transformations undergone by…
(more)

Subjects/Keywords: Tuneable lasers; Nonlinear Schrodinger equation; Laser cavity

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Metherall, B. (2019). A new method of modelling tuneable lasers with functional composition. (Thesis). University of Ontario Institute of Technology. Retrieved from http://hdl.handle.net/10155/1073

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Metherall, Brady. “A new method of modelling tuneable lasers with functional composition.” 2019. Thesis, University of Ontario Institute of Technology. Accessed October 22, 2020. http://hdl.handle.net/10155/1073.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Metherall, Brady. “A new method of modelling tuneable lasers with functional composition.” 2019. Web. 22 Oct 2020.

Vancouver:

Metherall B. A new method of modelling tuneable lasers with functional composition. [Internet] [Thesis]. University of Ontario Institute of Technology; 2019. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/10155/1073.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Metherall B. A new method of modelling tuneable lasers with functional composition. [Thesis]. University of Ontario Institute of Technology; 2019. Available from: http://hdl.handle.net/10155/1073

Not specified: Masters Thesis or Doctoral Dissertation

10. Pourmatin, Hossein. Computational Multiscale Methods for Defects: 1. Line Defects in Liquid Crystals; 2. Electron Scattering in Defected Crystals.

Degree: 2014, Carnegie Mellon University

URL: http://repository.cmu.edu/dissertations/458

► In the first part of this thesis, we demonstrate theory and computations for finite-energy line defect solutions in an improvement of Ericksen-Leslie liquid crystal theory.…
(more)

Subjects/Keywords: Schrodinger equation; tight-binding; scattering; defect; non-reflecting boundary condition

…Homogenization of *Schrodinger* *equation* in periodic media . . . . . . 104
C.2 An attempt to understand… …Introduction
43
7 *Non*-reflecting boundary conditions
46
7.1
Formulation of the model… …Exact *non*-reflecting boundary condition . . . . . . . . . . . . . . . .
51
7.4
Perfectly… …Matched Layers for the Schrodinger’s *Equation* . . . . . . .
52
8 Implementation
8.1
56
Tight… …66
Figure 8.9
The fishbone model of DNA for *equation* (8.15) . . . . . . . .
70…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pourmatin, H. (2014). Computational Multiscale Methods for Defects: 1. Line Defects in Liquid Crystals; 2. Electron Scattering in Defected Crystals. (Thesis). Carnegie Mellon University. Retrieved from http://repository.cmu.edu/dissertations/458

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Pourmatin, Hossein. “Computational Multiscale Methods for Defects: 1. Line Defects in Liquid Crystals; 2. Electron Scattering in Defected Crystals.” 2014. Thesis, Carnegie Mellon University. Accessed October 22, 2020. http://repository.cmu.edu/dissertations/458.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Pourmatin, Hossein. “Computational Multiscale Methods for Defects: 1. Line Defects in Liquid Crystals; 2. Electron Scattering in Defected Crystals.” 2014. Web. 22 Oct 2020.

Vancouver:

Pourmatin H. Computational Multiscale Methods for Defects: 1. Line Defects in Liquid Crystals; 2. Electron Scattering in Defected Crystals. [Internet] [Thesis]. Carnegie Mellon University; 2014. [cited 2020 Oct 22]. Available from: http://repository.cmu.edu/dissertations/458.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pourmatin H. Computational Multiscale Methods for Defects: 1. Line Defects in Liquid Crystals; 2. Electron Scattering in Defected Crystals. [Thesis]. Carnegie Mellon University; 2014. Available from: http://repository.cmu.edu/dissertations/458

Not specified: Masters Thesis or Doctoral Dissertation

University of Kentucky

11.
Music, Michael.
Inverse Scattering For The Zero-Energy Novikov-Veselov * Equation*.

Degree: 2016, University of Kentucky

URL: https://uknowledge.uky.edu/math_etds/40

► For certain initial data, we solve the Novikov-Veselov *equation* by the inverse scat- tering method. This is a (2+1)-dimensional completely integrable system that gen- eralizes…
(more)

Subjects/Keywords: inverse scattering; Novikov-Veselov equation; Schrodinger equation; Analysis

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Music, M. (2016). Inverse Scattering For The Zero-Energy Novikov-Veselov Equation. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/40

Chicago Manual of Style (16^{th} Edition):

Music, Michael. “Inverse Scattering For The Zero-Energy Novikov-Veselov Equation.” 2016. Doctoral Dissertation, University of Kentucky. Accessed October 22, 2020. https://uknowledge.uky.edu/math_etds/40.

MLA Handbook (7^{th} Edition):

Music, Michael. “Inverse Scattering For The Zero-Energy Novikov-Veselov Equation.” 2016. Web. 22 Oct 2020.

Vancouver:

Music M. Inverse Scattering For The Zero-Energy Novikov-Veselov Equation. [Internet] [Doctoral dissertation]. University of Kentucky; 2016. [cited 2020 Oct 22]. Available from: https://uknowledge.uky.edu/math_etds/40.

Council of Science Editors:

Music M. Inverse Scattering For The Zero-Energy Novikov-Veselov Equation. [Doctoral Dissertation]. University of Kentucky; 2016. Available from: https://uknowledge.uky.edu/math_etds/40

University of Illinois – Urbana-Champaign

12.
Toprak, Ebru.
Global dynamics of *Schrodinger* and Dirac equations.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/101665

► In this document, we study the *linear* Schrödinger operator and *linear* massive Dirac operator in the L^{1} → L^∞ settings. In Chapter~I, we focus on the…
(more)

Subjects/Keywords: Schrodinger equation; Dirac equation; dispersive estimate; threshold-energy obstruction

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Toprak, E. (2018). Global dynamics of Schrodinger and Dirac equations. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101665

Chicago Manual of Style (16^{th} Edition):

Toprak, Ebru. “Global dynamics of Schrodinger and Dirac equations.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 22, 2020. http://hdl.handle.net/2142/101665.

MLA Handbook (7^{th} Edition):

Toprak, Ebru. “Global dynamics of Schrodinger and Dirac equations.” 2018. Web. 22 Oct 2020.

Vancouver:

Toprak E. Global dynamics of Schrodinger and Dirac equations. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/2142/101665.

Council of Science Editors:

Toprak E. Global dynamics of Schrodinger and Dirac equations. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101665

13.
Temur, Faruk.
* Linear* and bilinear restriction estimates for the Fourier transform.

Degree: PhD, 0439, 2014, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/46569

► This thesis is concerned with the restriction theory of the Fourier transform. We prove two restriction estimates for the Fourier transform. The first is a…
(more)

Subjects/Keywords: Fourier transform; Restriction theory; Wave equation; Linear restriction; Kakeya problem; Schrodinger equation

…class S(Rn ), then we say that the *linear* restriction
inequality RS,dσ (p → q… …we say that the adjoint *linear* restriction inequal∗
ity RS,dσ
(p → q) holds. This… …that were utilized, apart from other applications, to obtain *linear* restriction estimates. We… …subsets S1 , S2 of *non*-empty
interior of S, with S either the light cone or an elliptic surface… …restriction estimates. This problem, as opposed to the *linear* restriction conjecture,
is now fully…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Temur, F. (2014). Linear and bilinear restriction estimates for the Fourier transform. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/46569

Chicago Manual of Style (16^{th} Edition):

Temur, Faruk. “Linear and bilinear restriction estimates for the Fourier transform.” 2014. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 22, 2020. http://hdl.handle.net/2142/46569.

MLA Handbook (7^{th} Edition):

Temur, Faruk. “Linear and bilinear restriction estimates for the Fourier transform.” 2014. Web. 22 Oct 2020.

Vancouver:

Temur F. Linear and bilinear restriction estimates for the Fourier transform. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2014. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/2142/46569.

Council of Science Editors:

Temur F. Linear and bilinear restriction estimates for the Fourier transform. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2014. Available from: http://hdl.handle.net/2142/46569

University of South Florida

14.
Freeman, Robert D.
On the p(x)-Laplace *equation* in Carnot groups.

Degree: 2020, University of South Florida

URL: https://scholarcommons.usf.edu/etd/8198

► In this thesis, we examine the p(x)-Laplace *equation* in the context of Carnot groups. The p(x)-Laplace *equation* is the prototype *equation* for a class of…
(more)

Subjects/Keywords: Non-linear potential theory; p(x)-Laplace equation; Removability; Sub-Riemannian Geometry; Viscosity solutions; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Freeman, R. D. (2020). On the p(x)-Laplace equation in Carnot groups. (Thesis). University of South Florida. Retrieved from https://scholarcommons.usf.edu/etd/8198

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Freeman, Robert D. “On the p(x)-Laplace equation in Carnot groups.” 2020. Thesis, University of South Florida. Accessed October 22, 2020. https://scholarcommons.usf.edu/etd/8198.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Freeman, Robert D. “On the p(x)-Laplace equation in Carnot groups.” 2020. Web. 22 Oct 2020.

Vancouver:

Freeman RD. On the p(x)-Laplace equation in Carnot groups. [Internet] [Thesis]. University of South Florida; 2020. [cited 2020 Oct 22]. Available from: https://scholarcommons.usf.edu/etd/8198.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Freeman RD. On the p(x)-Laplace equation in Carnot groups. [Thesis]. University of South Florida; 2020. Available from: https://scholarcommons.usf.edu/etd/8198

Not specified: Masters Thesis or Doctoral Dissertation

University of Illinois – Chicago

15.
Haidau, Cristina A.
A Study of Well Posedness for Systems of Coupled *Non*-*linear* Dispersive Wave Equations.

Degree: 2014, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/18851

► To model two-way propagation of waves in physical systems where nonlinear and dispersive effects are equally important, coupled systems of partial differential equations arise. The…
(more)

Subjects/Keywords: Systems of non-linear dispersive wave equations; Benjamin-Bona-Mahony equation; generalized BBM equation; surface water wave models, internal wave motion

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Haidau, C. A. (2014). A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/18851

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Haidau, Cristina A. “A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations.” 2014. Thesis, University of Illinois – Chicago. Accessed October 22, 2020. http://hdl.handle.net/10027/18851.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Haidau, Cristina A. “A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations.” 2014. Web. 22 Oct 2020.

Vancouver:

Haidau CA. A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations. [Internet] [Thesis]. University of Illinois – Chicago; 2014. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/10027/18851.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Haidau CA. A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations. [Thesis]. University of Illinois – Chicago; 2014. Available from: http://hdl.handle.net/10027/18851

Not specified: Masters Thesis or Doctoral Dissertation

University of California – San Diego

16. Pizzo, Nicholas Edward. Properties of nonlinear and breaking deep-water surface waves.

Degree: Oceanography, 2015, University of California – San Diego

URL: http://www.escholarship.org/uc/item/0g45s3j6

► In this thesis we study nonlinear and breaking deep-water surface waves. First, we consider the vorticity generated by an individual breaking wave, drawing on classical…
(more)

Subjects/Keywords: Physical oceanography; Applied mathematics; Nonlinear Schrodinger Equation; Physical Oceanography; Wave breaking

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pizzo, N. E. (2015). Properties of nonlinear and breaking deep-water surface waves. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/0g45s3j6

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Pizzo, Nicholas Edward. “Properties of nonlinear and breaking deep-water surface waves.” 2015. Thesis, University of California – San Diego. Accessed October 22, 2020. http://www.escholarship.org/uc/item/0g45s3j6.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Pizzo, Nicholas Edward. “Properties of nonlinear and breaking deep-water surface waves.” 2015. Web. 22 Oct 2020.

Vancouver:

Pizzo NE. Properties of nonlinear and breaking deep-water surface waves. [Internet] [Thesis]. University of California – San Diego; 2015. [cited 2020 Oct 22]. Available from: http://www.escholarship.org/uc/item/0g45s3j6.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pizzo NE. Properties of nonlinear and breaking deep-water surface waves. [Thesis]. University of California – San Diego; 2015. Available from: http://www.escholarship.org/uc/item/0g45s3j6

Not specified: Masters Thesis or Doctoral Dissertation

17.
Sohani, Vijay Kumar.
Nonlinear *schrodinger* *equation* and the twisted
laplacian; -.

Degree: Mathematical Sciences, 2013, INFLIBNET

URL: http://shodhganga.inflibnet.ac.in/handle/10603/37405

Subjects/Keywords: equation; Nonlinear; schrodinger; twisted laplacian

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sohani, V. K. (2013). Nonlinear schrodinger equation and the twisted laplacian; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/37405

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sohani, Vijay Kumar. “Nonlinear schrodinger equation and the twisted laplacian; -.” 2013. Thesis, INFLIBNET. Accessed October 22, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/37405.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sohani, Vijay Kumar. “Nonlinear schrodinger equation and the twisted laplacian; -.” 2013. Web. 22 Oct 2020.

Vancouver:

Sohani VK. Nonlinear schrodinger equation and the twisted laplacian; -. [Internet] [Thesis]. INFLIBNET; 2013. [cited 2020 Oct 22]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/37405.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sohani VK. Nonlinear schrodinger equation and the twisted laplacian; -. [Thesis]. INFLIBNET; 2013. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/37405

Not specified: Masters Thesis or Doctoral Dissertation

Stellenbosch University

18.
Wessels, Gert Jermia Cornelus.
A numerical and analytical investigation into *non*-Hermitian Hamiltonians.

Degree: Mathematical Sciences, 2009, Stellenbosch University

URL: http://hdl.handle.net/10019.1/2894

►

Thesis (MSc (Physical and Mathematical Analysis)) – University of Stellenbosch, 2009.

In this thesis we aim to show that the Schr odinger *equation*, which is a…
(more)

Subjects/Keywords: Mathematics; Schrodinger equation; Perturbation (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wessels, G. J. C. (2009). A numerical and analytical investigation into non-Hermitian Hamiltonians. (Thesis). Stellenbosch University. Retrieved from http://hdl.handle.net/10019.1/2894

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Wessels, Gert Jermia Cornelus. “A numerical and analytical investigation into non-Hermitian Hamiltonians.” 2009. Thesis, Stellenbosch University. Accessed October 22, 2020. http://hdl.handle.net/10019.1/2894.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Wessels, Gert Jermia Cornelus. “A numerical and analytical investigation into non-Hermitian Hamiltonians.” 2009. Web. 22 Oct 2020.

Vancouver:

Wessels GJC. A numerical and analytical investigation into non-Hermitian Hamiltonians. [Internet] [Thesis]. Stellenbosch University; 2009. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/10019.1/2894.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wessels GJC. A numerical and analytical investigation into non-Hermitian Hamiltonians. [Thesis]. Stellenbosch University; 2009. Available from: http://hdl.handle.net/10019.1/2894

Not specified: Masters Thesis or Doctoral Dissertation

Texas Tech University

19.
Walker, John David.
An investigation into the possibility of an integral solution to the radical *Schrodinger* *equation*.

Degree: Physics, 1964, Texas Tech University

URL: http://hdl.handle.net/2346/13431

Subjects/Keywords: Schrodinger equation; Scattering (Physics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Walker, J. D. (1964). An investigation into the possibility of an integral solution to the radical Schrodinger equation. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/13431

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Walker, John David. “An investigation into the possibility of an integral solution to the radical Schrodinger equation.” 1964. Thesis, Texas Tech University. Accessed October 22, 2020. http://hdl.handle.net/2346/13431.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Walker, John David. “An investigation into the possibility of an integral solution to the radical Schrodinger equation.” 1964. Web. 22 Oct 2020.

Vancouver:

Walker JD. An investigation into the possibility of an integral solution to the radical Schrodinger equation. [Internet] [Thesis]. Texas Tech University; 1964. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/2346/13431.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Walker JD. An investigation into the possibility of an integral solution to the radical Schrodinger equation. [Thesis]. Texas Tech University; 1964. Available from: http://hdl.handle.net/2346/13431

Not specified: Masters Thesis or Doctoral Dissertation

University of Kansas

20. Claassen, Kyle Matthew. Stability of Periodic Waves in Nonlocal Dispersive Equations.

Degree: PhD, Mathematics, 2018, University of Kansas

URL: http://hdl.handle.net/1808/27876

► In this work consisting of joint projects with my advisor, Dr. Mathew Johnson, we study the existence and stability of periodic waves in equations that…
(more)

Subjects/Keywords: Mathematics; Bidirectional Whitham models; Dispersive Equations; Fractional Nonlinear Schrodinger Equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Claassen, K. M. (2018). Stability of Periodic Waves in Nonlocal Dispersive Equations. (Doctoral Dissertation). University of Kansas. Retrieved from http://hdl.handle.net/1808/27876

Chicago Manual of Style (16^{th} Edition):

Claassen, Kyle Matthew. “Stability of Periodic Waves in Nonlocal Dispersive Equations.” 2018. Doctoral Dissertation, University of Kansas. Accessed October 22, 2020. http://hdl.handle.net/1808/27876.

MLA Handbook (7^{th} Edition):

Claassen, Kyle Matthew. “Stability of Periodic Waves in Nonlocal Dispersive Equations.” 2018. Web. 22 Oct 2020.

Vancouver:

Claassen KM. Stability of Periodic Waves in Nonlocal Dispersive Equations. [Internet] [Doctoral dissertation]. University of Kansas; 2018. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/1808/27876.

Council of Science Editors:

Claassen KM. Stability of Periodic Waves in Nonlocal Dispersive Equations. [Doctoral Dissertation]. University of Kansas; 2018. Available from: http://hdl.handle.net/1808/27876

University of New South Wales

21. Sun, Yang. Soliton dynamics in frequency-modulated lattices.

Degree: Physical, Environmental & Mathematical Sciences, 2014, University of New South Wales

URL: http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true

► Currently, experimental and theoretical studies of solitons have been conducted in the context of several areas of science, from applied mathematics and physics to chemistry…
(more)

Subjects/Keywords: nonlinear Schrodinger equation; soliton; periodic potential; parametric resonance

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sun, Y. (2014). Soliton dynamics in frequency-modulated lattices. (Masters Thesis). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true

Chicago Manual of Style (16^{th} Edition):

Sun, Yang. “Soliton dynamics in frequency-modulated lattices.” 2014. Masters Thesis, University of New South Wales. Accessed October 22, 2020. http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true.

MLA Handbook (7^{th} Edition):

Sun, Yang. “Soliton dynamics in frequency-modulated lattices.” 2014. Web. 22 Oct 2020.

Vancouver:

Sun Y. Soliton dynamics in frequency-modulated lattices. [Internet] [Masters thesis]. University of New South Wales; 2014. [cited 2020 Oct 22]. Available from: http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true.

Council of Science Editors:

Sun Y. Soliton dynamics in frequency-modulated lattices. [Masters Thesis]. University of New South Wales; 2014. Available from: http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true

The Ohio State University

22.
Lee, Jong-eao John.
The inverse spectral solution, modulation theory and
linearized stability analysis of N-phase, quasi-periodic solutions
of the nonlinear *Schrodinger* * equation*.

Degree: PhD, Graduate School, 1986, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

Subjects/Keywords: Mathematics; Schrodinger equation; Wave mechanics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, J. J. (1986). The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

Chicago Manual of Style (16^{th} Edition):

Lee, Jong-eao John. “The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.” 1986. Doctoral Dissertation, The Ohio State University. Accessed October 22, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429.

MLA Handbook (7^{th} Edition):

Lee, Jong-eao John. “The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.” 1986. Web. 22 Oct 2020.

Vancouver:

Lee JJ. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. [Internet] [Doctoral dissertation]. The Ohio State University; 1986. [cited 2020 Oct 22]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429.

Council of Science Editors:

Lee JJ. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. [Doctoral Dissertation]. The Ohio State University; 1986. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

University of Cincinnati

23.
Hill, Thomas.
Dispersive Estimates of *Schrodinger* and *Schrodinger*-Like
Equations in One Dimension.

Degree: PhD, Arts and Sciences: Mathematical Sciences, 2020, University of Cincinnati

URL: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442

► This dissertation will discuss one-dimensional dispersive estimates of the *Schrodinger* *equation* and a fourth-order *Schrodinger*-like *equation*.We prove dispersive estimates for the *Schrodinger* *equation* with Hamiltonians…
(more)

Subjects/Keywords: Mathematics; Schrodinger equation; dispersive estimates; fourth-order; Wiener algebra; one-dimensional

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hill, T. (2020). Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442

Chicago Manual of Style (16^{th} Edition):

Hill, Thomas. “Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension.” 2020. Doctoral Dissertation, University of Cincinnati. Accessed October 22, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442.

MLA Handbook (7^{th} Edition):

Hill, Thomas. “Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension.” 2020. Web. 22 Oct 2020.

Vancouver:

Hill T. Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension. [Internet] [Doctoral dissertation]. University of Cincinnati; 2020. [cited 2020 Oct 22]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442.

Council of Science Editors:

Hill T. Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension. [Doctoral Dissertation]. University of Cincinnati; 2020. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442

East Tennessee State University

24.
Mehraban, Arash.
* Non*-Classical Symmetry Solutions to the Fitzhugh Nagumo

Degree: MS, Mathematical Sciences, 2010, East Tennessee State University

URL: https://dc.etsu.edu/etd/1736

► In Reaction-Diffusion systems, some parameters can influence the behavior of other parameters in that system. Thus reaction diffusion equations are often used to model…
(more)

Subjects/Keywords: Fitzhugh Nagumo Equation; Lie Groups; Non-Classical Method; Applied Mathematics; Non-linear Dynamics; Physical Sciences and Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mehraban, A. (2010). Non-Classical Symmetry Solutions to the Fitzhugh Nagumo Equation. (Masters Thesis). East Tennessee State University. Retrieved from https://dc.etsu.edu/etd/1736

Chicago Manual of Style (16^{th} Edition):

Mehraban, Arash. “Non-Classical Symmetry Solutions to the Fitzhugh Nagumo Equation.” 2010. Masters Thesis, East Tennessee State University. Accessed October 22, 2020. https://dc.etsu.edu/etd/1736.

MLA Handbook (7^{th} Edition):

Mehraban, Arash. “Non-Classical Symmetry Solutions to the Fitzhugh Nagumo Equation.” 2010. Web. 22 Oct 2020.

Vancouver:

Mehraban A. Non-Classical Symmetry Solutions to the Fitzhugh Nagumo Equation. [Internet] [Masters thesis]. East Tennessee State University; 2010. [cited 2020 Oct 22]. Available from: https://dc.etsu.edu/etd/1736.

Council of Science Editors:

Mehraban A. Non-Classical Symmetry Solutions to the Fitzhugh Nagumo Equation. [Masters Thesis]. East Tennessee State University; 2010. Available from: https://dc.etsu.edu/etd/1736

Universidade Estadual de Campinas

25.
Luciana Maria Mendonça Bragança.
O problema de Cauchy para um sistema de equações do tipo *Schrodinger* não *linear* de terceira ordem.

Degree: Instituto de Matemática, Estatística e Computação Científica, 2007, Universidade Estadual de Campinas

URL: http://libdigi.unicamp.br/document/?code=vtls000417496

►

In this work we study the Cauchy problem associated to a system of coupled third-order nonlinear *Schrodinger* *equation*. We establish local well-posedness results for the…
(more)

Subjects/Keywords: Cauchy; Schrodinger; Nonlinear differential equtions; Equações diferenciais não-lineares; Cauchy problem; Problemas de; Equações de; Schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bragança, L. M. M. (2007). O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem. (Thesis). Universidade Estadual de Campinas. Retrieved from http://libdigi.unicamp.br/document/?code=vtls000417496

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bragança, Luciana Maria Mendonça. “O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem.” 2007. Thesis, Universidade Estadual de Campinas. Accessed October 22, 2020. http://libdigi.unicamp.br/document/?code=vtls000417496.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bragança, Luciana Maria Mendonça. “O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem.” 2007. Web. 22 Oct 2020.

Vancouver:

Bragança LMM. O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem. [Internet] [Thesis]. Universidade Estadual de Campinas; 2007. [cited 2020 Oct 22]. Available from: http://libdigi.unicamp.br/document/?code=vtls000417496.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bragança LMM. O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem. [Thesis]. Universidade Estadual de Campinas; 2007. Available from: http://libdigi.unicamp.br/document/?code=vtls000417496

Not specified: Masters Thesis or Doctoral Dissertation

26. Rizik, Vivian. Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations.

Degree: Docteur es, Mathématiques Appliquées : Laboratoire de Mathématiques Appliquées de Compiègne (Unité de recherche EA-2222), 2019, Compiègne; Université libanaise

URL: http://www.theses.fr/2019COMP2505

►

Dans cette thèse on s'intéresse à l'analyse théorique et numérique de la dynamique des densités des dislocations, où les dislocations sont des défauts cristallins, apparaissant… (more)

Subjects/Keywords: Équations hyperboliques; Équations paraboliques; BV space; Hamilton-Jacobi equation; Hyperbolic equation; Parabolic equation; Viscosity solution; Dislocation dynamics; Gas dynamics; BV space; Non-linear partial differential equations; Elasto-viscoplasticity; Numerical analysis

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rizik, V. (2019). Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations. (Doctoral Dissertation). Compiègne; Université libanaise. Retrieved from http://www.theses.fr/2019COMP2505

Chicago Manual of Style (16^{th} Edition):

Rizik, Vivian. “Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations.” 2019. Doctoral Dissertation, Compiègne; Université libanaise. Accessed October 22, 2020. http://www.theses.fr/2019COMP2505.

MLA Handbook (7^{th} Edition):

Rizik, Vivian. “Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations.” 2019. Web. 22 Oct 2020.

Vancouver:

Rizik V. Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations. [Internet] [Doctoral dissertation]. Compiègne; Université libanaise; 2019. [cited 2020 Oct 22]. Available from: http://www.theses.fr/2019COMP2505.

Council of Science Editors:

Rizik V. Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations. [Doctoral Dissertation]. Compiègne; Université libanaise; 2019. Available from: http://www.theses.fr/2019COMP2505

27.
Borrelli, William.
L'équation de Dirac en physique du solide et en optique *non*-lineaire : The Dirac *equation* in solid state physics and *non*-*linear* optics.

Degree: Docteur es, Mathématiques, 2018, Paris Sciences et Lettres (ComUE)

URL: http://www.theses.fr/2018PSLED021

►

Ces dernières années, de nouveaux matériaux bidimensionnels aux propriétés surprenantes ont été découverts, le plus connu étant le graphène. Dans ces matériaux, les électrons du… (more)

Subjects/Keywords: Equation de Dirac non-linéaire; Graphène; Méthodes variationnelles; Solutions stationnaires; Graphes quantiques; Cônes de Dirac; Non-Linear Dirac equation; Graphene; Variational methods; Stationary solutions; Quantum graphs; Dirac materials; 519

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Borrelli, W. (2018). L'équation de Dirac en physique du solide et en optique non-lineaire : The Dirac equation in solid state physics and non-linear optics. (Doctoral Dissertation). Paris Sciences et Lettres (ComUE). Retrieved from http://www.theses.fr/2018PSLED021

Chicago Manual of Style (16^{th} Edition):

Borrelli, William. “L'équation de Dirac en physique du solide et en optique non-lineaire : The Dirac equation in solid state physics and non-linear optics.” 2018. Doctoral Dissertation, Paris Sciences et Lettres (ComUE). Accessed October 22, 2020. http://www.theses.fr/2018PSLED021.

MLA Handbook (7^{th} Edition):

Borrelli, William. “L'équation de Dirac en physique du solide et en optique non-lineaire : The Dirac equation in solid state physics and non-linear optics.” 2018. Web. 22 Oct 2020.

Vancouver:

Borrelli W. L'équation de Dirac en physique du solide et en optique non-lineaire : The Dirac equation in solid state physics and non-linear optics. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres (ComUE); 2018. [cited 2020 Oct 22]. Available from: http://www.theses.fr/2018PSLED021.

Council of Science Editors:

Borrelli W. L'équation de Dirac en physique du solide et en optique non-lineaire : The Dirac equation in solid state physics and non-linear optics. [Doctoral Dissertation]. Paris Sciences et Lettres (ComUE); 2018. Available from: http://www.theses.fr/2018PSLED021

University of Alberta

28. Dosser, Hayley V. Propagation and breaking of nonlinear internal gravity waves.

Degree: MS, Department of Physics, 2010, University of Alberta

URL: https://era.library.ualberta.ca/files/hh63sx19v

► Internal gravity waves grow in amplitude as they propagate upwards in a *non*-Boussinesq fluid and weakly nonlinear effects develop due to interactions with an induced…
(more)

Subjects/Keywords: internal gravity wave; anelastic; modulational; atmosphere; nonlinear; Schrodinger; non-Boussinesq

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dosser, H. V. (2010). Propagation and breaking of nonlinear internal gravity waves. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/hh63sx19v

Chicago Manual of Style (16^{th} Edition):

Dosser, Hayley V. “Propagation and breaking of nonlinear internal gravity waves.” 2010. Masters Thesis, University of Alberta. Accessed October 22, 2020. https://era.library.ualberta.ca/files/hh63sx19v.

MLA Handbook (7^{th} Edition):

Dosser, Hayley V. “Propagation and breaking of nonlinear internal gravity waves.” 2010. Web. 22 Oct 2020.

Vancouver:

Dosser HV. Propagation and breaking of nonlinear internal gravity waves. [Internet] [Masters thesis]. University of Alberta; 2010. [cited 2020 Oct 22]. Available from: https://era.library.ualberta.ca/files/hh63sx19v.

Council of Science Editors:

Dosser HV. Propagation and breaking of nonlinear internal gravity waves. [Masters Thesis]. University of Alberta; 2010. Available from: https://era.library.ualberta.ca/files/hh63sx19v

University of Michigan

29. Tascon Munoz, Oscar. Parametrically Excited Transverse Plane Instabilities on High-Speed Planing Hulls.

Degree: PhD, Naval Architecture & Marine Engineering, 2016, University of Michigan

URL: http://hdl.handle.net/2027.42/135808

► Planing hulls sometimes exhibit dynamic instabilities, endangering the safety of passengers and crew. Most of the efforts in understanding these phenomena have concentrated in the…
(more)

Subjects/Keywords: Planing hulls transverse plane instabilities; Planing hulls parametric roll; Non-linear Hills equation; Naval Architecture and Marine Engineering; Engineering

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Tascon Munoz, O. (2016). Parametrically Excited Transverse Plane Instabilities on High-Speed Planing Hulls. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/135808

Chicago Manual of Style (16^{th} Edition):

Tascon Munoz, Oscar. “Parametrically Excited Transverse Plane Instabilities on High-Speed Planing Hulls.” 2016. Doctoral Dissertation, University of Michigan. Accessed October 22, 2020. http://hdl.handle.net/2027.42/135808.

MLA Handbook (7^{th} Edition):

Tascon Munoz, Oscar. “Parametrically Excited Transverse Plane Instabilities on High-Speed Planing Hulls.” 2016. Web. 22 Oct 2020.

Vancouver:

Tascon Munoz O. Parametrically Excited Transverse Plane Instabilities on High-Speed Planing Hulls. [Internet] [Doctoral dissertation]. University of Michigan; 2016. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/2027.42/135808.

Council of Science Editors:

Tascon Munoz O. Parametrically Excited Transverse Plane Instabilities on High-Speed Planing Hulls. [Doctoral Dissertation]. University of Michigan; 2016. Available from: http://hdl.handle.net/2027.42/135808

Virginia Commonwealth University

30. Clark, Rebecca G. A Study of the Effect of Harvesting on a Discrete System with Two Competing Species.

Degree: MS, Mathematical Sciences, 2016, Virginia Commonwealth University

URL: https://doi.org/10.25772/YF79-JT32 ; https://scholarscompass.vcu.edu/etd/4497

► This is a study of the effect of harvesting on a system with two competing species. The system is a Ricker-type model that extends…
(more)

Subjects/Keywords: harvest; discrete dynamical system; Ricker; two species; difference equation; bifurcation; Applied Mathematics; Dynamic Systems; Non-linear Dynamics; Other Applied Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Clark, R. G. (2016). A Study of the Effect of Harvesting on a Discrete System with Two Competing Species. (Thesis). Virginia Commonwealth University. Retrieved from https://doi.org/10.25772/YF79-JT32 ; https://scholarscompass.vcu.edu/etd/4497

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Clark, Rebecca G. “A Study of the Effect of Harvesting on a Discrete System with Two Competing Species.” 2016. Thesis, Virginia Commonwealth University. Accessed October 22, 2020. https://doi.org/10.25772/YF79-JT32 ; https://scholarscompass.vcu.edu/etd/4497.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Clark, Rebecca G. “A Study of the Effect of Harvesting on a Discrete System with Two Competing Species.” 2016. Web. 22 Oct 2020.

Vancouver:

Clark RG. A Study of the Effect of Harvesting on a Discrete System with Two Competing Species. [Internet] [Thesis]. Virginia Commonwealth University; 2016. [cited 2020 Oct 22]. Available from: https://doi.org/10.25772/YF79-JT32 ; https://scholarscompass.vcu.edu/etd/4497.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Clark RG. A Study of the Effect of Harvesting on a Discrete System with Two Competing Species. [Thesis]. Virginia Commonwealth University; 2016. Available from: https://doi.org/10.25772/YF79-JT32 ; https://scholarscompass.vcu.edu/etd/4497

Not specified: Masters Thesis or Doctoral Dissertation