Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Non Linear Schrodinger Equation). Showing records 1 – 30 of 38704 total matches.

[1] [2] [3] [4] [5] … [1291]

Search Limiters

Last 2 Years | English Only

Degrees

Languages

Country

▼ Search Limiters


Anna University

1. Ram Prasad, A V. Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -.

Degree: Information and Communication Engineering, 2014, Anna University

newlineOptical networks have a significant role to play in the present and newlinefuture global telecommunication networking scenario due to the increasing newlinedemand for larger transmission… (more)

Subjects/Keywords: Dense Wavelength Division Multiplexing; Four Wave Mixing; Non Linear Schrodinger Equation; Optical networks

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ram Prasad, A. V. (2014). Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -. (Thesis). Anna University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/27345

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ram Prasad, A V. “Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -.” 2014. Thesis, Anna University. Accessed October 22, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/27345.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ram Prasad, A V. “Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -.” 2014. Web. 22 Oct 2020.

Vancouver:

Ram Prasad AV. Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -. [Internet] [Thesis]. Anna University; 2014. [cited 2020 Oct 22]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/27345.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ram Prasad AV. Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -. [Thesis]. Anna University; 2014. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/27345

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


McMaster University

2. Sakovich, Anton. Nonlinear waves in weakly-coupled lattices.

Degree: PhD, 2013, McMaster University

We consider existence and stability of breather solutions to discrete nonlinear Schrodinger (dNLS) and discrete Klein-Gordon (dKG) equations near the anti-continuum limit, the limit… (more)

Subjects/Keywords: nonliner lattices; discrete nonlinear Schrodinger equation; Klein-Gordon lattice; nonlinear waves; discrete breathers; discrete solitons; Non-linear Dynamics; Ordinary Differential Equations and Applied Dynamics; Partial Differential Equations; Non-linear Dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sakovich, A. (2013). Nonlinear waves in weakly-coupled lattices. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/12906

Chicago Manual of Style (16th Edition):

Sakovich, Anton. “Nonlinear waves in weakly-coupled lattices.” 2013. Doctoral Dissertation, McMaster University. Accessed October 22, 2020. http://hdl.handle.net/11375/12906.

MLA Handbook (7th Edition):

Sakovich, Anton. “Nonlinear waves in weakly-coupled lattices.” 2013. Web. 22 Oct 2020.

Vancouver:

Sakovich A. Nonlinear waves in weakly-coupled lattices. [Internet] [Doctoral dissertation]. McMaster University; 2013. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/11375/12906.

Council of Science Editors:

Sakovich A. Nonlinear waves in weakly-coupled lattices. [Doctoral Dissertation]. McMaster University; 2013. Available from: http://hdl.handle.net/11375/12906


NSYSU

3. Lee, Yuanhan. Block elimination algorithms for bordered linear systems and its applications.

Degree: Master, Applied Mathematics, 2013, NSYSU

 Many applications need to solve a number of large bordered linear systems such as the prediction and correction processes in continuation method.If the original linear(more)

Subjects/Keywords: Block elimination algorithm; bordered linear system; nonlinear Schrodinger equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, Y. (2013). Block elimination algorithms for bordered linear systems and its applications. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lee, Yuanhan. “Block elimination algorithms for bordered linear systems and its applications.” 2013. Thesis, NSYSU. Accessed October 22, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lee, Yuanhan. “Block elimination algorithms for bordered linear systems and its applications.” 2013. Web. 22 Oct 2020.

Vancouver:

Lee Y. Block elimination algorithms for bordered linear systems and its applications. [Internet] [Thesis]. NSYSU; 2013. [cited 2020 Oct 22]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lee Y. Block elimination algorithms for bordered linear systems and its applications. [Thesis]. NSYSU; 2013. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Tsagkarakis, Charilaos. Θεωρίες βαθμίδας με αυθόρμητη παραβίαση της συμμετρίας και μελέτη της μη γραμμικότητας με τη διαταρακτική μέθοδο των πολλαπλών κλιμάκων.

Degree: 2016, National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ)

The present thesis studies the classical nonlinear dynamics of spontaneously broken abelian and non abelian gauge theories. Approximate analytical solutions of the equations of motion… (more)

Subjects/Keywords: Αβελιανό πρότυπο Higgs; Μη αβελιανό πρότυπο Higgs; Θεωρίες βαθμίδας; Μποζόνιο Higgs; Σολιτονικές λύσεις; Μη γραμμική εξίσωση Schrodinger; Φερμιόνια; Ταλαντούμενα φωτεινά σολιτόνια; Ταλαντούμενα σκοτεινά σολιτόνια; Υπεραγωγιμότητα; Abelian Higgs model; Non Abelian- Higgs Μodel; Gauge theory; Higgs boson; Non linear Schrodinger equation; Fermions; Oscillons; Oscillating kink solitons; Superconductivity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tsagkarakis, C. (2016). Θεωρίες βαθμίδας με αυθόρμητη παραβίαση της συμμετρίας και μελέτη της μη γραμμικότητας με τη διαταρακτική μέθοδο των πολλαπλών κλιμάκων. (Thesis). National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Retrieved from http://hdl.handle.net/10442/hedi/39387

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Tsagkarakis, Charilaos. “Θεωρίες βαθμίδας με αυθόρμητη παραβίαση της συμμετρίας και μελέτη της μη γραμμικότητας με τη διαταρακτική μέθοδο των πολλαπλών κλιμάκων.” 2016. Thesis, National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Accessed October 22, 2020. http://hdl.handle.net/10442/hedi/39387.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Tsagkarakis, Charilaos. “Θεωρίες βαθμίδας με αυθόρμητη παραβίαση της συμμετρίας και μελέτη της μη γραμμικότητας με τη διαταρακτική μέθοδο των πολλαπλών κλιμάκων.” 2016. Web. 22 Oct 2020.

Vancouver:

Tsagkarakis C. Θεωρίες βαθμίδας με αυθόρμητη παραβίαση της συμμετρίας και μελέτη της μη γραμμικότητας με τη διαταρακτική μέθοδο των πολλαπλών κλιμάκων. [Internet] [Thesis]. National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); 2016. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/10442/hedi/39387.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Tsagkarakis C. Θεωρίες βαθμίδας με αυθόρμητη παραβίαση της συμμετρίας και μελέτη της μη γραμμικότητας με τη διαταρακτική μέθοδο των πολλαπλών κλιμάκων. [Thesis]. National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); 2016. Available from: http://hdl.handle.net/10442/hedi/39387

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade Estadual de Campinas

5. Rieznik, Andrés Anibal. Modelagem da propagação não linear em fibras ópticas : sistemas de transmissão de dados e amplificadores paramétricos: Modeling non linear propagation in optical fibers : data transmission systems and optical parametric amplifiers.

Degree: 2008, Universidade Estadual de Campinas

 Abstract: We introduce optimized models and algorithms for the simulation of non linear propagation in optical fibers using the split-step Fourier Method (SSFM). Dispersion and… (more)

Subjects/Keywords: Ótica não-linear; Fibras óticas; Amplificadores paramétricos; Schrodinger, Equação não-linear de; Non-linear optics; Optical fibers; Parametric amplifiers; Non-linear Schrodinger equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rieznik, A. A. (2008). Modelagem da propagação não linear em fibras ópticas : sistemas de transmissão de dados e amplificadores paramétricos: Modeling non linear propagation in optical fibers : data transmission systems and optical parametric amplifiers. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/277905

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rieznik, Andrés Anibal. “Modelagem da propagação não linear em fibras ópticas : sistemas de transmissão de dados e amplificadores paramétricos: Modeling non linear propagation in optical fibers : data transmission systems and optical parametric amplifiers.” 2008. Thesis, Universidade Estadual de Campinas. Accessed October 22, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277905.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rieznik, Andrés Anibal. “Modelagem da propagação não linear em fibras ópticas : sistemas de transmissão de dados e amplificadores paramétricos: Modeling non linear propagation in optical fibers : data transmission systems and optical parametric amplifiers.” 2008. Web. 22 Oct 2020.

Vancouver:

Rieznik AA. Modelagem da propagação não linear em fibras ópticas : sistemas de transmissão de dados e amplificadores paramétricos: Modeling non linear propagation in optical fibers : data transmission systems and optical parametric amplifiers. [Internet] [Thesis]. Universidade Estadual de Campinas; 2008. [cited 2020 Oct 22]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/277905.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rieznik AA. Modelagem da propagação não linear em fibras ópticas : sistemas de transmissão de dados e amplificadores paramétricos: Modeling non linear propagation in optical fibers : data transmission systems and optical parametric amplifiers. [Thesis]. Universidade Estadual de Campinas; 2008. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/277905

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Urbana-Champaign

6. Demirbas, Seckin. A study on certain periodic Schrödinger equations.

Degree: PhD, Mathematics, 2015, University of Illinois – Urbana-Champaign

In the first part of this thesis we consider the cubic Schrödinger equation iut+Delta u =+/-|u|2u, x in Ttheta2, t∈ [-T,T], u(x,0)=u0(x) in Hs(Ttheta2). T is the time of existence of the solutions and Ttheta2 is the irrational torus given by R2/theta1 Z * θ2 Z for theta1, theta2 > 0 and theta1/theta2 irrational. Our main result is an improvement of the Strichartz estimates on irrational tori using a counting argument by Huxley [43], which estimates the number of lattice points on ellipsoids. With this Strichartz estimate, we obtain a local well-posedness result in Hs for s>131/416. We also use energy type estimates to control the Hs norm of the solution and obtain improved growth bounds for higher order Sobolev norms. In the second and the third parts of this thesis, we study the Cauchy problem for the 1d periodic fractional Schrödinger equation: iut+(-Delta)alpha u =+/- |u|2u, x in T, t in R, u(x,0)=u0(x) in Hs(T), where alpha in (1/2,1). First, we prove a Strichartz type estimate for this equation. Using the arguments from Chapter 3, this estimate implies local well-posedness in Hs for s>(1-alpha)/2. However, we prove local well-posedness using direct X^(s,b) estimates. In addition, we show the existence of global-in-time infinite energy solutions. We also show that the nonlinear evolution of the equation is smoother than the initial data. As an important consequence of this smoothing estimate, we prove that there is global well-posedness in Hs for s>(10*alpha+1)/(12). Finally, for the fractional Schrödinger equation, we define an invariant probability measure mu on Hs for s<alpha-1/2, called a Gibbs measure. We define mu so that for any epsilon>0 there is a set Omega, a subset of Hs, such that mu(Omegac)<epsilon and the equation is globally well-posed for initial data in Omega. We achieve this by showing that for the initial data in Omega, the Hs norms of the solutions stay finite for all times. This fills the gap between the local well-posedness and the global well-posedness range in almost sure sense for (1-alpha)/2<alpha-1/2, i.e. alpha>2/3. Advisors/Committee Members: Tzirakis, Nikolaos (advisor), Erdogan, Burak (advisor), Junge, Marius (Committee Chair), Bronski, Jared C. (committee member).

Subjects/Keywords: Periodic Schrodinger equation; Fractional Schrodinger equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Demirbas, S. (2015). A study on certain periodic Schrödinger equations. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/87978

Chicago Manual of Style (16th Edition):

Demirbas, Seckin. “A study on certain periodic Schrödinger equations.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 22, 2020. http://hdl.handle.net/2142/87978.

MLA Handbook (7th Edition):

Demirbas, Seckin. “A study on certain periodic Schrödinger equations.” 2015. Web. 22 Oct 2020.

Vancouver:

Demirbas S. A study on certain periodic Schrödinger equations. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/2142/87978.

Council of Science Editors:

Demirbas S. A study on certain periodic Schrödinger equations. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/87978

7. Godet, Nicolas. Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations.

Degree: Docteur es, Mathématiques - EM2C, 2012, Cergy-Pontoise

Cette thèse porte sur l'étude des phénomènes d'explosion pour certaines équations aux dérivées partielles dispersives et plus particulièrement pour l'équation de Schrodinger non linéaire. Ces… (more)

Subjects/Keywords: Edp; Équation de Schrodinger; Explosion; Pde; Schrodinger equation; Blow up

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Godet, N. (2012). Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations. (Doctoral Dissertation). Cergy-Pontoise. Retrieved from http://www.theses.fr/2012CERG0619

Chicago Manual of Style (16th Edition):

Godet, Nicolas. “Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations.” 2012. Doctoral Dissertation, Cergy-Pontoise. Accessed October 22, 2020. http://www.theses.fr/2012CERG0619.

MLA Handbook (7th Edition):

Godet, Nicolas. “Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations.” 2012. Web. 22 Oct 2020.

Vancouver:

Godet N. Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations. [Internet] [Doctoral dissertation]. Cergy-Pontoise; 2012. [cited 2020 Oct 22]. Available from: http://www.theses.fr/2012CERG0619.

Council of Science Editors:

Godet N. Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations. [Doctoral Dissertation]. Cergy-Pontoise; 2012. Available from: http://www.theses.fr/2012CERG0619


University of Oklahoma

8. Adekoya, Oreoluwa. PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION.

Degree: PhD, 2019, University of Oklahoma

 We study the existence, uniqueness and stability of solutions to the initial-value problem for the periodic dispersion-managed nonlinear Schrödinger (DMNLS) equation, an equation that models… (more)

Subjects/Keywords: Dispersion-managed; Dispersion; Nonlinear; Schrodinger; Periodic dispersion managed nonlinear schrodinger equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Adekoya, O. (2019). PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/319611

Chicago Manual of Style (16th Edition):

Adekoya, Oreoluwa. “PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION.” 2019. Doctoral Dissertation, University of Oklahoma. Accessed October 22, 2020. http://hdl.handle.net/11244/319611.

MLA Handbook (7th Edition):

Adekoya, Oreoluwa. “PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION.” 2019. Web. 22 Oct 2020.

Vancouver:

Adekoya O. PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION. [Internet] [Doctoral dissertation]. University of Oklahoma; 2019. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/11244/319611.

Council of Science Editors:

Adekoya O. PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION. [Doctoral Dissertation]. University of Oklahoma; 2019. Available from: http://hdl.handle.net/11244/319611


University of Ontario Institute of Technology

9. Metherall, Brady. A new method of modelling tuneable lasers with functional composition.

Degree: 2019, University of Ontario Institute of Technology

 A new nonlinear model is proposed for tuneable lasers. Using the generalized nonlinear Schrodinger equation as a starting point, expressions for the transformations undergone by… (more)

Subjects/Keywords: Tuneable lasers; Nonlinear Schrodinger equation; Laser cavity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Metherall, B. (2019). A new method of modelling tuneable lasers with functional composition. (Thesis). University of Ontario Institute of Technology. Retrieved from http://hdl.handle.net/10155/1073

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Metherall, Brady. “A new method of modelling tuneable lasers with functional composition.” 2019. Thesis, University of Ontario Institute of Technology. Accessed October 22, 2020. http://hdl.handle.net/10155/1073.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Metherall, Brady. “A new method of modelling tuneable lasers with functional composition.” 2019. Web. 22 Oct 2020.

Vancouver:

Metherall B. A new method of modelling tuneable lasers with functional composition. [Internet] [Thesis]. University of Ontario Institute of Technology; 2019. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/10155/1073.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Metherall B. A new method of modelling tuneable lasers with functional composition. [Thesis]. University of Ontario Institute of Technology; 2019. Available from: http://hdl.handle.net/10155/1073

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

10. Pourmatin, Hossein. Computational Multiscale Methods for Defects: 1. Line Defects in Liquid Crystals; 2. Electron Scattering in Defected Crystals.

Degree: 2014, Carnegie Mellon University

 In the first part of this thesis, we demonstrate theory and computations for finite-energy line defect solutions in an improvement of Ericksen-Leslie liquid crystal theory.… (more)

Subjects/Keywords: Schrodinger equation; tight-binding; scattering; defect; non-reflecting boundary condition

…Homogenization of Schrodinger equation in periodic media . . . . . . 104 C.2 An attempt to understand… …Introduction 43 7 Non-reflecting boundary conditions 46 7.1 Formulation of the model… …Exact non-reflecting boundary condition . . . . . . . . . . . . . . . . 51 7.4 Perfectly… …Matched Layers for the Schrodinger’s Equation . . . . . . . 52 8 Implementation 8.1 56 Tight… …66 Figure 8.9 The fishbone model of DNA for equation (8.15) . . . . . . . . 70… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pourmatin, H. (2014). Computational Multiscale Methods for Defects: 1. Line Defects in Liquid Crystals; 2. Electron Scattering in Defected Crystals. (Thesis). Carnegie Mellon University. Retrieved from http://repository.cmu.edu/dissertations/458

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pourmatin, Hossein. “Computational Multiscale Methods for Defects: 1. Line Defects in Liquid Crystals; 2. Electron Scattering in Defected Crystals.” 2014. Thesis, Carnegie Mellon University. Accessed October 22, 2020. http://repository.cmu.edu/dissertations/458.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pourmatin, Hossein. “Computational Multiscale Methods for Defects: 1. Line Defects in Liquid Crystals; 2. Electron Scattering in Defected Crystals.” 2014. Web. 22 Oct 2020.

Vancouver:

Pourmatin H. Computational Multiscale Methods for Defects: 1. Line Defects in Liquid Crystals; 2. Electron Scattering in Defected Crystals. [Internet] [Thesis]. Carnegie Mellon University; 2014. [cited 2020 Oct 22]. Available from: http://repository.cmu.edu/dissertations/458.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pourmatin H. Computational Multiscale Methods for Defects: 1. Line Defects in Liquid Crystals; 2. Electron Scattering in Defected Crystals. [Thesis]. Carnegie Mellon University; 2014. Available from: http://repository.cmu.edu/dissertations/458

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Kentucky

11. Music, Michael. Inverse Scattering For The Zero-Energy Novikov-Veselov Equation.

Degree: 2016, University of Kentucky

 For certain initial data, we solve the Novikov-Veselov equation by the inverse scat- tering method. This is a (2+1)-dimensional completely integrable system that gen- eralizes… (more)

Subjects/Keywords: inverse scattering; Novikov-Veselov equation; Schrodinger equation; Analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Music, M. (2016). Inverse Scattering For The Zero-Energy Novikov-Veselov Equation. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/40

Chicago Manual of Style (16th Edition):

Music, Michael. “Inverse Scattering For The Zero-Energy Novikov-Veselov Equation.” 2016. Doctoral Dissertation, University of Kentucky. Accessed October 22, 2020. https://uknowledge.uky.edu/math_etds/40.

MLA Handbook (7th Edition):

Music, Michael. “Inverse Scattering For The Zero-Energy Novikov-Veselov Equation.” 2016. Web. 22 Oct 2020.

Vancouver:

Music M. Inverse Scattering For The Zero-Energy Novikov-Veselov Equation. [Internet] [Doctoral dissertation]. University of Kentucky; 2016. [cited 2020 Oct 22]. Available from: https://uknowledge.uky.edu/math_etds/40.

Council of Science Editors:

Music M. Inverse Scattering For The Zero-Energy Novikov-Veselov Equation. [Doctoral Dissertation]. University of Kentucky; 2016. Available from: https://uknowledge.uky.edu/math_etds/40


University of Illinois – Urbana-Champaign

12. Toprak, Ebru. Global dynamics of Schrodinger and Dirac equations.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

 In this document, we study the linear Schrödinger operator and linear massive Dirac operator in the L1 →  L^∞ settings. In Chapter~I, we focus on the… (more)

Subjects/Keywords: Schrodinger equation; Dirac equation; dispersive estimate; threshold-energy obstruction

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Toprak, E. (2018). Global dynamics of Schrodinger and Dirac equations. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101665

Chicago Manual of Style (16th Edition):

Toprak, Ebru. “Global dynamics of Schrodinger and Dirac equations.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 22, 2020. http://hdl.handle.net/2142/101665.

MLA Handbook (7th Edition):

Toprak, Ebru. “Global dynamics of Schrodinger and Dirac equations.” 2018. Web. 22 Oct 2020.

Vancouver:

Toprak E. Global dynamics of Schrodinger and Dirac equations. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/2142/101665.

Council of Science Editors:

Toprak E. Global dynamics of Schrodinger and Dirac equations. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101665

13. Temur, Faruk. Linear and bilinear restriction estimates for the Fourier transform.

Degree: PhD, 0439, 2014, University of Illinois – Urbana-Champaign

 This thesis is concerned with the restriction theory of the Fourier transform. We prove two restriction estimates for the Fourier transform. The first is a… (more)

Subjects/Keywords: Fourier transform; Restriction theory; Wave equation; Linear restriction; Kakeya problem; Schrodinger equation

…class S(Rn ), then we say that the linear restriction inequality RS,dσ (p → q… …we say that the adjoint linear restriction inequal∗ ity RS,dσ (p → q) holds. This… …that were utilized, apart from other applications, to obtain linear restriction estimates. We… …subsets S1 , S2 of non-empty interior of S, with S either the light cone or an elliptic surface… …restriction estimates. This problem, as opposed to the linear restriction conjecture, is now fully… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Temur, F. (2014). Linear and bilinear restriction estimates for the Fourier transform. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/46569

Chicago Manual of Style (16th Edition):

Temur, Faruk. “Linear and bilinear restriction estimates for the Fourier transform.” 2014. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 22, 2020. http://hdl.handle.net/2142/46569.

MLA Handbook (7th Edition):

Temur, Faruk. “Linear and bilinear restriction estimates for the Fourier transform.” 2014. Web. 22 Oct 2020.

Vancouver:

Temur F. Linear and bilinear restriction estimates for the Fourier transform. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2014. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/2142/46569.

Council of Science Editors:

Temur F. Linear and bilinear restriction estimates for the Fourier transform. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2014. Available from: http://hdl.handle.net/2142/46569


University of South Florida

14. Freeman, Robert D. On the p(x)-Laplace equation in Carnot groups.

Degree: 2020, University of South Florida

 In this thesis, we examine the p(x)-Laplace equation in the context of Carnot groups. The p(x)-Laplace equation is the prototype equation for a class of… (more)

Subjects/Keywords: Non-linear potential theory; p(x)-Laplace equation; Removability; Sub-Riemannian Geometry; Viscosity solutions; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Freeman, R. D. (2020). On the p(x)-Laplace equation in Carnot groups. (Thesis). University of South Florida. Retrieved from https://scholarcommons.usf.edu/etd/8198

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Freeman, Robert D. “On the p(x)-Laplace equation in Carnot groups.” 2020. Thesis, University of South Florida. Accessed October 22, 2020. https://scholarcommons.usf.edu/etd/8198.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Freeman, Robert D. “On the p(x)-Laplace equation in Carnot groups.” 2020. Web. 22 Oct 2020.

Vancouver:

Freeman RD. On the p(x)-Laplace equation in Carnot groups. [Internet] [Thesis]. University of South Florida; 2020. [cited 2020 Oct 22]. Available from: https://scholarcommons.usf.edu/etd/8198.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Freeman RD. On the p(x)-Laplace equation in Carnot groups. [Thesis]. University of South Florida; 2020. Available from: https://scholarcommons.usf.edu/etd/8198

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

15. Haidau, Cristina A. A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations.

Degree: 2014, University of Illinois – Chicago

 To model two-way propagation of waves in physical systems where nonlinear and dispersive effects are equally important, coupled systems of partial differential equations arise. The… (more)

Subjects/Keywords: Systems of non-linear dispersive wave equations; Benjamin-Bona-Mahony equation; generalized BBM equation; surface water wave models, internal wave motion

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haidau, C. A. (2014). A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/18851

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Haidau, Cristina A. “A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations.” 2014. Thesis, University of Illinois – Chicago. Accessed October 22, 2020. http://hdl.handle.net/10027/18851.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Haidau, Cristina A. “A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations.” 2014. Web. 22 Oct 2020.

Vancouver:

Haidau CA. A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations. [Internet] [Thesis]. University of Illinois – Chicago; 2014. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/10027/18851.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Haidau CA. A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations. [Thesis]. University of Illinois – Chicago; 2014. Available from: http://hdl.handle.net/10027/18851

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – San Diego

16. Pizzo, Nicholas Edward. Properties of nonlinear and breaking deep-water surface waves.

Degree: Oceanography, 2015, University of California – San Diego

 In this thesis we study nonlinear and breaking deep-water surface waves. First, we consider the vorticity generated by an individual breaking wave, drawing on classical… (more)

Subjects/Keywords: Physical oceanography; Applied mathematics; Nonlinear Schrodinger Equation; Physical Oceanography; Wave breaking

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pizzo, N. E. (2015). Properties of nonlinear and breaking deep-water surface waves. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/0g45s3j6

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pizzo, Nicholas Edward. “Properties of nonlinear and breaking deep-water surface waves.” 2015. Thesis, University of California – San Diego. Accessed October 22, 2020. http://www.escholarship.org/uc/item/0g45s3j6.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pizzo, Nicholas Edward. “Properties of nonlinear and breaking deep-water surface waves.” 2015. Web. 22 Oct 2020.

Vancouver:

Pizzo NE. Properties of nonlinear and breaking deep-water surface waves. [Internet] [Thesis]. University of California – San Diego; 2015. [cited 2020 Oct 22]. Available from: http://www.escholarship.org/uc/item/0g45s3j6.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pizzo NE. Properties of nonlinear and breaking deep-water surface waves. [Thesis]. University of California – San Diego; 2015. Available from: http://www.escholarship.org/uc/item/0g45s3j6

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

17. Sohani, Vijay Kumar. Nonlinear schrodinger equation and the twisted laplacian; -.

Degree: Mathematical Sciences, 2013, INFLIBNET

None

Bibliograpgy p.103 - 106

Advisors/Committee Members: Ratankumar, P K.

Subjects/Keywords: equation; Nonlinear; schrodinger; twisted laplacian

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sohani, V. K. (2013). Nonlinear schrodinger equation and the twisted laplacian; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/37405

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sohani, Vijay Kumar. “Nonlinear schrodinger equation and the twisted laplacian; -.” 2013. Thesis, INFLIBNET. Accessed October 22, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/37405.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sohani, Vijay Kumar. “Nonlinear schrodinger equation and the twisted laplacian; -.” 2013. Web. 22 Oct 2020.

Vancouver:

Sohani VK. Nonlinear schrodinger equation and the twisted laplacian; -. [Internet] [Thesis]. INFLIBNET; 2013. [cited 2020 Oct 22]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/37405.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sohani VK. Nonlinear schrodinger equation and the twisted laplacian; -. [Thesis]. INFLIBNET; 2013. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/37405

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Stellenbosch University

18. Wessels, Gert Jermia Cornelus. A numerical and analytical investigation into non-Hermitian Hamiltonians.

Degree: Mathematical Sciences, 2009, Stellenbosch University

Thesis (MSc (Physical and Mathematical Analysis)) – University of Stellenbosch, 2009.

In this thesis we aim to show that the Schr odinger equation, which is a… (more)

Subjects/Keywords: Mathematics; Schrodinger equation; Perturbation (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wessels, G. J. C. (2009). A numerical and analytical investigation into non-Hermitian Hamiltonians. (Thesis). Stellenbosch University. Retrieved from http://hdl.handle.net/10019.1/2894

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wessels, Gert Jermia Cornelus. “A numerical and analytical investigation into non-Hermitian Hamiltonians.” 2009. Thesis, Stellenbosch University. Accessed October 22, 2020. http://hdl.handle.net/10019.1/2894.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wessels, Gert Jermia Cornelus. “A numerical and analytical investigation into non-Hermitian Hamiltonians.” 2009. Web. 22 Oct 2020.

Vancouver:

Wessels GJC. A numerical and analytical investigation into non-Hermitian Hamiltonians. [Internet] [Thesis]. Stellenbosch University; 2009. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/10019.1/2894.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wessels GJC. A numerical and analytical investigation into non-Hermitian Hamiltonians. [Thesis]. Stellenbosch University; 2009. Available from: http://hdl.handle.net/10019.1/2894

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Texas Tech University

19. Walker, John David. An investigation into the possibility of an integral solution to the radical Schrodinger equation.

Degree: Physics, 1964, Texas Tech University

Subjects/Keywords: Schrodinger equation; Scattering (Physics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Walker, J. D. (1964). An investigation into the possibility of an integral solution to the radical Schrodinger equation. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/13431

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Walker, John David. “An investigation into the possibility of an integral solution to the radical Schrodinger equation.” 1964. Thesis, Texas Tech University. Accessed October 22, 2020. http://hdl.handle.net/2346/13431.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Walker, John David. “An investigation into the possibility of an integral solution to the radical Schrodinger equation.” 1964. Web. 22 Oct 2020.

Vancouver:

Walker JD. An investigation into the possibility of an integral solution to the radical Schrodinger equation. [Internet] [Thesis]. Texas Tech University; 1964. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/2346/13431.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Walker JD. An investigation into the possibility of an integral solution to the radical Schrodinger equation. [Thesis]. Texas Tech University; 1964. Available from: http://hdl.handle.net/2346/13431

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Kansas

20. Claassen, Kyle Matthew. Stability of Periodic Waves in Nonlocal Dispersive Equations.

Degree: PhD, Mathematics, 2018, University of Kansas

 In this work consisting of joint projects with my advisor, Dr. Mathew Johnson, we study the existence and stability of periodic waves in equations that… (more)

Subjects/Keywords: Mathematics; Bidirectional Whitham models; Dispersive Equations; Fractional Nonlinear Schrodinger Equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Claassen, K. M. (2018). Stability of Periodic Waves in Nonlocal Dispersive Equations. (Doctoral Dissertation). University of Kansas. Retrieved from http://hdl.handle.net/1808/27876

Chicago Manual of Style (16th Edition):

Claassen, Kyle Matthew. “Stability of Periodic Waves in Nonlocal Dispersive Equations.” 2018. Doctoral Dissertation, University of Kansas. Accessed October 22, 2020. http://hdl.handle.net/1808/27876.

MLA Handbook (7th Edition):

Claassen, Kyle Matthew. “Stability of Periodic Waves in Nonlocal Dispersive Equations.” 2018. Web. 22 Oct 2020.

Vancouver:

Claassen KM. Stability of Periodic Waves in Nonlocal Dispersive Equations. [Internet] [Doctoral dissertation]. University of Kansas; 2018. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/1808/27876.

Council of Science Editors:

Claassen KM. Stability of Periodic Waves in Nonlocal Dispersive Equations. [Doctoral Dissertation]. University of Kansas; 2018. Available from: http://hdl.handle.net/1808/27876


University of New South Wales

21. Sun, Yang. Soliton dynamics in frequency-modulated lattices.

Degree: Physical, Environmental & Mathematical Sciences, 2014, University of New South Wales

 Currently, experimental and theoretical studies of solitons have been conducted in the context of several areas of science, from applied mathematics and physics to chemistry… (more)

Subjects/Keywords: nonlinear Schrodinger equation; soliton; periodic potential; parametric resonance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sun, Y. (2014). Soliton dynamics in frequency-modulated lattices. (Masters Thesis). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true

Chicago Manual of Style (16th Edition):

Sun, Yang. “Soliton dynamics in frequency-modulated lattices.” 2014. Masters Thesis, University of New South Wales. Accessed October 22, 2020. http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true.

MLA Handbook (7th Edition):

Sun, Yang. “Soliton dynamics in frequency-modulated lattices.” 2014. Web. 22 Oct 2020.

Vancouver:

Sun Y. Soliton dynamics in frequency-modulated lattices. [Internet] [Masters thesis]. University of New South Wales; 2014. [cited 2020 Oct 22]. Available from: http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true.

Council of Science Editors:

Sun Y. Soliton dynamics in frequency-modulated lattices. [Masters Thesis]. University of New South Wales; 2014. Available from: http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true


The Ohio State University

22. Lee, Jong-eao John. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.

Degree: PhD, Graduate School, 1986, The Ohio State University

Subjects/Keywords: Mathematics; Schrodinger equation; Wave mechanics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, J. J. (1986). The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

Chicago Manual of Style (16th Edition):

Lee, Jong-eao John. “The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.” 1986. Doctoral Dissertation, The Ohio State University. Accessed October 22, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429.

MLA Handbook (7th Edition):

Lee, Jong-eao John. “The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.” 1986. Web. 22 Oct 2020.

Vancouver:

Lee JJ. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. [Internet] [Doctoral dissertation]. The Ohio State University; 1986. [cited 2020 Oct 22]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429.

Council of Science Editors:

Lee JJ. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. [Doctoral Dissertation]. The Ohio State University; 1986. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429


University of Cincinnati

23. Hill, Thomas. Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension.

Degree: PhD, Arts and Sciences: Mathematical Sciences, 2020, University of Cincinnati

 This dissertation will discuss one-dimensional dispersive estimates of the Schrodinger equation and a fourth-order Schrodinger-like equation.We prove dispersive estimates for the Schrodinger equation with Hamiltonians… (more)

Subjects/Keywords: Mathematics; Schrodinger equation; dispersive estimates; fourth-order; Wiener algebra; one-dimensional

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hill, T. (2020). Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442

Chicago Manual of Style (16th Edition):

Hill, Thomas. “Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension.” 2020. Doctoral Dissertation, University of Cincinnati. Accessed October 22, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442.

MLA Handbook (7th Edition):

Hill, Thomas. “Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension.” 2020. Web. 22 Oct 2020.

Vancouver:

Hill T. Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension. [Internet] [Doctoral dissertation]. University of Cincinnati; 2020. [cited 2020 Oct 22]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442.

Council of Science Editors:

Hill T. Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension. [Doctoral Dissertation]. University of Cincinnati; 2020. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442


East Tennessee State University

24. Mehraban, Arash. Non-Classical Symmetry Solutions to the Fitzhugh Nagumo Equation.

Degree: MS, Mathematical Sciences, 2010, East Tennessee State University

  In Reaction-Diffusion systems, some parameters can influence the behavior of other parameters in that system. Thus reaction diffusion equations are often used to model… (more)

Subjects/Keywords: Fitzhugh Nagumo Equation; Lie Groups; Non-Classical Method; Applied Mathematics; Non-linear Dynamics; Physical Sciences and Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mehraban, A. (2010). Non-Classical Symmetry Solutions to the Fitzhugh Nagumo Equation. (Masters Thesis). East Tennessee State University. Retrieved from https://dc.etsu.edu/etd/1736

Chicago Manual of Style (16th Edition):

Mehraban, Arash. “Non-Classical Symmetry Solutions to the Fitzhugh Nagumo Equation.” 2010. Masters Thesis, East Tennessee State University. Accessed October 22, 2020. https://dc.etsu.edu/etd/1736.

MLA Handbook (7th Edition):

Mehraban, Arash. “Non-Classical Symmetry Solutions to the Fitzhugh Nagumo Equation.” 2010. Web. 22 Oct 2020.

Vancouver:

Mehraban A. Non-Classical Symmetry Solutions to the Fitzhugh Nagumo Equation. [Internet] [Masters thesis]. East Tennessee State University; 2010. [cited 2020 Oct 22]. Available from: https://dc.etsu.edu/etd/1736.

Council of Science Editors:

Mehraban A. Non-Classical Symmetry Solutions to the Fitzhugh Nagumo Equation. [Masters Thesis]. East Tennessee State University; 2010. Available from: https://dc.etsu.edu/etd/1736


Universidade Estadual de Campinas

25. Luciana Maria Mendonça Bragança. O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem.

Degree: Instituto de Matemática, Estatística e Computação Científica, 2007, Universidade Estadual de Campinas

In this work we study the Cauchy problem associated to a system of coupled third-order nonlinear Schrodinger equation. We establish local well-posedness results for the… (more)

Subjects/Keywords: Cauchy; Schrodinger; Nonlinear differential equtions; Equações diferenciais não-lineares; Cauchy problem; Problemas de; Equações de; Schrodinger equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bragança, L. M. M. (2007). O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem. (Thesis). Universidade Estadual de Campinas. Retrieved from http://libdigi.unicamp.br/document/?code=vtls000417496

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bragança, Luciana Maria Mendonça. “O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem.” 2007. Thesis, Universidade Estadual de Campinas. Accessed October 22, 2020. http://libdigi.unicamp.br/document/?code=vtls000417496.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bragança, Luciana Maria Mendonça. “O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem.” 2007. Web. 22 Oct 2020.

Vancouver:

Bragança LMM. O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem. [Internet] [Thesis]. Universidade Estadual de Campinas; 2007. [cited 2020 Oct 22]. Available from: http://libdigi.unicamp.br/document/?code=vtls000417496.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bragança LMM. O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem. [Thesis]. Universidade Estadual de Campinas; 2007. Available from: http://libdigi.unicamp.br/document/?code=vtls000417496

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

26. Rizik, Vivian. Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations.

Degree: Docteur es, Mathématiques Appliquées : Laboratoire de Mathématiques Appliquées de Compiègne (Unité de recherche EA-2222), 2019, Compiègne; Université libanaise

Dans cette thèse on s'intéresse à l'analyse théorique et numérique de la dynamique des densités des dislocations, où les dislocations sont des défauts cristallins, apparaissant… (more)

Subjects/Keywords: Équations hyperboliques; Équations paraboliques; BV space; Hamilton-Jacobi equation; Hyperbolic equation; Parabolic equation; Viscosity solution; Dislocation dynamics; Gas dynamics; BV space; Non-linear partial differential equations; Elasto-viscoplasticity; Numerical analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rizik, V. (2019). Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations. (Doctoral Dissertation). Compiègne; Université libanaise. Retrieved from http://www.theses.fr/2019COMP2505

Chicago Manual of Style (16th Edition):

Rizik, Vivian. “Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations.” 2019. Doctoral Dissertation, Compiègne; Université libanaise. Accessed October 22, 2020. http://www.theses.fr/2019COMP2505.

MLA Handbook (7th Edition):

Rizik, Vivian. “Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations.” 2019. Web. 22 Oct 2020.

Vancouver:

Rizik V. Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations. [Internet] [Doctoral dissertation]. Compiègne; Université libanaise; 2019. [cited 2020 Oct 22]. Available from: http://www.theses.fr/2019COMP2505.

Council of Science Editors:

Rizik V. Analysis of an elasto-visco-plastic model describing dislocation dynamics : Analyse d'un modèle élasto-visco-plastique décrivant la dynamique des dislocations. [Doctoral Dissertation]. Compiègne; Université libanaise; 2019. Available from: http://www.theses.fr/2019COMP2505

27. Borrelli, William. L'équation de Dirac en physique du solide et en optique non-lineaire : The Dirac equation in solid state physics and non-linear optics.

Degree: Docteur es, Mathématiques, 2018, Paris Sciences et Lettres (ComUE)

Ces dernières années, de nouveaux matériaux bidimensionnels aux propriétés surprenantes ont été découverts, le plus connu étant le graphène. Dans ces matériaux, les électrons du… (more)

Subjects/Keywords: Equation de Dirac non-linéaire; Graphène; Méthodes variationnelles; Solutions stationnaires; Graphes quantiques; Cônes de Dirac; Non-Linear Dirac equation; Graphene; Variational methods; Stationary solutions; Quantum graphs; Dirac materials; 519

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Borrelli, W. (2018). L'équation de Dirac en physique du solide et en optique non-lineaire : The Dirac equation in solid state physics and non-linear optics. (Doctoral Dissertation). Paris Sciences et Lettres (ComUE). Retrieved from http://www.theses.fr/2018PSLED021

Chicago Manual of Style (16th Edition):

Borrelli, William. “L'équation de Dirac en physique du solide et en optique non-lineaire : The Dirac equation in solid state physics and non-linear optics.” 2018. Doctoral Dissertation, Paris Sciences et Lettres (ComUE). Accessed October 22, 2020. http://www.theses.fr/2018PSLED021.

MLA Handbook (7th Edition):

Borrelli, William. “L'équation de Dirac en physique du solide et en optique non-lineaire : The Dirac equation in solid state physics and non-linear optics.” 2018. Web. 22 Oct 2020.

Vancouver:

Borrelli W. L'équation de Dirac en physique du solide et en optique non-lineaire : The Dirac equation in solid state physics and non-linear optics. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres (ComUE); 2018. [cited 2020 Oct 22]. Available from: http://www.theses.fr/2018PSLED021.

Council of Science Editors:

Borrelli W. L'équation de Dirac en physique du solide et en optique non-lineaire : The Dirac equation in solid state physics and non-linear optics. [Doctoral Dissertation]. Paris Sciences et Lettres (ComUE); 2018. Available from: http://www.theses.fr/2018PSLED021


University of Alberta

28. Dosser, Hayley V. Propagation and breaking of nonlinear internal gravity waves.

Degree: MS, Department of Physics, 2010, University of Alberta

 Internal gravity waves grow in amplitude as they propagate upwards in a non-Boussinesq fluid and weakly nonlinear effects develop due to interactions with an induced… (more)

Subjects/Keywords: internal gravity wave; anelastic; modulational; atmosphere; nonlinear; Schrodinger; non-Boussinesq

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dosser, H. V. (2010). Propagation and breaking of nonlinear internal gravity waves. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/hh63sx19v

Chicago Manual of Style (16th Edition):

Dosser, Hayley V. “Propagation and breaking of nonlinear internal gravity waves.” 2010. Masters Thesis, University of Alberta. Accessed October 22, 2020. https://era.library.ualberta.ca/files/hh63sx19v.

MLA Handbook (7th Edition):

Dosser, Hayley V. “Propagation and breaking of nonlinear internal gravity waves.” 2010. Web. 22 Oct 2020.

Vancouver:

Dosser HV. Propagation and breaking of nonlinear internal gravity waves. [Internet] [Masters thesis]. University of Alberta; 2010. [cited 2020 Oct 22]. Available from: https://era.library.ualberta.ca/files/hh63sx19v.

Council of Science Editors:

Dosser HV. Propagation and breaking of nonlinear internal gravity waves. [Masters Thesis]. University of Alberta; 2010. Available from: https://era.library.ualberta.ca/files/hh63sx19v


University of Michigan

29. Tascon Munoz, Oscar. Parametrically Excited Transverse Plane Instabilities on High-Speed Planing Hulls.

Degree: PhD, Naval Architecture & Marine Engineering, 2016, University of Michigan

 Planing hulls sometimes exhibit dynamic instabilities, endangering the safety of passengers and crew. Most of the efforts in understanding these phenomena have concentrated in the… (more)

Subjects/Keywords: Planing hulls transverse plane instabilities; Planing hulls parametric roll; Non-linear Hills equation; Naval Architecture and Marine Engineering; Engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tascon Munoz, O. (2016). Parametrically Excited Transverse Plane Instabilities on High-Speed Planing Hulls. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/135808

Chicago Manual of Style (16th Edition):

Tascon Munoz, Oscar. “Parametrically Excited Transverse Plane Instabilities on High-Speed Planing Hulls.” 2016. Doctoral Dissertation, University of Michigan. Accessed October 22, 2020. http://hdl.handle.net/2027.42/135808.

MLA Handbook (7th Edition):

Tascon Munoz, Oscar. “Parametrically Excited Transverse Plane Instabilities on High-Speed Planing Hulls.” 2016. Web. 22 Oct 2020.

Vancouver:

Tascon Munoz O. Parametrically Excited Transverse Plane Instabilities on High-Speed Planing Hulls. [Internet] [Doctoral dissertation]. University of Michigan; 2016. [cited 2020 Oct 22]. Available from: http://hdl.handle.net/2027.42/135808.

Council of Science Editors:

Tascon Munoz O. Parametrically Excited Transverse Plane Instabilities on High-Speed Planing Hulls. [Doctoral Dissertation]. University of Michigan; 2016. Available from: http://hdl.handle.net/2027.42/135808


Virginia Commonwealth University

30. Clark, Rebecca G. A Study of the Effect of Harvesting on a Discrete System with Two Competing Species.

Degree: MS, Mathematical Sciences, 2016, Virginia Commonwealth University

  This is a study of the effect of harvesting on a system with two competing species. The system is a Ricker-type model that extends… (more)

Subjects/Keywords: harvest; discrete dynamical system; Ricker; two species; difference equation; bifurcation; Applied Mathematics; Dynamic Systems; Non-linear Dynamics; Other Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Clark, R. G. (2016). A Study of the Effect of Harvesting on a Discrete System with Two Competing Species. (Thesis). Virginia Commonwealth University. Retrieved from https://doi.org/10.25772/YF79-JT32 ; https://scholarscompass.vcu.edu/etd/4497

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Clark, Rebecca G. “A Study of the Effect of Harvesting on a Discrete System with Two Competing Species.” 2016. Thesis, Virginia Commonwealth University. Accessed October 22, 2020. https://doi.org/10.25772/YF79-JT32 ; https://scholarscompass.vcu.edu/etd/4497.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Clark, Rebecca G. “A Study of the Effect of Harvesting on a Discrete System with Two Competing Species.” 2016. Web. 22 Oct 2020.

Vancouver:

Clark RG. A Study of the Effect of Harvesting on a Discrete System with Two Competing Species. [Internet] [Thesis]. Virginia Commonwealth University; 2016. [cited 2020 Oct 22]. Available from: https://doi.org/10.25772/YF79-JT32 ; https://scholarscompass.vcu.edu/etd/4497.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Clark RG. A Study of the Effect of Harvesting on a Discrete System with Two Competing Species. [Thesis]. Virginia Commonwealth University; 2016. Available from: https://doi.org/10.25772/YF79-JT32 ; https://scholarscompass.vcu.edu/etd/4497

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3] [4] [5] … [1291]

.