Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Nilpotent variety). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Louisiana State University

1. Russell, Amber. Graham's variety and perverse sheaves on the nilpotent cone.

Degree: PhD, Applied Mathematics, 2012, Louisiana State University

 In recent work, Graham has defined a variety which maps to the nilpotent cone, and which shares many properties with the Springer resolution. However, Graham's… (more)

Subjects/Keywords: graham's variety; nilpotent cone; perverse sheaves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Russell, A. (2012). Graham's variety and perverse sheaves on the nilpotent cone. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631

Chicago Manual of Style (16th Edition):

Russell, Amber. “Graham's variety and perverse sheaves on the nilpotent cone.” 2012. Doctoral Dissertation, Louisiana State University. Accessed December 11, 2019. etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631.

MLA Handbook (7th Edition):

Russell, Amber. “Graham's variety and perverse sheaves on the nilpotent cone.” 2012. Web. 11 Dec 2019.

Vancouver:

Russell A. Graham's variety and perverse sheaves on the nilpotent cone. [Internet] [Doctoral dissertation]. Louisiana State University; 2012. [cited 2019 Dec 11]. Available from: etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631.

Council of Science Editors:

Russell A. Graham's variety and perverse sheaves on the nilpotent cone. [Doctoral Dissertation]. Louisiana State University; 2012. Available from: etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631


University of Manchester

2. Chen, Cong. NILPOTENT VARIETIES OF SOME FINITE DIMENSIONAL RESTRICTED LIE ALGEBRAS.

Degree: 2019, University of Manchester

In the late 1980s, A. Premet conjectured that the variety of nilpotent elements of any finite dimensional restricted Lie algebra over an algebraically closed field… (more)

Subjects/Keywords: Restricted Lie algebra; Semisimple Lie algebra; The Zassenhaus algebra; The minimal p-envelope; Nilpotent variety; Nilpotent element

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, C. (2019). NILPOTENT VARIETIES OF SOME FINITE DIMENSIONAL RESTRICTED LIE ALGEBRAS. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:321951

Chicago Manual of Style (16th Edition):

Chen, Cong. “NILPOTENT VARIETIES OF SOME FINITE DIMENSIONAL RESTRICTED LIE ALGEBRAS.” 2019. Doctoral Dissertation, University of Manchester. Accessed December 11, 2019. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:321951.

MLA Handbook (7th Edition):

Chen, Cong. “NILPOTENT VARIETIES OF SOME FINITE DIMENSIONAL RESTRICTED LIE ALGEBRAS.” 2019. Web. 11 Dec 2019.

Vancouver:

Chen C. NILPOTENT VARIETIES OF SOME FINITE DIMENSIONAL RESTRICTED LIE ALGEBRAS. [Internet] [Doctoral dissertation]. University of Manchester; 2019. [cited 2019 Dec 11]. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:321951.

Council of Science Editors:

Chen C. NILPOTENT VARIETIES OF SOME FINITE DIMENSIONAL RESTRICTED LIE ALGEBRAS. [Doctoral Dissertation]. University of Manchester; 2019. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:321951


Université de Montréal

3. Jauffret, Colin. Modules réflexifs de rang 1 sur les variétés nilpotentes .

Degree: 2017, Université de Montréal

 Soit G un groupe algébrique linéaire complexe, simple, connexe et simplement connexe. Étant donné un sous-groupe parabolique P G et un idéal nilpotent n p,… (more)

Subjects/Keywords: variété nilpotente normale; groupe des classes; module réflexif; théorème d'annulation; cohomologie de fibrés en droites; fibré cotangent d'une variété de drapeaux; normal nilpotent variety; class group; reflexive module; vanishing theorem; cohomology of line bundles; cotangent bundle of a flag variety

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jauffret, C. (2017). Modules réflexifs de rang 1 sur les variétés nilpotentes . (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/19543

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jauffret, Colin. “Modules réflexifs de rang 1 sur les variétés nilpotentes .” 2017. Thesis, Université de Montréal. Accessed December 11, 2019. http://hdl.handle.net/1866/19543.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jauffret, Colin. “Modules réflexifs de rang 1 sur les variétés nilpotentes .” 2017. Web. 11 Dec 2019.

Vancouver:

Jauffret C. Modules réflexifs de rang 1 sur les variétés nilpotentes . [Internet] [Thesis]. Université de Montréal; 2017. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/1866/19543.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jauffret C. Modules réflexifs de rang 1 sur les variétés nilpotentes . [Thesis]. Université de Montréal; 2017. Available from: http://hdl.handle.net/1866/19543

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Terpereau, Ronan. Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory.

Degree: Docteur es, Mathématiques, 2012, Université de Grenoble

Pour toute variété affine W munie d'une opération d'un groupe réductif G, le schéma de Hilbert invariant est un espace de modules qui classifie les… (more)

Subjects/Keywords: Schéma de Hilbert invariant; Résolution des singularités; Théorie des invariants; Orbite nilpotente; Résolutions symplectiques; Variété déterminantielle; Invariant Hilbert scheme; Resolution of singularities; Invariants theory; Nilpotent orbit; Symplectic resolution; Determinantal variety

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Terpereau, R. (2012). Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory. (Doctoral Dissertation). Université de Grenoble. Retrieved from http://www.theses.fr/2012GRENM095

Chicago Manual of Style (16th Edition):

Terpereau, Ronan. “Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory.” 2012. Doctoral Dissertation, Université de Grenoble. Accessed December 11, 2019. http://www.theses.fr/2012GRENM095.

MLA Handbook (7th Edition):

Terpereau, Ronan. “Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory.” 2012. Web. 11 Dec 2019.

Vancouver:

Terpereau R. Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory. [Internet] [Doctoral dissertation]. Université de Grenoble; 2012. [cited 2019 Dec 11]. Available from: http://www.theses.fr/2012GRENM095.

Council of Science Editors:

Terpereau R. Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory. [Doctoral Dissertation]. Université de Grenoble; 2012. Available from: http://www.theses.fr/2012GRENM095

.