Advanced search options
You searched for subject:(Nilpotent variety)
.
Showing records 1 – 4 of
4 total matches.
▼ Search Limiters
Louisiana State University
1. Russell, Amber. Graham's variety and perverse sheaves on the nilpotent cone.
Degree: PhD, Applied Mathematics, 2012, Louisiana State University
URL: etd-06232012-104447
;
https://digitalcommons.lsu.edu/gradschool_dissertations/3631
Subjects/Keywords: graham's variety; nilpotent cone; perverse sheaves
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Russell, A. (2012). Graham's variety and perverse sheaves on the nilpotent cone. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631
Chicago Manual of Style (16th Edition):
Russell, Amber. “Graham's variety and perverse sheaves on the nilpotent cone.” 2012. Doctoral Dissertation, Louisiana State University. Accessed December 11, 2019. etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631.
MLA Handbook (7th Edition):
Russell, Amber. “Graham's variety and perverse sheaves on the nilpotent cone.” 2012. Web. 11 Dec 2019.
Vancouver:
Russell A. Graham's variety and perverse sheaves on the nilpotent cone. [Internet] [Doctoral dissertation]. Louisiana State University; 2012. [cited 2019 Dec 11]. Available from: etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631.
Council of Science Editors:
Russell A. Graham's variety and perverse sheaves on the nilpotent cone. [Doctoral Dissertation]. Louisiana State University; 2012. Available from: etd-06232012-104447 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3631
University of Manchester
2. Chen, Cong. NILPOTENT VARIETIES OF SOME FINITE DIMENSIONAL RESTRICTED LIE ALGEBRAS.
Degree: 2019, University of Manchester
URL: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:321951
Subjects/Keywords: Restricted Lie algebra; Semisimple Lie algebra; The Zassenhaus algebra; The minimal p-envelope; Nilpotent variety; Nilpotent element
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Chen, C. (2019). NILPOTENT VARIETIES OF SOME FINITE DIMENSIONAL RESTRICTED LIE ALGEBRAS. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:321951
Chicago Manual of Style (16th Edition):
Chen, Cong. “NILPOTENT VARIETIES OF SOME FINITE DIMENSIONAL RESTRICTED LIE ALGEBRAS.” 2019. Doctoral Dissertation, University of Manchester. Accessed December 11, 2019. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:321951.
MLA Handbook (7th Edition):
Chen, Cong. “NILPOTENT VARIETIES OF SOME FINITE DIMENSIONAL RESTRICTED LIE ALGEBRAS.” 2019. Web. 11 Dec 2019.
Vancouver:
Chen C. NILPOTENT VARIETIES OF SOME FINITE DIMENSIONAL RESTRICTED LIE ALGEBRAS. [Internet] [Doctoral dissertation]. University of Manchester; 2019. [cited 2019 Dec 11]. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:321951.
Council of Science Editors:
Chen C. NILPOTENT VARIETIES OF SOME FINITE DIMENSIONAL RESTRICTED LIE ALGEBRAS. [Doctoral Dissertation]. University of Manchester; 2019. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:321951
Université de Montréal
3. Jauffret, Colin. Modules réflexifs de rang 1 sur les variétés nilpotentes .
Degree: 2017, Université de Montréal
URL: http://hdl.handle.net/1866/19543
Subjects/Keywords: variété nilpotente normale; groupe des classes; module réflexif; théorème d'annulation; cohomologie de fibrés en droites; fibré cotangent d'une variété de drapeaux; normal nilpotent variety; class group; reflexive module; vanishing theorem; cohomology of line bundles; cotangent bundle of a flag variety
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Jauffret, C. (2017). Modules réflexifs de rang 1 sur les variétés nilpotentes . (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/19543
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Jauffret, Colin. “Modules réflexifs de rang 1 sur les variétés nilpotentes .” 2017. Thesis, Université de Montréal. Accessed December 11, 2019. http://hdl.handle.net/1866/19543.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Jauffret, Colin. “Modules réflexifs de rang 1 sur les variétés nilpotentes .” 2017. Web. 11 Dec 2019.
Vancouver:
Jauffret C. Modules réflexifs de rang 1 sur les variétés nilpotentes . [Internet] [Thesis]. Université de Montréal; 2017. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/1866/19543.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Jauffret C. Modules réflexifs de rang 1 sur les variétés nilpotentes . [Thesis]. Université de Montréal; 2017. Available from: http://hdl.handle.net/1866/19543
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
4. Terpereau, Ronan. Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory.
Degree: Docteur es, Mathématiques, 2012, Université de Grenoble
URL: http://www.theses.fr/2012GRENM095
Subjects/Keywords: Schéma de Hilbert invariant; Résolution des singularités; Théorie des invariants; Orbite nilpotente; Résolutions symplectiques; Variété déterminantielle; Invariant Hilbert scheme; Resolution of singularities; Invariants theory; Nilpotent orbit; Symplectic resolution; Determinantal variety
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Terpereau, R. (2012). Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory. (Doctoral Dissertation). Université de Grenoble. Retrieved from http://www.theses.fr/2012GRENM095
Chicago Manual of Style (16th Edition):
Terpereau, Ronan. “Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory.” 2012. Doctoral Dissertation, Université de Grenoble. Accessed December 11, 2019. http://www.theses.fr/2012GRENM095.
MLA Handbook (7th Edition):
Terpereau, Ronan. “Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory.” 2012. Web. 11 Dec 2019.
Vancouver:
Terpereau R. Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory. [Internet] [Doctoral dissertation]. Université de Grenoble; 2012. [cited 2019 Dec 11]. Available from: http://www.theses.fr/2012GRENM095.
Council of Science Editors:
Terpereau R. Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory. [Doctoral Dissertation]. Université de Grenoble; 2012. Available from: http://www.theses.fr/2012GRENM095