Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Nilpotent Lie algebras). Showing records 1 – 12 of 12 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Latrobe University

1. Hinic Galic, Ana. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.

Degree: PhD, 2012, Latrobe University

Thesis (Ph.D.) - La Trobe University, 2012

Submission note: "A thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy… (more)

Subjects/Keywords: Lie algebras.; Geometry, Riemannian.; Nilpotent Lie groups.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hinic Galic, A. (2012). Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. (Doctoral Dissertation). Latrobe University. Retrieved from http://hdl.handle.net/1959.9/512945

Chicago Manual of Style (16th Edition):

Hinic Galic, Ana. “Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.” 2012. Doctoral Dissertation, Latrobe University. Accessed September 20, 2020. http://hdl.handle.net/1959.9/512945.

MLA Handbook (7th Edition):

Hinic Galic, Ana. “Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.” 2012. Web. 20 Sep 2020.

Vancouver:

Hinic Galic A. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. [Internet] [Doctoral dissertation]. Latrobe University; 2012. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/1959.9/512945.

Council of Science Editors:

Hinic Galic A. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. [Doctoral Dissertation]. Latrobe University; 2012. Available from: http://hdl.handle.net/1959.9/512945


Penn State University

2. Bannangkoon, Pichkitti. C*-algebras in Kirillov Theory.

Degree: 2015, Penn State University

 In this dissertation, I study connections between C*-algebra theory and the representation theory of simply connected nilpotent Lie groups, specifically the Kirillov theory. If G… (more)

Subjects/Keywords: Kirillov theory; C*-algebras; unitary representations of nilpotent groups; regular representation; nilpotent Lie groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bannangkoon, P. (2015). C*-algebras in Kirillov Theory. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/26712

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bannangkoon, Pichkitti. “C*-algebras in Kirillov Theory.” 2015. Thesis, Penn State University. Accessed September 20, 2020. https://submit-etda.libraries.psu.edu/catalog/26712.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bannangkoon, Pichkitti. “C*-algebras in Kirillov Theory.” 2015. Web. 20 Sep 2020.

Vancouver:

Bannangkoon P. C*-algebras in Kirillov Theory. [Internet] [Thesis]. Penn State University; 2015. [cited 2020 Sep 20]. Available from: https://submit-etda.libraries.psu.edu/catalog/26712.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bannangkoon P. C*-algebras in Kirillov Theory. [Thesis]. Penn State University; 2015. Available from: https://submit-etda.libraries.psu.edu/catalog/26712

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


North Carolina State University

3. Attiogbe, Cyril Efoe. On Characterizing Nilpotent Lie algebras by their Multipliers.

Degree: PhD, Mathematics, 2004, North Carolina State University

 Authors have turned their attentions to special classes of nilpotent Lie algebras such as two-step nilpotent and filiform Lie algebras, in particular filiform Lie algebras(more)

Subjects/Keywords: Nilpotent Lie algebras; Multipliers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Attiogbe, C. E. (2004). On Characterizing Nilpotent Lie algebras by their Multipliers. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/5501

Chicago Manual of Style (16th Edition):

Attiogbe, Cyril Efoe. “On Characterizing Nilpotent Lie algebras by their Multipliers.” 2004. Doctoral Dissertation, North Carolina State University. Accessed September 20, 2020. http://www.lib.ncsu.edu/resolver/1840.16/5501.

MLA Handbook (7th Edition):

Attiogbe, Cyril Efoe. “On Characterizing Nilpotent Lie algebras by their Multipliers.” 2004. Web. 20 Sep 2020.

Vancouver:

Attiogbe CE. On Characterizing Nilpotent Lie algebras by their Multipliers. [Internet] [Doctoral dissertation]. North Carolina State University; 2004. [cited 2020 Sep 20]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5501.

Council of Science Editors:

Attiogbe CE. On Characterizing Nilpotent Lie algebras by their Multipliers. [Doctoral Dissertation]. North Carolina State University; 2004. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5501


University of Waterloo

4. Gong, Ming-Peng. Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Field and R).

Degree: 1998, University of Waterloo

 This thesis is concerned with the classification of 7-dimensional nilpotent Lie algebras. Skjelbred and Sund have published in 1977 their method of constructing all nilpotent(more)

Subjects/Keywords: Mathematics; Nilpotent; Lie; Algebras; Algebraically; Closed

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gong, M. (1998). Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Field and R). (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/1148

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gong, Ming-Peng. “Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Field and R).” 1998. Thesis, University of Waterloo. Accessed September 20, 2020. http://hdl.handle.net/10012/1148.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gong, Ming-Peng. “Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Field and R).” 1998. Web. 20 Sep 2020.

Vancouver:

Gong M. Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Field and R). [Internet] [Thesis]. University of Waterloo; 1998. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10012/1148.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gong M. Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Field and R). [Thesis]. University of Waterloo; 1998. Available from: http://hdl.handle.net/10012/1148

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


North Carolina State University

5. Suanmali, Suthathip. Oon the Relationship Between the Class of a Lie Algebra and the Classes of Its Subalgebras.

Degree: PhD, Mathematics, 2007, North Carolina State University

 A classical nilpotency result considers finite p-groups whose proper subgroups all have class bounded by a fixed number n. We consider the analogous property in… (more)

Subjects/Keywords: nilpotency class; nilpotent Lie algebras; metabelian

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Suanmali, S. (2007). Oon the Relationship Between the Class of a Lie Algebra and the Classes of Its Subalgebras. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/3892

Chicago Manual of Style (16th Edition):

Suanmali, Suthathip. “Oon the Relationship Between the Class of a Lie Algebra and the Classes of Its Subalgebras.” 2007. Doctoral Dissertation, North Carolina State University. Accessed September 20, 2020. http://www.lib.ncsu.edu/resolver/1840.16/3892.

MLA Handbook (7th Edition):

Suanmali, Suthathip. “Oon the Relationship Between the Class of a Lie Algebra and the Classes of Its Subalgebras.” 2007. Web. 20 Sep 2020.

Vancouver:

Suanmali S. Oon the Relationship Between the Class of a Lie Algebra and the Classes of Its Subalgebras. [Internet] [Doctoral dissertation]. North Carolina State University; 2007. [cited 2020 Sep 20]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/3892.

Council of Science Editors:

Suanmali S. Oon the Relationship Between the Class of a Lie Algebra and the Classes of Its Subalgebras. [Doctoral Dissertation]. North Carolina State University; 2007. Available from: http://www.lib.ncsu.edu/resolver/1840.16/3892

6. Castillo Gomez, John Hermes. Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo.

Degree: PhD, Matemática, 2012, University of São Paulo

Sejam F um corpo de característica diferente de 2 e G um grupo. A partir da involução clássica, que envia cada elemento em seu inverso,… (more)

Subjects/Keywords: álgebras de grupo; elemento anti-simétrico; elemento simétrico; fortemente Lie nilpotente; group algebras; índice de Lie nilpotência.; involução; involution; Lie $n$-Engel; Lie $n$-Engel; Lie nilpotency index.; Lie nilpotent; Lie nilpotente; orientação; orientation; skew-symmetric element; strongly Lie nilpotent; symmetric element

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Castillo Gomez, J. H. (2012). Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04012013-170011/ ;

Chicago Manual of Style (16th Edition):

Castillo Gomez, John Hermes. “Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo.” 2012. Doctoral Dissertation, University of São Paulo. Accessed September 20, 2020. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04012013-170011/ ;.

MLA Handbook (7th Edition):

Castillo Gomez, John Hermes. “Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo.” 2012. Web. 20 Sep 2020.

Vancouver:

Castillo Gomez JH. Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo. [Internet] [Doctoral dissertation]. University of São Paulo; 2012. [cited 2020 Sep 20]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04012013-170011/ ;.

Council of Science Editors:

Castillo Gomez JH. Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo. [Doctoral Dissertation]. University of São Paulo; 2012. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04012013-170011/ ;

7. Barucchieri, Bianca. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.

Degree: Docteur es, Mathématiques Pures, 2019, Bordeaux

Dans ce travail nous nous intéressons aux groupes cristallographiques, i.e. aux sous-groupes du groupe des transformations affines qui agissent proprement discontinûment et de façon cocompacte… (more)

Subjects/Keywords: Variétés affines; Groupes cristallographiques; Variétés Hermite-Lorentz; Algèbres de Lie nilpotentes; Affine manifolds; Crystallographic groups; Hermite-Lorentz manifolds; Nilpotent Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barucchieri, B. (2019). Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2019BORD0153

Chicago Manual of Style (16th Edition):

Barucchieri, Bianca. “Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.” 2019. Doctoral Dissertation, Bordeaux. Accessed September 20, 2020. http://www.theses.fr/2019BORD0153.

MLA Handbook (7th Edition):

Barucchieri, Bianca. “Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.” 2019. Web. 20 Sep 2020.

Vancouver:

Barucchieri B. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. [Internet] [Doctoral dissertation]. Bordeaux; 2019. [cited 2020 Sep 20]. Available from: http://www.theses.fr/2019BORD0153.

Council of Science Editors:

Barucchieri B. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. [Doctoral Dissertation]. Bordeaux; 2019. Available from: http://www.theses.fr/2019BORD0153

8. Duong, Minh thanh. A new invariant of quadratic lie algebras and quadratic lie superalgebras : Un nouvel invariant des algèbres de Lie et des super-algèbres de Lie quadratiques.

Degree: Docteur es, Mathématiques, 2011, Université de Bourgogne

Dans cette thèse, nous définissons un nouvel invariant des algèbres de Lie quadratiques et des superalgèbres de Lie quadratiques et donnons une étude et classification… (more)

Subjects/Keywords: Pas de mot clé en français; Quadratic Lie algebras; Quadratic Lie superalgebras; Pseudo-Eucliean Jordan algebras; Symmetric Novikov algebras; Invariant; Adjoint orbits; Lie algebra o(m); Lie algebra sp(2n); Solvable Lie algebras; 2-step nilpotent; Double extensions; T*-extension; Generalized double extension; Jordan-admissible; 512

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Duong, M. t. (2011). A new invariant of quadratic lie algebras and quadratic lie superalgebras : Un nouvel invariant des algèbres de Lie et des super-algèbres de Lie quadratiques. (Doctoral Dissertation). Université de Bourgogne. Retrieved from http://www.theses.fr/2011DIJOS021

Chicago Manual of Style (16th Edition):

Duong, Minh thanh. “A new invariant of quadratic lie algebras and quadratic lie superalgebras : Un nouvel invariant des algèbres de Lie et des super-algèbres de Lie quadratiques.” 2011. Doctoral Dissertation, Université de Bourgogne. Accessed September 20, 2020. http://www.theses.fr/2011DIJOS021.

MLA Handbook (7th Edition):

Duong, Minh thanh. “A new invariant of quadratic lie algebras and quadratic lie superalgebras : Un nouvel invariant des algèbres de Lie et des super-algèbres de Lie quadratiques.” 2011. Web. 20 Sep 2020.

Vancouver:

Duong Mt. A new invariant of quadratic lie algebras and quadratic lie superalgebras : Un nouvel invariant des algèbres de Lie et des super-algèbres de Lie quadratiques. [Internet] [Doctoral dissertation]. Université de Bourgogne; 2011. [cited 2020 Sep 20]. Available from: http://www.theses.fr/2011DIJOS021.

Council of Science Editors:

Duong Mt. A new invariant of quadratic lie algebras and quadratic lie superalgebras : Un nouvel invariant des algèbres de Lie et des super-algèbres de Lie quadratiques. [Doctoral Dissertation]. Université de Bourgogne; 2011. Available from: http://www.theses.fr/2011DIJOS021


Universidade Estadual de Campinas

9. Santos, Edson Carlos Licurgo. Estruturas complexas comauto-espaços nilpotentes e soluveis: Complex structures having nilpotent and solvable eigenspaces.

Degree: 2007, Universidade Estadual de Campinas

 Abstract: Let (g; [·,·]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic… (more)

Subjects/Keywords: Lie, Álgebra de; Grupos nilpotentes; Grupos solúveis; Nilpotent groups; Solvable groups; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Santos, E. C. L. (2007). Estruturas complexas comauto-espaços nilpotentes e soluveis: Complex structures having nilpotent and solvable eigenspaces. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/305823

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Santos, Edson Carlos Licurgo. “Estruturas complexas comauto-espaços nilpotentes e soluveis: Complex structures having nilpotent and solvable eigenspaces.” 2007. Thesis, Universidade Estadual de Campinas. Accessed September 20, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305823.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Santos, Edson Carlos Licurgo. “Estruturas complexas comauto-espaços nilpotentes e soluveis: Complex structures having nilpotent and solvable eigenspaces.” 2007. Web. 20 Sep 2020.

Vancouver:

Santos ECL. Estruturas complexas comauto-espaços nilpotentes e soluveis: Complex structures having nilpotent and solvable eigenspaces. [Internet] [Thesis]. Universidade Estadual de Campinas; 2007. [cited 2020 Sep 20]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/305823.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Santos ECL. Estruturas complexas comauto-espaços nilpotentes e soluveis: Complex structures having nilpotent and solvable eigenspaces. [Thesis]. Universidade Estadual de Campinas; 2007. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/305823

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

10. Κοφίνας, Κωνσταντίνος. Θεωρία ομάδων και lie αλγεβρών.

Degree: 2009, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

For a positive integer n, with n?2, let Fn(Tc) be a relatively free group of rank n in a torsion - free variety of nilpotent(more)

Subjects/Keywords: Μηδενοδύναμες lie άλγεβρες; Πολλαπλότητες lie αλγεβρών; Ελεύθερης στρέψης μηδενοδύνακες ομάδες; Αυτομορφισμοί; Nilpotent lie algebras; Varieties of lie algebras; Torsion-free nilpotent groups; Automorphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Κοφίνας, . . (2009). Θεωρία ομάδων και lie αλγεβρών. (Thesis). Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Retrieved from http://hdl.handle.net/10442/hedi/20405

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Κοφίνας, Κωνσταντίνος. “Θεωρία ομάδων και lie αλγεβρών.” 2009. Thesis, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Accessed September 20, 2020. http://hdl.handle.net/10442/hedi/20405.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Κοφίνας, Κωνσταντίνος. “Θεωρία ομάδων και lie αλγεβρών.” 2009. Web. 20 Sep 2020.

Vancouver:

Κοφίνας . Θεωρία ομάδων και lie αλγεβρών. [Internet] [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2009. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10442/hedi/20405.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Κοφίνας . Θεωρία ομάδων και lie αλγεβρών. [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2009. Available from: http://hdl.handle.net/10442/hedi/20405

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

11. Rakotoarisoa, Andriamananjara Tantely. The Bala-Carter Classification of Nilpotent Orbits of Semisimple Lie Algebras .

Degree: 2017, University of Ottawa

 Conjugacy classes of nilpotent elements in complex semisimple Lie algebras are classified using the Bala-Carter theory. In this theory, nilpotent orbits in g are parametrized… (more)

Subjects/Keywords: Lie; Algebras; Representation; Theory; Nilpotent; Orbits; Bala-Carter; Dynkin

…semisimple if and only if its Killing form κ is nondegenerate. 2.4 Nilpotent Lie algebras Let g… …Introduction Nilpotent orbits in a complex semisimple Lie algebra g are used, in the Springer… …classification of the nilpotent orbits of the classical simple Lie al1 1. INTRODUCTION 2 gebras… …nilpotent orbits of the exceptional algebras was obtained. Bala and Carter slightly modified a… …In fact, the Bala-Carter theory of nilpotent orbits applies for any complex semisimple Lie… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rakotoarisoa, A. T. (2017). The Bala-Carter Classification of Nilpotent Orbits of Semisimple Lie Algebras . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/36058

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rakotoarisoa, Andriamananjara Tantely. “The Bala-Carter Classification of Nilpotent Orbits of Semisimple Lie Algebras .” 2017. Thesis, University of Ottawa. Accessed September 20, 2020. http://hdl.handle.net/10393/36058.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rakotoarisoa, Andriamananjara Tantely. “The Bala-Carter Classification of Nilpotent Orbits of Semisimple Lie Algebras .” 2017. Web. 20 Sep 2020.

Vancouver:

Rakotoarisoa AT. The Bala-Carter Classification of Nilpotent Orbits of Semisimple Lie Algebras . [Internet] [Thesis]. University of Ottawa; 2017. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10393/36058.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rakotoarisoa AT. The Bala-Carter Classification of Nilpotent Orbits of Semisimple Lie Algebras . [Thesis]. University of Ottawa; 2017. Available from: http://hdl.handle.net/10393/36058

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

12. Ταπανίδης, Θεόδουλος. Μελέτη ιδεωδών σε ειδικές lie άλγεβρες.

Degree: 2002, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

 In this paper we study special properties of Nilpotent Lie Algebras of dimension eight over the field K of characteristic zero. The complete classification of… (more)

Subjects/Keywords: Lie άλγεβρες; Ιδεώδες lie άλγεβρας; Nilpotent lie άλγεβρα; Παραγώγιση επί μιας lie άλγεβρας; Ισομορφικές lie άλγεβρες; Χαρακτηριστικά nilpotent lie άλγεβρας; Επέκταση μιας lie άλγεβρας; Προσδιορισμός lie αλγεβρών; Lie algebras; Ideal of a lie algebra; Nilpotent lie algebras; Derivation on a lie algebra; Isomorphic lie algebras; Charactiristical nilpotent lie algebra; Extensio of a lie algebra; Determination of a lie algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ταπανίδης, . . (2002). Μελέτη ιδεωδών σε ειδικές lie άλγεβρες. (Thesis). Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Retrieved from http://hdl.handle.net/10442/hedi/20229

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ταπανίδης, Θεόδουλος. “Μελέτη ιδεωδών σε ειδικές lie άλγεβρες.” 2002. Thesis, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Accessed September 20, 2020. http://hdl.handle.net/10442/hedi/20229.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ταπανίδης, Θεόδουλος. “Μελέτη ιδεωδών σε ειδικές lie άλγεβρες.” 2002. Web. 20 Sep 2020.

Vancouver:

Ταπανίδης . Μελέτη ιδεωδών σε ειδικές lie άλγεβρες. [Internet] [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2002. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10442/hedi/20229.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ταπανίδης . Μελέτη ιδεωδών σε ειδικές lie άλγεβρες. [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2002. Available from: http://hdl.handle.net/10442/hedi/20229

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.