Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Nano particle silver). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Wang, Xudong. Numerical modelling of silver particle sintering at nano- and micro-scale : investigation of the physical mechanisms and effects of the process parameters : Modélisation numérique du frittage de particules d'argent aux échelles nano- et micrométriques : étude des mécanismes physiques en jeu et effets des paramètres de process.

Degree: Docteur es, Physique, 2020, université Paris-Saclay

Le frittage des particules d'argent est simulé à plusieurs échelles avec différentes approches numériques. La méthode de la dynamique moléculaire est utilisée pour effectuer les calculs à l'échelle nanométrique. Les modèles composés de particules d'argent de taille nanométrique sont frittés dans diverses conditions. Ensuite, les propriétés mécaniques des structures poreuses produites sont analysées qualitativement par rapport aux paramètres du processus. Dans la deuxième partie, un processus de fabrication similaire est mis en œuvre avec des modèles à micro-échelle. Les simulations sont faites en implémentant dans le programme Surface Evolver avec les mécanismes physiques pertinents. Le frittage à température modérée implique la diffusion en surface et la diffusion au joint de grain. Le comportement de frittage prévu est ensuite discuté sur la base non seulement du modèle de base tel que la paire de particules de taille égale ou inégale, mais également de trois cellules unitaires spécifiques avec le taux de porosité initial différent. Enfin, une application pour le frittage à haute température est présentée en se concentrant sur le mécanisme de diffusion évaporation-condensation.

The sintering of silver particles is simulated at several scales with different numerical approaches. The Molecular Dynamics method is used to carry out the nanoscale calculations. Models composed by silver particles of nanometric size are sintered under various conditions. Then, the mechanical properties of the produced porous structure are analyzed qualitatively with respect to the process parameters. In the second part, similar fabrication process is implemented with microscale models. Simulations are made by implementing in the Surface Evolver program with the relevant physical mechanisms. Sintering at moderate temperature involves surface diffusion and grain boundary diffusion. The predicted sintering behavior is then discussed based on not only the basic model such as equal-size or unequal-size pair of particles, but also three specific tetragonal unit cells with different initial porosity rate. At last, an application for sintering at high temperature is presented by focusing on the evaporation-condensation diffusion mechanism.

Advisors/Committee Members: Benabou, Lahouari (thesis director).

Subjects/Keywords: Simulation; Frittage; Particule d'argent; Dynamique Moléculaire; Surface Evolver; Echelle nano/micro; Simulation; Sintering; Silver particle; Molecular Dynamics; Surface Evolver; Nano/micro scale; 671.373

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, X. (2020). Numerical modelling of silver particle sintering at nano- and micro-scale : investigation of the physical mechanisms and effects of the process parameters : Modélisation numérique du frittage de particules d'argent aux échelles nano- et micrométriques : étude des mécanismes physiques en jeu et effets des paramètres de process. (Doctoral Dissertation). université Paris-Saclay. Retrieved from http://www.theses.fr/2020UPASV030

Chicago Manual of Style (16th Edition):

Wang, Xudong. “Numerical modelling of silver particle sintering at nano- and micro-scale : investigation of the physical mechanisms and effects of the process parameters : Modélisation numérique du frittage de particules d'argent aux échelles nano- et micrométriques : étude des mécanismes physiques en jeu et effets des paramètres de process.” 2020. Doctoral Dissertation, université Paris-Saclay. Accessed February 28, 2021. http://www.theses.fr/2020UPASV030.

MLA Handbook (7th Edition):

Wang, Xudong. “Numerical modelling of silver particle sintering at nano- and micro-scale : investigation of the physical mechanisms and effects of the process parameters : Modélisation numérique du frittage de particules d'argent aux échelles nano- et micrométriques : étude des mécanismes physiques en jeu et effets des paramètres de process.” 2020. Web. 28 Feb 2021.

Vancouver:

Wang X. Numerical modelling of silver particle sintering at nano- and micro-scale : investigation of the physical mechanisms and effects of the process parameters : Modélisation numérique du frittage de particules d'argent aux échelles nano- et micrométriques : étude des mécanismes physiques en jeu et effets des paramètres de process. [Internet] [Doctoral dissertation]. université Paris-Saclay; 2020. [cited 2021 Feb 28]. Available from: http://www.theses.fr/2020UPASV030.

Council of Science Editors:

Wang X. Numerical modelling of silver particle sintering at nano- and micro-scale : investigation of the physical mechanisms and effects of the process parameters : Modélisation numérique du frittage de particules d'argent aux échelles nano- et micrométriques : étude des mécanismes physiques en jeu et effets des paramètres de process. [Doctoral Dissertation]. université Paris-Saclay; 2020. Available from: http://www.theses.fr/2020UPASV030

2. Joo, Sung Chul. Adhesion mechanisms of nano-particle silver to electronics packaging materials.

Degree: PhD, Mechanical Engineering, 2009, Georgia Tech

To reduce electronics packaging lead time and potentially to reduce manufacturing cost, an innovative packaging process targeting rapid package prototyping (RPP) has been developed. The developed RPP process, which is based on a data-driven chip-first approach, provides electrical functionality as well as form factors for micro-systems packages. The key component of the RPP process is the nano-particle silver (NPS) interconnect. However, NPS has not yet been adequately proven for use in electronics packaging applications. Moreover, its adhesion to electronics packaging materials such as polyimide, benzocyclobutene (BCB), copper, and aluminum is found to be weak. Thus, improving the adhesion strength of NPS will be a key issue for reliable package prototypes with NPS interconnects. In this research, the adhesion of NPS to substrate materials is found to be attributed to particle adhesion and more specifically, van der Waals forces. An adhesion model based on the van der Waals force is suggested in order to predict NPS adhesion strength to packaging materials. A new adhesion test method that is based on a die shear test and a button shear test is developed to validate the NPS adhesion prediction model. The newly developed adhesion test method is generic in nature and can be extended to other thin films' adhesion tests. The NPS adhesion model provides a general and explicit relation between NPS tensile bond strength and adhesion factors such as substrate hardness, adhesion distance, van der Waals constant, and particle diameter. The NPS adhesion model is verified as a first order adhesion model using experimental data from seventeen packaging materials. Substrate hardness is identified as a primary factor in NPS adhesion. Adhesion distance and van der Waals constant are also significant in organic and inorganic materials. Diffusion or other interfacial reaction between NPS and metal substrates such as copper and silver seems to exist. Finally, guidelines to improve the adhesion strength of NPS are suggested based on the adhesion model and on external adhesion factors such as Silane coupling agents and plasma treatment. Advisors/Committee Members: Daniel F. Baldwin (Committee Chair).

Subjects/Keywords: Adhesion modeling; Adhesion mechanisms; Adhesion; Nano-particle silver; Electronics packaging; Adhesion; Nanoparticles; Silver; Electronic packaging; Rapid prototyping

…ADHESION MECHANISMS OF NANO-PARTICLE SILVER TO ELECTRONICS PACKAGING MATERIALS A Thesis… …Joo ADHESION MECHANISMS OF NANO-PARTICLE SILVER TO ELECTRONICS PACKAGING MATERIALS… …23 2.3 Nano-Particle Silver (NPS) Adhesion… …17 Figure 2.11 Nano-Particle Silver… …67 Figure 4.17 Hydrogen bonding model between nano particle silver and substrates .... 68… 

Page 1 Page 2 Page 3 Page 4 Page 5

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Joo, S. C. (2009). Adhesion mechanisms of nano-particle silver to electronics packaging materials. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/31730

Chicago Manual of Style (16th Edition):

Joo, Sung Chul. “Adhesion mechanisms of nano-particle silver to electronics packaging materials.” 2009. Doctoral Dissertation, Georgia Tech. Accessed February 28, 2021. http://hdl.handle.net/1853/31730.

MLA Handbook (7th Edition):

Joo, Sung Chul. “Adhesion mechanisms of nano-particle silver to electronics packaging materials.” 2009. Web. 28 Feb 2021.

Vancouver:

Joo SC. Adhesion mechanisms of nano-particle silver to electronics packaging materials. [Internet] [Doctoral dissertation]. Georgia Tech; 2009. [cited 2021 Feb 28]. Available from: http://hdl.handle.net/1853/31730.

Council of Science Editors:

Joo SC. Adhesion mechanisms of nano-particle silver to electronics packaging materials. [Doctoral Dissertation]. Georgia Tech; 2009. Available from: http://hdl.handle.net/1853/31730

3. Nahid, Masrur Morshed. In Quest of Printed Electrodes for Light-emitting Electrochemical Cells: A Comparative Study between Two Silver Inks.

Degree: Physics, 2012, Umeå University

This thesis presents a comparative study between two silver nanoparticle inks that were deposited using a Drop-on-Demand (DoD) inkjet printer, aiming at finding a functional ink that can be used to print electrodes in Light-emitting Electrochemical Cells (LECs). To achieve this, a DoD inkjet printer was installed and an acquaintance with the printer was attained. Among the two inks, one was employed as received while the other was reformulated, and successful deposition of both the inks was observed. During the reformulation process, it was seen that the highly volatile tetrahydrofuran (THF) solvent can be used to improve the ink properties, in contrast to what is recommended. After that, the inks were deposited on UV-ozone treated glass substrates, sintered at an elevated temperature under ambient conditions, and their specific resistances and thicknesses were measured. Finally, the inks were used to print the anode in a structured sandwich-cell LEC. The performance comparison was conducted by observing the emitted light of the LECs. The results indicate that the reformulated ink performs better, probably due to the lower silver concentration that results in flatter surface, which in turn effectively alleviates shorts.

Subjects/Keywords: LEC; light-emitting electrochemical cells; conductive nano-particle inks; silver inks; inkjet printer; organic electronics

…solutions and particle suspensions can work. For good performance, the fluids should have a… …Figure 12: Single line of Ag nano particles (printed with Ink#1) deposited on the… …Plastic Price (per gram) Dispersion Matrix Ag content (wt %) Particle-size… …heat is applied, the solvent 19 evaporates and the particle-ligand bonds are broken. This… …Ink#2 is different. Ink#2 is a transparent, ‘non-particle-type’ ink and the organic… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nahid, M. M. (2012). In Quest of Printed Electrodes for Light-emitting Electrochemical Cells: A Comparative Study between Two Silver Inks. (Thesis). Umeå University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-62827

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Nahid, Masrur Morshed. “In Quest of Printed Electrodes for Light-emitting Electrochemical Cells: A Comparative Study between Two Silver Inks.” 2012. Thesis, Umeå University. Accessed February 28, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-62827.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Nahid, Masrur Morshed. “In Quest of Printed Electrodes for Light-emitting Electrochemical Cells: A Comparative Study between Two Silver Inks.” 2012. Web. 28 Feb 2021.

Vancouver:

Nahid MM. In Quest of Printed Electrodes for Light-emitting Electrochemical Cells: A Comparative Study between Two Silver Inks. [Internet] [Thesis]. Umeå University; 2012. [cited 2021 Feb 28]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-62827.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Nahid MM. In Quest of Printed Electrodes for Light-emitting Electrochemical Cells: A Comparative Study between Two Silver Inks. [Thesis]. Umeå University; 2012. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-62827

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.