Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(N body problem). Showing records 1 – 30 of 43 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

▼ Search Limiters


Queens University

1. Mansur, Abdalla. Instability of Periodic Orbits of Some Rhombus and Parallelogram Four Body Problems .

Degree: Mathematics and Statistics, 2012, Queens University

 The rhombus and parallelogram orbits are interesting families of periodic solutions, which come from celestial mechanics and the N-body problem. Variational methods with finite order… (more)

Subjects/Keywords: N-Body Problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mansur, A. (2012). Instability of Periodic Orbits of Some Rhombus and Parallelogram Four Body Problems . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/7650

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mansur, Abdalla. “Instability of Periodic Orbits of Some Rhombus and Parallelogram Four Body Problems .” 2012. Thesis, Queens University. Accessed October 31, 2020. http://hdl.handle.net/1974/7650.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mansur, Abdalla. “Instability of Periodic Orbits of Some Rhombus and Parallelogram Four Body Problems .” 2012. Web. 31 Oct 2020.

Vancouver:

Mansur A. Instability of Periodic Orbits of Some Rhombus and Parallelogram Four Body Problems . [Internet] [Thesis]. Queens University; 2012. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1974/7650.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mansur A. Instability of Periodic Orbits of Some Rhombus and Parallelogram Four Body Problems . [Thesis]. Queens University; 2012. Available from: http://hdl.handle.net/1974/7650

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Georgia

2. Hannah, Mark Edward. An analysis of the three body problem.

Degree: 2014, University of Georgia

 In this paper we will be presenting my approach to generating two possible solutions to the three-body problem. We will first discuss the theory of… (more)

Subjects/Keywords: Celestial Mechanics; n-Body Problem; Three-body Problem; 3-Body Problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hannah, M. E. (2014). An analysis of the three body problem. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/29188

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hannah, Mark Edward. “An analysis of the three body problem.” 2014. Thesis, University of Georgia. Accessed October 31, 2020. http://hdl.handle.net/10724/29188.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hannah, Mark Edward. “An analysis of the three body problem.” 2014. Web. 31 Oct 2020.

Vancouver:

Hannah ME. An analysis of the three body problem. [Internet] [Thesis]. University of Georgia; 2014. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10724/29188.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hannah ME. An analysis of the three body problem. [Thesis]. University of Georgia; 2014. Available from: http://hdl.handle.net/10724/29188

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Minnesota

3. Huang, Hsin-Yuan. Variational methods and the orbits with collisions in the N-body problem.

Degree: PhD, Mathematics, 2011, University of Minnesota

 The objective of this thesis is to study variational methods in the Newtonian N-body problem. Chapter 1 contains the introduction of Chapters 2 and 3.… (more)

Subjects/Keywords: N-body Problem; Variational Methods; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, H. (2011). Variational methods and the orbits with collisions in the N-body problem. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/107964

Chicago Manual of Style (16th Edition):

Huang, Hsin-Yuan. “Variational methods and the orbits with collisions in the N-body problem.” 2011. Doctoral Dissertation, University of Minnesota. Accessed October 31, 2020. http://purl.umn.edu/107964.

MLA Handbook (7th Edition):

Huang, Hsin-Yuan. “Variational methods and the orbits with collisions in the N-body problem.” 2011. Web. 31 Oct 2020.

Vancouver:

Huang H. Variational methods and the orbits with collisions in the N-body problem. [Internet] [Doctoral dissertation]. University of Minnesota; 2011. [cited 2020 Oct 31]. Available from: http://purl.umn.edu/107964.

Council of Science Editors:

Huang H. Variational methods and the orbits with collisions in the N-body problem. [Doctoral Dissertation]. University of Minnesota; 2011. Available from: http://purl.umn.edu/107964


The Ohio State University

4. Jedrey, Richard M. Development of a Discretized Model for the Restricted Three-Body Problem.

Degree: MS, Aero/Astro Engineering, 2011, The Ohio State University

 Spacecraft trajectory design is a science that requires high precision with little error. One of the most classic trajectory design problems is the restricted three-body(more)

Subjects/Keywords: Aerospace Engineering; Engineering; orbital mechanics; spacecraft trajectories; three-body problem; three-body model; n-body problem; n-body model; discretized spacecraft

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jedrey, R. M. (2011). Development of a Discretized Model for the Restricted Three-Body Problem. (Masters Thesis). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1306856595

Chicago Manual of Style (16th Edition):

Jedrey, Richard M. “Development of a Discretized Model for the Restricted Three-Body Problem.” 2011. Masters Thesis, The Ohio State University. Accessed October 31, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306856595.

MLA Handbook (7th Edition):

Jedrey, Richard M. “Development of a Discretized Model for the Restricted Three-Body Problem.” 2011. Web. 31 Oct 2020.

Vancouver:

Jedrey RM. Development of a Discretized Model for the Restricted Three-Body Problem. [Internet] [Masters thesis]. The Ohio State University; 2011. [cited 2020 Oct 31]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1306856595.

Council of Science Editors:

Jedrey RM. Development of a Discretized Model for the Restricted Three-Body Problem. [Masters Thesis]. The Ohio State University; 2011. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1306856595


University of Manitoba

5. Dyck, Joel A. Periodic solutions to the n-body problem.

Degree: Computer Science, 2015, University of Manitoba

 This thesis develops methods to identify periodic solutions to the n-body problem by representing gravitational orbits with Fourier series. To find periodic orbits, a minimization… (more)

Subjects/Keywords: N-body problem; Periodic orbits; Newtonian gravitation; Fourier series; Scientific computing

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dyck, J. A. (2015). Periodic solutions to the n-body problem. (Masters Thesis). University of Manitoba. Retrieved from http://hdl.handle.net/1993/30869

Chicago Manual of Style (16th Edition):

Dyck, Joel A. “Periodic solutions to the n-body problem.” 2015. Masters Thesis, University of Manitoba. Accessed October 31, 2020. http://hdl.handle.net/1993/30869.

MLA Handbook (7th Edition):

Dyck, Joel A. “Periodic solutions to the n-body problem.” 2015. Web. 31 Oct 2020.

Vancouver:

Dyck JA. Periodic solutions to the n-body problem. [Internet] [Masters thesis]. University of Manitoba; 2015. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1993/30869.

Council of Science Editors:

Dyck JA. Periodic solutions to the n-body problem. [Masters Thesis]. University of Manitoba; 2015. Available from: http://hdl.handle.net/1993/30869


University of Victoria

6. Paraschiv, Victor. Homographic solutions of the quasihomogeneous N-body problem.

Degree: Dept. of Mathematics and Statistics, 2011, University of Victoria

 We consider the N-body problem given by quasihomogeneous force functions of the form (C_1)/r^a + (C_2)/r^b (C_1, C_2, a, b constants and a, b positive… (more)

Subjects/Keywords: quasihomogeneous N-body problem; homographic solutions; central configurations; Lagrange-Pizzetti theorem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Paraschiv, V. (2011). Homographic solutions of the quasihomogeneous N-body problem. (Masters Thesis). University of Victoria. Retrieved from http://hdl.handle.net/1828/3421

Chicago Manual of Style (16th Edition):

Paraschiv, Victor. “Homographic solutions of the quasihomogeneous N-body problem.” 2011. Masters Thesis, University of Victoria. Accessed October 31, 2020. http://hdl.handle.net/1828/3421.

MLA Handbook (7th Edition):

Paraschiv, Victor. “Homographic solutions of the quasihomogeneous N-body problem.” 2011. Web. 31 Oct 2020.

Vancouver:

Paraschiv V. Homographic solutions of the quasihomogeneous N-body problem. [Internet] [Masters thesis]. University of Victoria; 2011. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1828/3421.

Council of Science Editors:

Paraschiv V. Homographic solutions of the quasihomogeneous N-body problem. [Masters Thesis]. University of Victoria; 2011. Available from: http://hdl.handle.net/1828/3421


University of Minnesota

7. Chen, Nai-Chia. Periodic brake orbits in the N-body problem.

Degree: PhD, Mathematics, 2014, University of Minnesota

 The thesis is devoted to finding periodic brake orbits in the N-body problem. We consider certain subsystems of the N-body problem that have two degrees… (more)

Subjects/Keywords: Celestial mechanics; Classical mechanics; Differential equations; N-body problem; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, N. (2014). Periodic brake orbits in the N-body problem. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/166977

Chicago Manual of Style (16th Edition):

Chen, Nai-Chia. “Periodic brake orbits in the N-body problem.” 2014. Doctoral Dissertation, University of Minnesota. Accessed October 31, 2020. http://hdl.handle.net/11299/166977.

MLA Handbook (7th Edition):

Chen, Nai-Chia. “Periodic brake orbits in the N-body problem.” 2014. Web. 31 Oct 2020.

Vancouver:

Chen N. Periodic brake orbits in the N-body problem. [Internet] [Doctoral dissertation]. University of Minnesota; 2014. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/11299/166977.

Council of Science Editors:

Chen N. Periodic brake orbits in the N-body problem. [Doctoral Dissertation]. University of Minnesota; 2014. Available from: http://hdl.handle.net/11299/166977


Brigham Young University

8. Simmons, Skyler C. Analysis of Multiple Collision-Based Periodic Orbits in Dimension Higher than One.

Degree: PhD, 2015, Brigham Young University

 We exhibit multiple periodic, collision-based orbits of the Newtonian n-body problem. Many of these orbits feature regularizable collisions between the masses. We demonstrate existence of… (more)

Subjects/Keywords: Newtonian n-body problem; collision; regularization; stability; linear stability; Sitnikov problem; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Simmons, S. C. (2015). Analysis of Multiple Collision-Based Periodic Orbits in Dimension Higher than One. (Doctoral Dissertation). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=6583&context=etd

Chicago Manual of Style (16th Edition):

Simmons, Skyler C. “Analysis of Multiple Collision-Based Periodic Orbits in Dimension Higher than One.” 2015. Doctoral Dissertation, Brigham Young University. Accessed October 31, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=6583&context=etd.

MLA Handbook (7th Edition):

Simmons, Skyler C. “Analysis of Multiple Collision-Based Periodic Orbits in Dimension Higher than One.” 2015. Web. 31 Oct 2020.

Vancouver:

Simmons SC. Analysis of Multiple Collision-Based Periodic Orbits in Dimension Higher than One. [Internet] [Doctoral dissertation]. Brigham Young University; 2015. [cited 2020 Oct 31]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=6583&context=etd.

Council of Science Editors:

Simmons SC. Analysis of Multiple Collision-Based Periodic Orbits in Dimension Higher than One. [Doctoral Dissertation]. Brigham Young University; 2015. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=6583&context=etd


Brno University of Technology

9. Štambachr, Jakub. Simulace rozsáhlých částicových systémů: Simulation of Large Particle Systems.

Degree: 2018, Brno University of Technology

 This bachelor thesis adresses the problem of large-scale particle system simulations. Its main goal is to create an efficient simulation model of cosmological N-body systems… (more)

Subjects/Keywords: počítačová simulace; částicové systémy; N-body problém; tree-code metoda; computer simulation; particle systems; N-body problem; tree-code method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Štambachr, J. (2018). Simulace rozsáhlých částicových systémů: Simulation of Large Particle Systems. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/54769

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Štambachr, Jakub. “Simulace rozsáhlých částicových systémů: Simulation of Large Particle Systems.” 2018. Thesis, Brno University of Technology. Accessed October 31, 2020. http://hdl.handle.net/11012/54769.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Štambachr, Jakub. “Simulace rozsáhlých částicových systémů: Simulation of Large Particle Systems.” 2018. Web. 31 Oct 2020.

Vancouver:

Štambachr J. Simulace rozsáhlých částicových systémů: Simulation of Large Particle Systems. [Internet] [Thesis]. Brno University of Technology; 2018. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/11012/54769.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Štambachr J. Simulace rozsáhlých částicových systémů: Simulation of Large Particle Systems. [Thesis]. Brno University of Technology; 2018. Available from: http://hdl.handle.net/11012/54769

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


NSYSU

10. Yen, Chi-Wen. Stable Virtual Mass Method for Computing the Planar Central Configuration Motion.

Degree: Master, Applied Mathematics, 2017, NSYSU

 The central configuration motion, listed as one of problems for the twenty-first century, is the N-body Newtonian motion along which the net force on each… (more)

Subjects/Keywords: Keplerâs equation; Keplerâs laws of motion; Virtual mass; Central configuration; N-body problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yen, C. (2017). Stable Virtual Mass Method for Computing the Planar Central Configuration Motion. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0627117-170023

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yen, Chi-Wen. “Stable Virtual Mass Method for Computing the Planar Central Configuration Motion.” 2017. Thesis, NSYSU. Accessed October 31, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0627117-170023.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yen, Chi-Wen. “Stable Virtual Mass Method for Computing the Planar Central Configuration Motion.” 2017. Web. 31 Oct 2020.

Vancouver:

Yen C. Stable Virtual Mass Method for Computing the Planar Central Configuration Motion. [Internet] [Thesis]. NSYSU; 2017. [cited 2020 Oct 31]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0627117-170023.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yen C. Stable Virtual Mass Method for Computing the Planar Central Configuration Motion. [Thesis]. NSYSU; 2017. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0627117-170023

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

11. Kestur Vyasa Prasanna, Srinidhi. Domain-specific Accelerators on Reconfigurable Platforms.

Degree: 2012, Penn State University

 With the increasing number of transistors available on a chip, microprocessors have evolved from large monolithic cores to multiple cores on a chip. However, to… (more)

Subjects/Keywords: accelerators; NuFFT; FPGA; N-body problem; matrix vector; sparse; saliency; HMAX; attention; recognition; neuromorphic; vision

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kestur Vyasa Prasanna, S. (2012). Domain-specific Accelerators on Reconfigurable Platforms. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/13147

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kestur Vyasa Prasanna, Srinidhi. “Domain-specific Accelerators on Reconfigurable Platforms.” 2012. Thesis, Penn State University. Accessed October 31, 2020. https://submit-etda.libraries.psu.edu/catalog/13147.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kestur Vyasa Prasanna, Srinidhi. “Domain-specific Accelerators on Reconfigurable Platforms.” 2012. Web. 31 Oct 2020.

Vancouver:

Kestur Vyasa Prasanna S. Domain-specific Accelerators on Reconfigurable Platforms. [Internet] [Thesis]. Penn State University; 2012. [cited 2020 Oct 31]. Available from: https://submit-etda.libraries.psu.edu/catalog/13147.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kestur Vyasa Prasanna S. Domain-specific Accelerators on Reconfigurable Platforms. [Thesis]. Penn State University; 2012. Available from: https://submit-etda.libraries.psu.edu/catalog/13147

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Texas Tech University

12. -7338-4429. An analysis of block Verlet timestepping and lagged force evaluations for the gravitational N-body problem.

Degree: PhD, Mathematics, 2018, Texas Tech University

N-body simulations are widely used in astrophysics to model the behavior of stellar system. The Verlet integrator is one of the principle numerical methods used… (more)

Subjects/Keywords: N-body problem; Verlet integrator; Block timestep Verlet method; lagged force calculation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-7338-4429. (2018). An analysis of block Verlet timestepping and lagged force evaluations for the gravitational N-body problem. (Doctoral Dissertation). Texas Tech University. Retrieved from http://hdl.handle.net/2346/74396

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-7338-4429. “An analysis of block Verlet timestepping and lagged force evaluations for the gravitational N-body problem.” 2018. Doctoral Dissertation, Texas Tech University. Accessed October 31, 2020. http://hdl.handle.net/2346/74396.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-7338-4429. “An analysis of block Verlet timestepping and lagged force evaluations for the gravitational N-body problem.” 2018. Web. 31 Oct 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-7338-4429. An analysis of block Verlet timestepping and lagged force evaluations for the gravitational N-body problem. [Internet] [Doctoral dissertation]. Texas Tech University; 2018. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2346/74396.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-7338-4429. An analysis of block Verlet timestepping and lagged force evaluations for the gravitational N-body problem. [Doctoral Dissertation]. Texas Tech University; 2018. Available from: http://hdl.handle.net/2346/74396

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


Uppsala University

13. Hjerpe, Daniel. A study on SSE optimisation regarding initialisation and evaluation of the Fast Multipole Method.

Degree: Division of Scientific Computing, 2016, Uppsala University

  The following study examines whether the initialisation (multipole expansions at the finest level) and evaluation of the numerical method Fast Multipole Method (FMM) can… (more)

Subjects/Keywords: SSE; SIMD; Fast Multipole Method; AVX; N-body problem; Computer Sciences; Datavetenskap (datalogi)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hjerpe, D. (2016). A study on SSE optimisation regarding initialisation and evaluation of the Fast Multipole Method. (Thesis). Uppsala University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-298122

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hjerpe, Daniel. “A study on SSE optimisation regarding initialisation and evaluation of the Fast Multipole Method.” 2016. Thesis, Uppsala University. Accessed October 31, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-298122.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hjerpe, Daniel. “A study on SSE optimisation regarding initialisation and evaluation of the Fast Multipole Method.” 2016. Web. 31 Oct 2020.

Vancouver:

Hjerpe D. A study on SSE optimisation regarding initialisation and evaluation of the Fast Multipole Method. [Internet] [Thesis]. Uppsala University; 2016. [cited 2020 Oct 31]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-298122.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hjerpe D. A study on SSE optimisation regarding initialisation and evaluation of the Fast Multipole Method. [Thesis]. Uppsala University; 2016. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-298122

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Queens University

14. Lewis, Mark. Unstable Brake Orbits in Symmetric Hamiltonian Systems .

Degree: Mathematics and Statistics, 2013, Queens University

 In this thesis we investigate the existence and stability of periodic solutions of Hamiltonian systems with a discrete symmetry. The global existence of periodic motions… (more)

Subjects/Keywords: Equivariant Action Integral ; Maslov Index ; Brake Orbit ; Time Reversing Symmetry ; Hamiltonian ; n-body problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lewis, M. (2013). Unstable Brake Orbits in Symmetric Hamiltonian Systems . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/8313

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lewis, Mark. “Unstable Brake Orbits in Symmetric Hamiltonian Systems .” 2013. Thesis, Queens University. Accessed October 31, 2020. http://hdl.handle.net/1974/8313.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lewis, Mark. “Unstable Brake Orbits in Symmetric Hamiltonian Systems .” 2013. Web. 31 Oct 2020.

Vancouver:

Lewis M. Unstable Brake Orbits in Symmetric Hamiltonian Systems . [Internet] [Thesis]. Queens University; 2013. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1974/8313.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lewis M. Unstable Brake Orbits in Symmetric Hamiltonian Systems . [Thesis]. Queens University; 2013. Available from: http://hdl.handle.net/1974/8313

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

15. Benavides, Julio César. Trajectory Design Using Approximate Analytic Solutions of the N-Body Problem.

Degree: 2010, Penn State University

 The N-body problem as formulated by Sir Isaac Newton in the seventeenth century has been a rich source of mathematical and scientific discovery. Continuous attempts… (more)

Subjects/Keywords: N-Body Problem; Series Solutions; Numerical Integration

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Benavides, J. C. (2010). Trajectory Design Using Approximate Analytic Solutions of the N-Body Problem. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/10536

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Benavides, Julio César. “Trajectory Design Using Approximate Analytic Solutions of the N-Body Problem.” 2010. Thesis, Penn State University. Accessed October 31, 2020. https://submit-etda.libraries.psu.edu/catalog/10536.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Benavides, Julio César. “Trajectory Design Using Approximate Analytic Solutions of the N-Body Problem.” 2010. Web. 31 Oct 2020.

Vancouver:

Benavides JC. Trajectory Design Using Approximate Analytic Solutions of the N-Body Problem. [Internet] [Thesis]. Penn State University; 2010. [cited 2020 Oct 31]. Available from: https://submit-etda.libraries.psu.edu/catalog/10536.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Benavides JC. Trajectory Design Using Approximate Analytic Solutions of the N-Body Problem. [Thesis]. Penn State University; 2010. Available from: https://submit-etda.libraries.psu.edu/catalog/10536

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

16. Fernandes, Antonio Carlos. Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.

Degree: PhD, Matemática Aplicada, 2011, University of São Paulo

No presente trabalho apresentaremos alguns aspectos do problema Newtoniano de n Corpos. Estudaremos o caso de dois corpos, que tem solução direta, embora não seja… (more)

Subjects/Keywords: Andoyer's Equations; Central Configuration; Configuracao Central; Configuracoes Centrais Empilhadas.; Equacoes de Andoyer; Homographic Solutions; n – Body problem; Problema de n Corpos; Solucao Homografica; Stacked Central Configurations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fernandes, A. C. (2011). Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45132/tde-04062012-103241/ ;

Chicago Manual of Style (16th Edition):

Fernandes, Antonio Carlos. “Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.” 2011. Doctoral Dissertation, University of São Paulo. Accessed October 31, 2020. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-04062012-103241/ ;.

MLA Handbook (7th Edition):

Fernandes, Antonio Carlos. “Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.” 2011. Web. 31 Oct 2020.

Vancouver:

Fernandes AC. Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas. [Internet] [Doctoral dissertation]. University of São Paulo; 2011. [cited 2020 Oct 31]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-04062012-103241/ ;.

Council of Science Editors:

Fernandes AC. Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas. [Doctoral Dissertation]. University of São Paulo; 2011. Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-04062012-103241/ ;


Brno University of Technology

17. Kollárová, Martina. Program pro simulaci gravitačního působení těles: N-Body Simulation Program.

Degree: 2019, Brno University of Technology

 The n -body problem simulator predicts the motion of celestial bodies by numerically integrating the laws of motion. Gravitational interactions are computed directly between the… (more)

Subjects/Keywords: problém n těles; Newtonova mechanika; model Sluneční soustavy; spojitá simulace; numerické integrační metody; n -body problem; Newton's mechanics; Solar System model; continuous simulation; numerical integration methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kollárová, M. (2019). Program pro simulaci gravitačního působení těles: N-Body Simulation Program. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/55707

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kollárová, Martina. “Program pro simulaci gravitačního působení těles: N-Body Simulation Program.” 2019. Thesis, Brno University of Technology. Accessed October 31, 2020. http://hdl.handle.net/11012/55707.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kollárová, Martina. “Program pro simulaci gravitačního působení těles: N-Body Simulation Program.” 2019. Web. 31 Oct 2020.

Vancouver:

Kollárová M. Program pro simulaci gravitačního působení těles: N-Body Simulation Program. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/11012/55707.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kollárová M. Program pro simulaci gravitačního působení těles: N-Body Simulation Program. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/55707

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Brno University of Technology

18. Bordovský, Gabriel. Detekce známých 3D objektů v obraze: 3D Objects Detection in Images.

Degree: 2020, Brno University of Technology

 This bachelors thesis deals with detection of a known 3D object in images and its pose estimation. The method uses the ORB-type keypoints and their… (more)

Subjects/Keywords: Detekce; určení pozice; 3D předměty; význačné body; klíčové body; ORB; OpenCV; problematika perspektivy několika bodů; Detection; pose estimation; 3D objects; feature points; keypoints; ORB; OpenCV; Perspective-n-Point problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bordovský, G. (2020). Detekce známých 3D objektů v obraze: 3D Objects Detection in Images. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/190027

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bordovský, Gabriel. “Detekce známých 3D objektů v obraze: 3D Objects Detection in Images.” 2020. Thesis, Brno University of Technology. Accessed October 31, 2020. http://hdl.handle.net/11012/190027.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bordovský, Gabriel. “Detekce známých 3D objektů v obraze: 3D Objects Detection in Images.” 2020. Web. 31 Oct 2020.

Vancouver:

Bordovský G. Detekce známých 3D objektů v obraze: 3D Objects Detection in Images. [Internet] [Thesis]. Brno University of Technology; 2020. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/11012/190027.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bordovský G. Detekce známých 3D objektů v obraze: 3D Objects Detection in Images. [Thesis]. Brno University of Technology; 2020. Available from: http://hdl.handle.net/11012/190027

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Brno University of Technology

19. Bordovský, Gabriel. Detekce známých 3D objektů v obraze: 3D Objects Detection in Images.

Degree: 2020, Brno University of Technology

 This bachelors thesis deals with detection of a known 3D object in images and its pose estimation. The method uses the ORB-type keypoints and their… (more)

Subjects/Keywords: Detekce; určení pozice; 3D předměty; význačné body; klíčové body; ORB; OpenCV; problematika perspektivy několika bodů; Detection; pose estimation; 3D objects; feature points; keypoints; ORB; OpenCV; Perspective-n-Point problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bordovský, G. (2020). Detekce známých 3D objektů v obraze: 3D Objects Detection in Images. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/188422

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bordovský, Gabriel. “Detekce známých 3D objektů v obraze: 3D Objects Detection in Images.” 2020. Thesis, Brno University of Technology. Accessed October 31, 2020. http://hdl.handle.net/11012/188422.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bordovský, Gabriel. “Detekce známých 3D objektů v obraze: 3D Objects Detection in Images.” 2020. Web. 31 Oct 2020.

Vancouver:

Bordovský G. Detekce známých 3D objektů v obraze: 3D Objects Detection in Images. [Internet] [Thesis]. Brno University of Technology; 2020. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/11012/188422.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bordovský G. Detekce známých 3D objektů v obraze: 3D Objects Detection in Images. [Thesis]. Brno University of Technology; 2020. Available from: http://hdl.handle.net/11012/188422

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Brno University of Technology

20. Bordovský, Gabriel. Detekce známých 3D objektů v obraze: 3D Objects Detection in Images.

Degree: 2019, Brno University of Technology

 This bachelors thesis deals with detection of a known 3D object in images and its pose estimation. The method uses the ORB-type keypoints and their… (more)

Subjects/Keywords: Detekce; určení pozice; 3D předměty; význačné body; klíčové body; ORB; OpenCV; problematika perspektivy několika bodů ; Detection; pose estimation; 3D objects; feature points; keypoints; ORB; OpenCV; Perspective-n-Point problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bordovský, G. (2019). Detekce známých 3D objektů v obraze: 3D Objects Detection in Images. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/52542

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bordovský, Gabriel. “Detekce známých 3D objektů v obraze: 3D Objects Detection in Images.” 2019. Thesis, Brno University of Technology. Accessed October 31, 2020. http://hdl.handle.net/11012/52542.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bordovský, Gabriel. “Detekce známých 3D objektů v obraze: 3D Objects Detection in Images.” 2019. Web. 31 Oct 2020.

Vancouver:

Bordovský G. Detekce známých 3D objektů v obraze: 3D Objects Detection in Images. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/11012/52542.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bordovský G. Detekce známých 3D objektů v obraze: 3D Objects Detection in Images. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/52542

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Texas A&M University

21. Juttu, Sreekanth. A new approach for fast potential evaluation in N-body problems.

Degree: MS, Computer Science, 2004, Texas A&M University

 Fast algorithms for potential evaluation in N-body problems often tend to be extremely abstract and complex. This thesis presents a simple, hierarchical approach to solving… (more)

Subjects/Keywords: Spherical Harmonics; N-Body Problem; Fast Multipole Method; Orthogonality; Matrix Structure

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Juttu, S. (2004). A new approach for fast potential evaluation in N-body problems. (Masters Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/351

Chicago Manual of Style (16th Edition):

Juttu, Sreekanth. “A new approach for fast potential evaluation in N-body problems.” 2004. Masters Thesis, Texas A&M University. Accessed October 31, 2020. http://hdl.handle.net/1969.1/351.

MLA Handbook (7th Edition):

Juttu, Sreekanth. “A new approach for fast potential evaluation in N-body problems.” 2004. Web. 31 Oct 2020.

Vancouver:

Juttu S. A new approach for fast potential evaluation in N-body problems. [Internet] [Masters thesis]. Texas A&M University; 2004. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1969.1/351.

Council of Science Editors:

Juttu S. A new approach for fast potential evaluation in N-body problems. [Masters Thesis]. Texas A&M University; 2004. Available from: http://hdl.handle.net/1969.1/351


Brigham Young University

22. Yan, Duokui. Four-body Problem with Collision Singularity.

Degree: PhD, 2009, Brigham Young University

 In this dissertation, regularization of simultaneous binary collision, existence of a Schubart-like periodic orbit, existence of a planar symmetric periodic orbit with multiple simultaneous binary… (more)

Subjects/Keywords: N-body problem; Binary collision; Simultaneous binary collision; Periodic orbit; Linear stability; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yan, D. (2009). Four-body Problem with Collision Singularity. (Doctoral Dissertation). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2877&context=etd

Chicago Manual of Style (16th Edition):

Yan, Duokui. “Four-body Problem with Collision Singularity.” 2009. Doctoral Dissertation, Brigham Young University. Accessed October 31, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2877&context=etd.

MLA Handbook (7th Edition):

Yan, Duokui. “Four-body Problem with Collision Singularity.” 2009. Web. 31 Oct 2020.

Vancouver:

Yan D. Four-body Problem with Collision Singularity. [Internet] [Doctoral dissertation]. Brigham Young University; 2009. [cited 2020 Oct 31]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2877&context=etd.

Council of Science Editors:

Yan D. Four-body Problem with Collision Singularity. [Doctoral Dissertation]. Brigham Young University; 2009. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2877&context=etd


Université Paris-Sud – Paris XI

23. Robin, Caroline. Fully self-consistent multiparticle-multihole configuration mixing method : applications to a few light nuclei : Méthode de mélange de configuration multiparticules-multitrous complètement auto-cohérente : application à quelques noyaux légers.

Degree: Docteur es, Physique nucléaire théorique, 2014, Université Paris-Sud – Paris XI

Ce travail de thèse s'inscrit dans le cadre du développement de la méthode de mélange de configurations multiparticules-multitrous visant à décrire les propriétés de structure… (more)

Subjects/Keywords: Structure nucléaire; Problème à N-corps; Corrélations de longue portée; Noyaux de la couche sd; Nuclear structure; Many-body problem; Long-range correlations; Sd-shell nuclei

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Robin, C. (2014). Fully self-consistent multiparticle-multihole configuration mixing method : applications to a few light nuclei : Méthode de mélange de configuration multiparticules-multitrous complètement auto-cohérente : application à quelques noyaux légers. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2014PA112193

Chicago Manual of Style (16th Edition):

Robin, Caroline. “Fully self-consistent multiparticle-multihole configuration mixing method : applications to a few light nuclei : Méthode de mélange de configuration multiparticules-multitrous complètement auto-cohérente : application à quelques noyaux légers.” 2014. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed October 31, 2020. http://www.theses.fr/2014PA112193.

MLA Handbook (7th Edition):

Robin, Caroline. “Fully self-consistent multiparticle-multihole configuration mixing method : applications to a few light nuclei : Méthode de mélange de configuration multiparticules-multitrous complètement auto-cohérente : application à quelques noyaux légers.” 2014. Web. 31 Oct 2020.

Vancouver:

Robin C. Fully self-consistent multiparticle-multihole configuration mixing method : applications to a few light nuclei : Méthode de mélange de configuration multiparticules-multitrous complètement auto-cohérente : application à quelques noyaux légers. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2014. [cited 2020 Oct 31]. Available from: http://www.theses.fr/2014PA112193.

Council of Science Editors:

Robin C. Fully self-consistent multiparticle-multihole configuration mixing method : applications to a few light nuclei : Méthode de mélange de configuration multiparticules-multitrous complètement auto-cohérente : application à quelques noyaux légers. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2014. Available from: http://www.theses.fr/2014PA112193

24. PRADA GONZALEZ, JESUS DAVID. The three-body problem in the spherical geometry .

Degree: 2016, Universidad de los Andes

 En este documento se reproduce un formalismo para estudiar el problema de tres cuerpos en el plano, desarrollado por Botero y Leyvraz, con el objetivo… (more)

Subjects/Keywords: N-body problem; guiding center; analytical mechanics; Schwinger oscillator; integrability.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

PRADA GONZALEZ, J. D. (2016). The three-body problem in the spherical geometry . (Thesis). Universidad de los Andes. Retrieved from https://documentodegrado.uniandes.edu.co/documentos/9747.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

PRADA GONZALEZ, JESUS DAVID. “The three-body problem in the spherical geometry .” 2016. Thesis, Universidad de los Andes. Accessed October 31, 2020. https://documentodegrado.uniandes.edu.co/documentos/9747.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

PRADA GONZALEZ, JESUS DAVID. “The three-body problem in the spherical geometry .” 2016. Web. 31 Oct 2020.

Vancouver:

PRADA GONZALEZ JD. The three-body problem in the spherical geometry . [Internet] [Thesis]. Universidad de los Andes; 2016. [cited 2020 Oct 31]. Available from: https://documentodegrado.uniandes.edu.co/documentos/9747.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

PRADA GONZALEZ JD. The three-body problem in the spherical geometry . [Thesis]. Universidad de los Andes; 2016. Available from: https://documentodegrado.uniandes.edu.co/documentos/9747.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

25. Alhowaity, Sawsan Salem. Relative equilibria in the curved N-body problem.

Degree: Department of Mathematics and Statistics, 2018, Canadian Mathematical Bulletin

 We consider the curved N-body problem, N > 2, on a surface of constant Gaussian curvature κ ≠ 0; i.e., on spheres S2κ, for κ… (more)

Subjects/Keywords: Relative Equilibria; Curved N-Body Problem; relative equilibria

…2Hb rBi? `2HiBp2 2[mBHB#`B BM i?2 +m`p2/ N @#Q/v T`Q#H2K Q7 +2H2biBH K2+?MB+b r?2M i?2… …0 iQ i?2 2HHBTiB+ bT+2VX h?2 +HbbB+H N @#Q/v T`Q#H2K ?b HQM; ?BbiQ`vX Ab+ L2riQM }… …2 Q7 i?2 /BbiM+2X h?2 bim/v Q7 i?2 N @#Q/v T`Q#H2K rb 7m`i?2` /pM+2/ #v "2`MQmHHBbG… …H rv iQ 2tT`2bb ;`pBiv BM bT+2b Q7 +QMbiMi +m`pim`2X h?2 +m`p2/ N @#Q/v T`Q#H2K #2+K2… …1BMbi2BMǶb 2[miBQM b?Qr2/ i?i M N @#Q/v T`Q#H2K BM bT+2b Q7 p`B#H2 +m`pim`2 Bb iQQ +QKTHB+i2… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Sample image

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alhowaity, S. S. (2018). Relative equilibria in the curved N-body problem. (Thesis). Canadian Mathematical Bulletin. Retrieved from https://dspace.library.uvic.ca//handle/1828/10037

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Alhowaity, Sawsan Salem. “Relative equilibria in the curved N-body problem.” 2018. Thesis, Canadian Mathematical Bulletin. Accessed October 31, 2020. https://dspace.library.uvic.ca//handle/1828/10037.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Alhowaity, Sawsan Salem. “Relative equilibria in the curved N-body problem.” 2018. Web. 31 Oct 2020.

Vancouver:

Alhowaity SS. Relative equilibria in the curved N-body problem. [Internet] [Thesis]. Canadian Mathematical Bulletin; 2018. [cited 2020 Oct 31]. Available from: https://dspace.library.uvic.ca//handle/1828/10037.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Alhowaity SS. Relative equilibria in the curved N-body problem. [Thesis]. Canadian Mathematical Bulletin; 2018. Available from: https://dspace.library.uvic.ca//handle/1828/10037

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

26. Pawilowski, Boris. Limite de champ moyen pour des modèles discrets et équation de Schrödinger non linéaire discrète : Mean field limit for discrete models and nonlinear discrete Schrödinger equation.

Degree: Docteur es, Mathématiques et applications, 2015, Rennes 1; Universität Wien

Dans une série de travaux Zied Ammari et Francis Nier ont développé des méthodes pour étudier la dynamique de champ moyen bosonique pour des états… (more)

Subjects/Keywords: Théorie du champ moyen; Problème à N corps; Équation de Schrödinger; Particules de Bose-Einstein; Mean-Field theory; Many-Body problem; Schrödinger equation; Bosons

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pawilowski, B. (2015). Limite de champ moyen pour des modèles discrets et équation de Schrödinger non linéaire discrète : Mean field limit for discrete models and nonlinear discrete Schrödinger equation. (Doctoral Dissertation). Rennes 1; Universität Wien. Retrieved from http://www.theses.fr/2015REN1S163

Chicago Manual of Style (16th Edition):

Pawilowski, Boris. “Limite de champ moyen pour des modèles discrets et équation de Schrödinger non linéaire discrète : Mean field limit for discrete models and nonlinear discrete Schrödinger equation.” 2015. Doctoral Dissertation, Rennes 1; Universität Wien. Accessed October 31, 2020. http://www.theses.fr/2015REN1S163.

MLA Handbook (7th Edition):

Pawilowski, Boris. “Limite de champ moyen pour des modèles discrets et équation de Schrödinger non linéaire discrète : Mean field limit for discrete models and nonlinear discrete Schrödinger equation.” 2015. Web. 31 Oct 2020.

Vancouver:

Pawilowski B. Limite de champ moyen pour des modèles discrets et équation de Schrödinger non linéaire discrète : Mean field limit for discrete models and nonlinear discrete Schrödinger equation. [Internet] [Doctoral dissertation]. Rennes 1; Universität Wien; 2015. [cited 2020 Oct 31]. Available from: http://www.theses.fr/2015REN1S163.

Council of Science Editors:

Pawilowski B. Limite de champ moyen pour des modèles discrets et équation de Schrödinger non linéaire discrète : Mean field limit for discrete models and nonlinear discrete Schrödinger equation. [Doctoral Dissertation]. Rennes 1; Universität Wien; 2015. Available from: http://www.theses.fr/2015REN1S163

27. Thibaut, Jérôme. Corrélations, intrication et dynamique des systèmes quantiques à N Corps : une étude variationnelle : Correlations, Entanglement and Time Evolution of Quantum many Body Systems : a variational study.

Degree: Docteur es, Physique, 2019, Lyon

Cette thèse porte sur l'étude de systèmes quantiques à N-corps à température nulle, où le comportement du système n'est alors soumis qu'aux effets quantiques. Je… (more)

Subjects/Keywords: Système à N-corps; Ansatz variationnel; Entropie d'intrication; Quench quantiques; Frustration magnétique; Problème du signe; Corrélations; Many body system; Variational Ansatz; Entanglement entropy; Quantum quench; Magnetic frustration; Sign problem; Correlations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Thibaut, J. (2019). Corrélations, intrication et dynamique des systèmes quantiques à N Corps : une étude variationnelle : Correlations, Entanglement and Time Evolution of Quantum many Body Systems : a variational study. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2019LYSEN021

Chicago Manual of Style (16th Edition):

Thibaut, Jérôme. “Corrélations, intrication et dynamique des systèmes quantiques à N Corps : une étude variationnelle : Correlations, Entanglement and Time Evolution of Quantum many Body Systems : a variational study.” 2019. Doctoral Dissertation, Lyon. Accessed October 31, 2020. http://www.theses.fr/2019LYSEN021.

MLA Handbook (7th Edition):

Thibaut, Jérôme. “Corrélations, intrication et dynamique des systèmes quantiques à N Corps : une étude variationnelle : Correlations, Entanglement and Time Evolution of Quantum many Body Systems : a variational study.” 2019. Web. 31 Oct 2020.

Vancouver:

Thibaut J. Corrélations, intrication et dynamique des systèmes quantiques à N Corps : une étude variationnelle : Correlations, Entanglement and Time Evolution of Quantum many Body Systems : a variational study. [Internet] [Doctoral dissertation]. Lyon; 2019. [cited 2020 Oct 31]. Available from: http://www.theses.fr/2019LYSEN021.

Council of Science Editors:

Thibaut J. Corrélations, intrication et dynamique des systèmes quantiques à N Corps : une étude variationnelle : Correlations, Entanglement and Time Evolution of Quantum many Body Systems : a variational study. [Doctoral Dissertation]. Lyon; 2019. Available from: http://www.theses.fr/2019LYSEN021

28. Gheeraert, Nicolas. Non-linéarités quantiques d'un qubit en couplage ultra-fort avec un guide d'ondes : Quantum non-linearities of a qubit ultra-strongly coupled to a waveguide.

Degree: Docteur es, Physique théorique, 2018, Université Grenoble Alpes (ComUE)

 Au cours des dernières années, le domaine de l'interaction lumière-matière a fait un pas de plus en avant avec l'avènement des qubits supraconducteurs couplés ultra-fortement… (more)

Subjects/Keywords: Modèle spin-Boson; Circuits supraconducteurs; Optique quantique; Mesures de corrélations; Problème à N-Corps; Spin-Boson model; Circuit QED; Quantum optics; Many-Body problem; 530

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gheeraert, N. (2018). Non-linéarités quantiques d'un qubit en couplage ultra-fort avec un guide d'ondes : Quantum non-linearities of a qubit ultra-strongly coupled to a waveguide. (Doctoral Dissertation). Université Grenoble Alpes (ComUE). Retrieved from http://www.theses.fr/2018GREAY034

Chicago Manual of Style (16th Edition):

Gheeraert, Nicolas. “Non-linéarités quantiques d'un qubit en couplage ultra-fort avec un guide d'ondes : Quantum non-linearities of a qubit ultra-strongly coupled to a waveguide.” 2018. Doctoral Dissertation, Université Grenoble Alpes (ComUE). Accessed October 31, 2020. http://www.theses.fr/2018GREAY034.

MLA Handbook (7th Edition):

Gheeraert, Nicolas. “Non-linéarités quantiques d'un qubit en couplage ultra-fort avec un guide d'ondes : Quantum non-linearities of a qubit ultra-strongly coupled to a waveguide.” 2018. Web. 31 Oct 2020.

Vancouver:

Gheeraert N. Non-linéarités quantiques d'un qubit en couplage ultra-fort avec un guide d'ondes : Quantum non-linearities of a qubit ultra-strongly coupled to a waveguide. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); 2018. [cited 2020 Oct 31]. Available from: http://www.theses.fr/2018GREAY034.

Council of Science Editors:

Gheeraert N. Non-linéarités quantiques d'un qubit en couplage ultra-fort avec un guide d'ondes : Quantum non-linearities of a qubit ultra-strongly coupled to a waveguide. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); 2018. Available from: http://www.theses.fr/2018GREAY034

29. Xiao, Bo. Parallel algorithms for generalized N-body problem in high dimensions and their applications for bayesian inference and image analysis.

Degree: PhD, Computational Science and Engineering, 2014, Georgia Tech

 In this dissertation, we explore parallel algorithms for general N-Body problems in high dimensions, and their applications in machine learning and image analysis on distributed… (more)

Subjects/Keywords: Parallel algorithms; Bayesian inference; Generalized N-body problem

…setting in the usual N-body problem, the dimensionality of data can be as high as from several… …153 xx SUMMARY In this dissertation, we explore parallel algorithms for general N-Body… …points. If m = n (the problem is also known as the all nearest neighbor or ANN)… …LIST OF TABLES 1 Largest problem size we solved for each nearest neighbors search… …equal to the reference points (i.e., m = n), except for the metric tree, where each… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xiao, B. (2014). Parallel algorithms for generalized N-body problem in high dimensions and their applications for bayesian inference and image analysis. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/53052

Chicago Manual of Style (16th Edition):

Xiao, Bo. “Parallel algorithms for generalized N-body problem in high dimensions and their applications for bayesian inference and image analysis.” 2014. Doctoral Dissertation, Georgia Tech. Accessed October 31, 2020. http://hdl.handle.net/1853/53052.

MLA Handbook (7th Edition):

Xiao, Bo. “Parallel algorithms for generalized N-body problem in high dimensions and their applications for bayesian inference and image analysis.” 2014. Web. 31 Oct 2020.

Vancouver:

Xiao B. Parallel algorithms for generalized N-body problem in high dimensions and their applications for bayesian inference and image analysis. [Internet] [Doctoral dissertation]. Georgia Tech; 2014. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1853/53052.

Council of Science Editors:

Xiao B. Parallel algorithms for generalized N-body problem in high dimensions and their applications for bayesian inference and image analysis. [Doctoral Dissertation]. Georgia Tech; 2014. Available from: http://hdl.handle.net/1853/53052

30. Moutenet, Alice. Nouveaux algorithmes pour l’étude des propriétés d’équilibre et hors d’équilibre des systèmes quantiques fortement corrélés : Novel algorithms for strongly correlated quantum systems in and out of equilibrium.

Degree: Docteur es, Physique, 2020, Institut polytechnique de Paris

Quel est le point commun entre les étoiles formant une galaxie, les gouttes d'eau s'écoulant dans une rivière, et les électrons d'une céramique superconductrice lévitant… (more)

Subjects/Keywords: Physique; Algorithmes; Matière condensée; Systèmes fortement corrélés; Problème à N corps; Algorithms; Many-Body problem; Condensed matter; Strongly correlated systems; Physics; 530.12

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moutenet, A. (2020). Nouveaux algorithmes pour l’étude des propriétés d’équilibre et hors d’équilibre des systèmes quantiques fortement corrélés : Novel algorithms for strongly correlated quantum systems in and out of equilibrium. (Doctoral Dissertation). Institut polytechnique de Paris. Retrieved from http://www.theses.fr/2020IPPAX026

Chicago Manual of Style (16th Edition):

Moutenet, Alice. “Nouveaux algorithmes pour l’étude des propriétés d’équilibre et hors d’équilibre des systèmes quantiques fortement corrélés : Novel algorithms for strongly correlated quantum systems in and out of equilibrium.” 2020. Doctoral Dissertation, Institut polytechnique de Paris. Accessed October 31, 2020. http://www.theses.fr/2020IPPAX026.

MLA Handbook (7th Edition):

Moutenet, Alice. “Nouveaux algorithmes pour l’étude des propriétés d’équilibre et hors d’équilibre des systèmes quantiques fortement corrélés : Novel algorithms for strongly correlated quantum systems in and out of equilibrium.” 2020. Web. 31 Oct 2020.

Vancouver:

Moutenet A. Nouveaux algorithmes pour l’étude des propriétés d’équilibre et hors d’équilibre des systèmes quantiques fortement corrélés : Novel algorithms for strongly correlated quantum systems in and out of equilibrium. [Internet] [Doctoral dissertation]. Institut polytechnique de Paris; 2020. [cited 2020 Oct 31]. Available from: http://www.theses.fr/2020IPPAX026.

Council of Science Editors:

Moutenet A. Nouveaux algorithmes pour l’étude des propriétés d’équilibre et hors d’équilibre des systèmes quantiques fortement corrélés : Novel algorithms for strongly correlated quantum systems in and out of equilibrium. [Doctoral Dissertation]. Institut polytechnique de Paris; 2020. Available from: http://www.theses.fr/2020IPPAX026

[1] [2]

.