Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(Muscarinic Receptor Cmplexes). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Indian Institute of Science

1. Dighe, Anasuya. Studies on Dynamic Plasticity of Ligand Binding Sites in Proteins.

Degree: PhD, Faculty of Science, 2019, Indian Institute of Science

Molecular recognition between proteins and their associated ligands constitutes ligand-induced protein rewiring thereby enabling the formation of a stable protein-ligand complex. The studies presented in this thesis address the conformational plasticity inherent to proteins by virtue of which they adapt to diverse ligands and orchestrate complex biological processes like signal transduction, transcription and protein-protein interaction. Adopting network theory based formalisms for understanding protein-ligand associations involve deconstructing the three-dimensional structure of a protein in terms of nodes and edges. With this view, Protein Structure Networks (PSNs) of ligand-bound complexes are studied by considering their side-chain non-covalent interactions. Agonist and antagonist-bound G-Protein Coupled Receptors (GPCRs) are investigated to gain mechanistic insights into allostery and its role in signal transduction. The degree of similarity between PSNs of these complexes is quantified by means of Network Similarity Score (NSS). The physical nature of these networks is inspected by subjecting them to perturbations and major players in maintaining the stability of such networks are identified. Residue-wise groupings (at backbone and side-chain level) are obtained by applying graph spectral methods. All-atom Molecular Dynamics (MD) simulations are carried out to gain a better understanding of protein-ligand binding by analysing conformational ensembles of these complexes. In this scenario, two members from a highly versatile ligand-inducible transcription factor superfamily, i.e., Nuclear Receptors (NR) are studied, that are known to exhibit extremes of ligand binding behavior ranging from promiscuity to specificity. Diverse ligands are known to bind to proteins and the overall nature of their binding site is investigated. In particular, similarities among binding sites of diverse proteins are analysed by using PocketMatch. Percolation of these similarities to regions surrounding the binding site is reported and examples depicting this extended similarity are discussed. Overall, studies presented in this thesis provide a structural perspective into the adaptability of proteins for recognizing diverse ligands and undergoing local or global re-organizations in their framework to regulate complex biological processes. Advisors/Committee Members: Vishveshwara, Saraswathi (advisor), Chandra, Nagasuma (advisor).

Subjects/Keywords: Protein-ligand Interactions; Protein Ligand Interactions; Protein Structure Networks (PSNs); Graph Theory; Protein Side-chain Networks (PScN); Muscarinic Acetylcholine Receptors; Muscarinic Receptor Cmplexes; Protein-Protein Interactions; Pregnane X Receptor; G-Protein Coupled Receptors (GPCRs); Network Similarity Score (NSS); Biochemistry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dighe, A. (2019). Studies on Dynamic Plasticity of Ligand Binding Sites in Proteins. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/4236

Chicago Manual of Style (16th Edition):

Dighe, Anasuya. “Studies on Dynamic Plasticity of Ligand Binding Sites in Proteins.” 2019. Doctoral Dissertation, Indian Institute of Science. Accessed January 21, 2021. http://etd.iisc.ac.in/handle/2005/4236.

MLA Handbook (7th Edition):

Dighe, Anasuya. “Studies on Dynamic Plasticity of Ligand Binding Sites in Proteins.” 2019. Web. 21 Jan 2021.

Vancouver:

Dighe A. Studies on Dynamic Plasticity of Ligand Binding Sites in Proteins. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2019. [cited 2021 Jan 21]. Available from: http://etd.iisc.ac.in/handle/2005/4236.

Council of Science Editors:

Dighe A. Studies on Dynamic Plasticity of Ligand Binding Sites in Proteins. [Doctoral Dissertation]. Indian Institute of Science; 2019. Available from: http://etd.iisc.ac.in/handle/2005/4236

.