Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Multiscale method)`

.
Showing records 1 – 30 of
118 total matches.

Search Limiters

Dates

- 2015 – 2019 (50)
- 2010 – 2014 (56)
- 2005 – 2009 (17)

Degrees

- PhD (39)
- Docteur es (24)

▼ Search Limiters

Texas A&M University

1.
Moon, Minam.
Generalized Discontinuous *Multiscale* Methods for Flows in Highly Heterogeneous Porous Media.

Degree: 2015, Texas A&M University

URL: http://hdl.handle.net/1969.1/155430

► This dissertation is devoted to the development, study and testing of numerical methods for elliptic and parabolic equations with heterogeneous coefficients. The motivation for this…
(more)

Subjects/Keywords: Porous media; multiscale method

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Moon, M. (2015). Generalized Discontinuous Multiscale Methods for Flows in Highly Heterogeneous Porous Media. (Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/155430

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Moon, Minam. “Generalized Discontinuous Multiscale Methods for Flows in Highly Heterogeneous Porous Media.” 2015. Thesis, Texas A&M University. Accessed September 21, 2019. http://hdl.handle.net/1969.1/155430.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Moon, Minam. “Generalized Discontinuous Multiscale Methods for Flows in Highly Heterogeneous Porous Media.” 2015. Web. 21 Sep 2019.

Vancouver:

Moon M. Generalized Discontinuous Multiscale Methods for Flows in Highly Heterogeneous Porous Media. [Internet] [Thesis]. Texas A&M University; 2015. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/1969.1/155430.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Moon M. Generalized Discontinuous Multiscale Methods for Flows in Highly Heterogeneous Porous Media. [Thesis]. Texas A&M University; 2015. Available from: http://hdl.handle.net/1969.1/155430

Not specified: Masters Thesis or Doctoral Dissertation

Texas A&M University

2.
Leung, Wing Tat.
Adaptivity and Online Basis Construction for Generalized *Multiscale* Finite Element Methods.

Degree: PhD, Mathematics, 2017, Texas A&M University

URL: http://hdl.handle.net/1969.1/165860

► Many problems in application involve media with multiple scale, for example, in composite materials, porous media. These problems are usually computationally challenging since fine grid…
(more)

Subjects/Keywords: Multiscale Method; Numerical Analysis

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Leung, W. T. (2017). Adaptivity and Online Basis Construction for Generalized Multiscale Finite Element Methods. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/165860

Chicago Manual of Style (16^{th} Edition):

Leung, Wing Tat. “Adaptivity and Online Basis Construction for Generalized Multiscale Finite Element Methods.” 2017. Doctoral Dissertation, Texas A&M University. Accessed September 21, 2019. http://hdl.handle.net/1969.1/165860.

MLA Handbook (7^{th} Edition):

Leung, Wing Tat. “Adaptivity and Online Basis Construction for Generalized Multiscale Finite Element Methods.” 2017. Web. 21 Sep 2019.

Vancouver:

Leung WT. Adaptivity and Online Basis Construction for Generalized Multiscale Finite Element Methods. [Internet] [Doctoral dissertation]. Texas A&M University; 2017. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/1969.1/165860.

Council of Science Editors:

Leung WT. Adaptivity and Online Basis Construction for Generalized Multiscale Finite Element Methods. [Doctoral Dissertation]. Texas A&M University; 2017. Available from: http://hdl.handle.net/1969.1/165860

Delft University of Technology

3. Navarro Hernandez, L.C. Design of residual-based unresolved-scale models using time-averaged data:.

Degree: 2015, Delft University of Technology

URL: http://resolver.tudelft.nl/uuid:1b88a17d-e821-4ee1-b0fd-9c17fdee2558

► The Large Eddy Simulation of high Reynolds number wall-bounded flows, has grid refinement requirements in near-wall regions similar to those of DNS. The feasibility of…
(more)

Subjects/Keywords: Variational Multiscale Method; Turbulence; LES

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Navarro Hernandez, L. C. (2015). Design of residual-based unresolved-scale models using time-averaged data:. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:1b88a17d-e821-4ee1-b0fd-9c17fdee2558

Chicago Manual of Style (16^{th} Edition):

Navarro Hernandez, L C. “Design of residual-based unresolved-scale models using time-averaged data:.” 2015. Masters Thesis, Delft University of Technology. Accessed September 21, 2019. http://resolver.tudelft.nl/uuid:1b88a17d-e821-4ee1-b0fd-9c17fdee2558.

MLA Handbook (7^{th} Edition):

Navarro Hernandez, L C. “Design of residual-based unresolved-scale models using time-averaged data:.” 2015. Web. 21 Sep 2019.

Vancouver:

Navarro Hernandez LC. Design of residual-based unresolved-scale models using time-averaged data:. [Internet] [Masters thesis]. Delft University of Technology; 2015. [cited 2019 Sep 21]. Available from: http://resolver.tudelft.nl/uuid:1b88a17d-e821-4ee1-b0fd-9c17fdee2558.

Council of Science Editors:

Navarro Hernandez LC. Design of residual-based unresolved-scale models using time-averaged data:. [Masters Thesis]. Delft University of Technology; 2015. Available from: http://resolver.tudelft.nl/uuid:1b88a17d-e821-4ee1-b0fd-9c17fdee2558

Uppsala University

4.
Elfverson, Daniel.
Discontinuous Galerkin *Multiscale* Methods for Elliptic Problems.

Degree: Information Technology, 2010, Uppsala University

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138960

► In this paper a continuous Galerkin *multiscale* *method* (CGMM) and a discontinuous Galerkin *multiscale* *method* (DGMM) are proposed, both based on the variational *multiscale*…
(more)

Subjects/Keywords: multiscale; finite element method; discontinuous Galerkin

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Elfverson, D. (2010). Discontinuous Galerkin Multiscale Methods for Elliptic Problems. (Thesis). Uppsala University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138960

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Elfverson, Daniel. “Discontinuous Galerkin Multiscale Methods for Elliptic Problems.” 2010. Thesis, Uppsala University. Accessed September 21, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138960.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Elfverson, Daniel. “Discontinuous Galerkin Multiscale Methods for Elliptic Problems.” 2010. Web. 21 Sep 2019.

Vancouver:

Elfverson D. Discontinuous Galerkin Multiscale Methods for Elliptic Problems. [Internet] [Thesis]. Uppsala University; 2010. [cited 2019 Sep 21]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138960.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Elfverson D. Discontinuous Galerkin Multiscale Methods for Elliptic Problems. [Thesis]. Uppsala University; 2010. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138960

Not specified: Masters Thesis or Doctoral Dissertation

Texas A&M University

5.
Fu, Shubin.
Some Applications of the Generalized *Multiscale* Finite Element * Method*.

Degree: PhD, Mathematics, 2017, Texas A&M University

URL: http://hdl.handle.net/1969.1/165743

► Many materials in nature are highly heterogeneous and their properties can vary at different scales. Direct numerical simulations in such *multiscale* media are prohibitively expensive…
(more)

Subjects/Keywords: Multiscale method; linear elasticity; wave equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fu, S. (2017). Some Applications of the Generalized Multiscale Finite Element Method. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/165743

Chicago Manual of Style (16^{th} Edition):

Fu, Shubin. “Some Applications of the Generalized Multiscale Finite Element Method.” 2017. Doctoral Dissertation, Texas A&M University. Accessed September 21, 2019. http://hdl.handle.net/1969.1/165743.

MLA Handbook (7^{th} Edition):

Fu, Shubin. “Some Applications of the Generalized Multiscale Finite Element Method.” 2017. Web. 21 Sep 2019.

Vancouver:

Fu S. Some Applications of the Generalized Multiscale Finite Element Method. [Internet] [Doctoral dissertation]. Texas A&M University; 2017. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/1969.1/165743.

Council of Science Editors:

Fu S. Some Applications of the Generalized Multiscale Finite Element Method. [Doctoral Dissertation]. Texas A&M University; 2017. Available from: http://hdl.handle.net/1969.1/165743

University of Texas – Austin

6.
Kim, Seong Jun.
Numerical methods for highly oscillatory dynamical systems using *multiscale* structure.

Degree: PhD, Mathematics, 2013, University of Texas – Austin

URL: http://hdl.handle.net/2152/21612

► The main aim of this thesis is to design efficient and novel numerical algorithms for a class of deterministic and stochastic dynamical systems with multiple…
(more)

Subjects/Keywords: Highly oscillatory dynamical systems; Averaging method; Multiscale method

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kim, S. J. (2013). Numerical methods for highly oscillatory dynamical systems using multiscale structure. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/21612

Chicago Manual of Style (16^{th} Edition):

Kim, Seong Jun. “Numerical methods for highly oscillatory dynamical systems using multiscale structure.” 2013. Doctoral Dissertation, University of Texas – Austin. Accessed September 21, 2019. http://hdl.handle.net/2152/21612.

MLA Handbook (7^{th} Edition):

Kim, Seong Jun. “Numerical methods for highly oscillatory dynamical systems using multiscale structure.” 2013. Web. 21 Sep 2019.

Vancouver:

Kim SJ. Numerical methods for highly oscillatory dynamical systems using multiscale structure. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2013. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/2152/21612.

Council of Science Editors:

Kim SJ. Numerical methods for highly oscillatory dynamical systems using multiscale structure. [Doctoral Dissertation]. University of Texas – Austin; 2013. Available from: http://hdl.handle.net/2152/21612

EPFL

7. Pouchon, Timothée Noé. Effective models and numerical homogenization methods for long time wave propagation in heterogeneous media.

Degree: 2017, EPFL

URL: http://infoscience.epfl.ch/record/231942

► Modeling wave propagation in highly heterogeneous media is of prime importance in engineering applications of diverse nature such as seismic inversion, medical imaging or the…
(more)

Subjects/Keywords: homogenization; wave equation; multiscale; long time behavior; dispersive waves; numerical homogenization; finite element; spectral method; heterogeneous multiscale method; apriori error analysis

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pouchon, T. N. (2017). Effective models and numerical homogenization methods for long time wave propagation in heterogeneous media. (Thesis). EPFL. Retrieved from http://infoscience.epfl.ch/record/231942

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Pouchon, Timothée Noé. “Effective models and numerical homogenization methods for long time wave propagation in heterogeneous media.” 2017. Thesis, EPFL. Accessed September 21, 2019. http://infoscience.epfl.ch/record/231942.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Pouchon, Timothée Noé. “Effective models and numerical homogenization methods for long time wave propagation in heterogeneous media.” 2017. Web. 21 Sep 2019.

Vancouver:

Pouchon TN. Effective models and numerical homogenization methods for long time wave propagation in heterogeneous media. [Internet] [Thesis]. EPFL; 2017. [cited 2019 Sep 21]. Available from: http://infoscience.epfl.ch/record/231942.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pouchon TN. Effective models and numerical homogenization methods for long time wave propagation in heterogeneous media. [Thesis]. EPFL; 2017. Available from: http://infoscience.epfl.ch/record/231942

Not specified: Masters Thesis or Doctoral Dissertation

8. Zaccardi, Cédric. Couplage stochastique-déterministe dans le cadre Arlequin et estimations d'erreurs en quantités d'intérêt : Stochastic-deterministic coupling in the Arlequin framework and errors estimations in quantities of interest.

Degree: Docteur es, Mécanique, 2013, Châtenay-Malabry, Ecole centrale de Paris

URL: http://www.theses.fr/2013ECAP0008

►

La prise en compte de l’aléa dans le calcul des structures est souvent nécessaire pour le dimensionnement de celle-ci. Des méthodes stochastiques sont alors proposées.… (more)

Subjects/Keywords: Modèle multi-échelles; Méthode Arlequin; Stochastique; Multiscale model; Arlequin method; Stochastic

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zaccardi, C. (2013). Couplage stochastique-déterministe dans le cadre Arlequin et estimations d'erreurs en quantités d'intérêt : Stochastic-deterministic coupling in the Arlequin framework and errors estimations in quantities of interest. (Doctoral Dissertation). Châtenay-Malabry, Ecole centrale de Paris. Retrieved from http://www.theses.fr/2013ECAP0008

Chicago Manual of Style (16^{th} Edition):

Zaccardi, Cédric. “Couplage stochastique-déterministe dans le cadre Arlequin et estimations d'erreurs en quantités d'intérêt : Stochastic-deterministic coupling in the Arlequin framework and errors estimations in quantities of interest.” 2013. Doctoral Dissertation, Châtenay-Malabry, Ecole centrale de Paris. Accessed September 21, 2019. http://www.theses.fr/2013ECAP0008.

MLA Handbook (7^{th} Edition):

Zaccardi, Cédric. “Couplage stochastique-déterministe dans le cadre Arlequin et estimations d'erreurs en quantités d'intérêt : Stochastic-deterministic coupling in the Arlequin framework and errors estimations in quantities of interest.” 2013. Web. 21 Sep 2019.

Vancouver:

Zaccardi C. Couplage stochastique-déterministe dans le cadre Arlequin et estimations d'erreurs en quantités d'intérêt : Stochastic-deterministic coupling in the Arlequin framework and errors estimations in quantities of interest. [Internet] [Doctoral dissertation]. Châtenay-Malabry, Ecole centrale de Paris; 2013. [cited 2019 Sep 21]. Available from: http://www.theses.fr/2013ECAP0008.

Council of Science Editors:

Zaccardi C. Couplage stochastique-déterministe dans le cadre Arlequin et estimations d'erreurs en quantités d'intérêt : Stochastic-deterministic coupling in the Arlequin framework and errors estimations in quantities of interest. [Doctoral Dissertation]. Châtenay-Malabry, Ecole centrale de Paris; 2013. Available from: http://www.theses.fr/2013ECAP0008

Louisiana State University

9.
Huang, Xu.
Exponentially Convergent Generalized Finite Element *Method* for Multi-scale Problems.

Degree: PhD, Applied Mathematics, 2014, Louisiana State University

URL: etd-03312015-144425 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3105

► The overall approach I take in the thesis falls into the category of *multiscale* finite element methods(MsFEM). I work to identify a new class of…
(more)

Subjects/Keywords: Optimal local approximation spaces; Generalized Finite Elements; Multiscale method

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Huang, X. (2014). Exponentially Convergent Generalized Finite Element Method for Multi-scale Problems. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-03312015-144425 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3105

Chicago Manual of Style (16^{th} Edition):

Huang, Xu. “Exponentially Convergent Generalized Finite Element Method for Multi-scale Problems.” 2014. Doctoral Dissertation, Louisiana State University. Accessed September 21, 2019. etd-03312015-144425 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3105.

MLA Handbook (7^{th} Edition):

Huang, Xu. “Exponentially Convergent Generalized Finite Element Method for Multi-scale Problems.” 2014. Web. 21 Sep 2019.

Vancouver:

Huang X. Exponentially Convergent Generalized Finite Element Method for Multi-scale Problems. [Internet] [Doctoral dissertation]. Louisiana State University; 2014. [cited 2019 Sep 21]. Available from: etd-03312015-144425 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3105.

Council of Science Editors:

Huang X. Exponentially Convergent Generalized Finite Element Method for Multi-scale Problems. [Doctoral Dissertation]. Louisiana State University; 2014. Available from: etd-03312015-144425 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3105

Texas A&M University

10. Yang, Yanfang. POD-DEIM Global-Local Model Reduction for Multi-phase Flows in Heterogeneous Porous Media.

Degree: PhD, Mathematics, 2016, Texas A&M University

URL: http://hdl.handle.net/1969.1/159071

► Many applications such as production optimization and reservoir management are computationally demanding due to a large number of forward simulations. Typically, each forward simulation involves…
(more)

Subjects/Keywords: Model reduction; multiscale finite element method; POD; DEIM; two-phase flow

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yang, Y. (2016). POD-DEIM Global-Local Model Reduction for Multi-phase Flows in Heterogeneous Porous Media. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/159071

Chicago Manual of Style (16^{th} Edition):

Yang, Yanfang. “POD-DEIM Global-Local Model Reduction for Multi-phase Flows in Heterogeneous Porous Media.” 2016. Doctoral Dissertation, Texas A&M University. Accessed September 21, 2019. http://hdl.handle.net/1969.1/159071.

MLA Handbook (7^{th} Edition):

Yang, Yanfang. “POD-DEIM Global-Local Model Reduction for Multi-phase Flows in Heterogeneous Porous Media.” 2016. Web. 21 Sep 2019.

Vancouver:

Yang Y. POD-DEIM Global-Local Model Reduction for Multi-phase Flows in Heterogeneous Porous Media. [Internet] [Doctoral dissertation]. Texas A&M University; 2016. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/1969.1/159071.

Council of Science Editors:

Yang Y. POD-DEIM Global-Local Model Reduction for Multi-phase Flows in Heterogeneous Porous Media. [Doctoral Dissertation]. Texas A&M University; 2016. Available from: http://hdl.handle.net/1969.1/159071

Virginia Tech

11. Tehrani, Mehran. Next Generation Multifunctional Composites for Impact, Vibration and Electromagnetic Radiation Hazard Mitigation.

Degree: PhD, Engineering Science and Mechanics, 2012, Virginia Tech

URL: http://hdl.handle.net/10919/49547

► For many decades, fiber reinforced polymers (FRPs) have been extensively utilized in load-bearing structures. Their formability and superior in-plane mechanical properties have made them a…
(more)

Subjects/Keywords: multiscale composites; carbon nanotubes; mechanical characterization; finite element method

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Tehrani, M. (2012). Next Generation Multifunctional Composites for Impact, Vibration and Electromagnetic Radiation Hazard Mitigation. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/49547

Chicago Manual of Style (16^{th} Edition):

Tehrani, Mehran. “Next Generation Multifunctional Composites for Impact, Vibration and Electromagnetic Radiation Hazard Mitigation.” 2012. Doctoral Dissertation, Virginia Tech. Accessed September 21, 2019. http://hdl.handle.net/10919/49547.

MLA Handbook (7^{th} Edition):

Tehrani, Mehran. “Next Generation Multifunctional Composites for Impact, Vibration and Electromagnetic Radiation Hazard Mitigation.” 2012. Web. 21 Sep 2019.

Vancouver:

Tehrani M. Next Generation Multifunctional Composites for Impact, Vibration and Electromagnetic Radiation Hazard Mitigation. [Internet] [Doctoral dissertation]. Virginia Tech; 2012. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/10919/49547.

Council of Science Editors:

Tehrani M. Next Generation Multifunctional Composites for Impact, Vibration and Electromagnetic Radiation Hazard Mitigation. [Doctoral Dissertation]. Virginia Tech; 2012. Available from: http://hdl.handle.net/10919/49547

Texas A&M University

12.
Wang, Yating.
Adaptive Generalized *Multiscale* Model Reduction Techniques for Problems in Perforated Domains.

Degree: PhD, Mathematics, 2018, Texas A&M University

URL: http://hdl.handle.net/1969.1/173657

► *Multiscale* modeling of complex physical phenomena in many areas, including hydrogeology, material science, chemistry and biology, consists of solving problems in highly heterogeneous porous media.…
(more)

Subjects/Keywords: Generalized Multiscale Finite Element Method; Model Reduction; Perforated Domains

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang, Y. (2018). Adaptive Generalized Multiscale Model Reduction Techniques for Problems in Perforated Domains. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/173657

Chicago Manual of Style (16^{th} Edition):

Wang, Yating. “Adaptive Generalized Multiscale Model Reduction Techniques for Problems in Perforated Domains.” 2018. Doctoral Dissertation, Texas A&M University. Accessed September 21, 2019. http://hdl.handle.net/1969.1/173657.

MLA Handbook (7^{th} Edition):

Wang, Yating. “Adaptive Generalized Multiscale Model Reduction Techniques for Problems in Perforated Domains.” 2018. Web. 21 Sep 2019.

Vancouver:

Wang Y. Adaptive Generalized Multiscale Model Reduction Techniques for Problems in Perforated Domains. [Internet] [Doctoral dissertation]. Texas A&M University; 2018. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/1969.1/173657.

Council of Science Editors:

Wang Y. Adaptive Generalized Multiscale Model Reduction Techniques for Problems in Perforated Domains. [Doctoral Dissertation]. Texas A&M University; 2018. Available from: http://hdl.handle.net/1969.1/173657

University of Houston

13. Salmon, Remi 1987-. Modeling and Simulation for Breast Conserving Therapy.

Degree: Computer Science, Department of, 2014, University of Houston

URL: http://hdl.handle.net/10657/1900

► Breast cancer is the most common type of cancer affecting women throughout the world and the second most common type of cancer in the United…
(more)

Subjects/Keywords: multiscale modeling; finite element method; wound healing; breast conserving therapy

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Salmon, R. 1. (2014). Modeling and Simulation for Breast Conserving Therapy. (Thesis). University of Houston. Retrieved from http://hdl.handle.net/10657/1900

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Salmon, Remi 1987-. “Modeling and Simulation for Breast Conserving Therapy.” 2014. Thesis, University of Houston. Accessed September 21, 2019. http://hdl.handle.net/10657/1900.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Salmon, Remi 1987-. “Modeling and Simulation for Breast Conserving Therapy.” 2014. Web. 21 Sep 2019.

Vancouver:

Salmon R1. Modeling and Simulation for Breast Conserving Therapy. [Internet] [Thesis]. University of Houston; 2014. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/10657/1900.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Salmon R1. Modeling and Simulation for Breast Conserving Therapy. [Thesis]. University of Houston; 2014. Available from: http://hdl.handle.net/10657/1900

Not specified: Masters Thesis or Doctoral Dissertation

Vanderbilt University

14.
Hu, Ruize.
* Multiscale* Computational Methods for Wave Propagation in 2D Phononic Crystals and Acoustic Metamaterials.

Degree: PhD, Civil Engineering, 2019, Vanderbilt University

URL: http://etd.library.vanderbilt.edu/available/etd-02212019-140602/ ;

► Periodic composites with tailored microstructures and material properties such as phononic crystals and acoustic metamaterials exhibit extraordinary capabilities in controlling elastic waves by manipulating band…
(more)

Subjects/Keywords: computational mechanics; wave propagation; multiscale method; composites; viscoelasticity

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hu, R. (2019). Multiscale Computational Methods for Wave Propagation in 2D Phononic Crystals and Acoustic Metamaterials. (Doctoral Dissertation). Vanderbilt University. Retrieved from http://etd.library.vanderbilt.edu/available/etd-02212019-140602/ ;

Chicago Manual of Style (16^{th} Edition):

Hu, Ruize. “Multiscale Computational Methods for Wave Propagation in 2D Phononic Crystals and Acoustic Metamaterials.” 2019. Doctoral Dissertation, Vanderbilt University. Accessed September 21, 2019. http://etd.library.vanderbilt.edu/available/etd-02212019-140602/ ;.

MLA Handbook (7^{th} Edition):

Hu, Ruize. “Multiscale Computational Methods for Wave Propagation in 2D Phononic Crystals and Acoustic Metamaterials.” 2019. Web. 21 Sep 2019.

Vancouver:

Hu R. Multiscale Computational Methods for Wave Propagation in 2D Phononic Crystals and Acoustic Metamaterials. [Internet] [Doctoral dissertation]. Vanderbilt University; 2019. [cited 2019 Sep 21]. Available from: http://etd.library.vanderbilt.edu/available/etd-02212019-140602/ ;.

Council of Science Editors:

Hu R. Multiscale Computational Methods for Wave Propagation in 2D Phononic Crystals and Acoustic Metamaterials. [Doctoral Dissertation]. Vanderbilt University; 2019. Available from: http://etd.library.vanderbilt.edu/available/etd-02212019-140602/ ;

University of Illinois – Urbana-Champaign

15. Gajendran, Harishanker. A unified computational framework for process modeling and performance modeling of multi-constituent materials.

Degree: PhD, Civil Engineering, 2016, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/95274

► This thesis presents new theoretical and computational developments and an integrated approach for interface and interphase mechanics in the process and performance modeling of fibrous…
(more)

Subjects/Keywords: Variational multiscale method; Mixture theory; Process modeling; Performance modeling; Composites

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gajendran, H. (2016). A unified computational framework for process modeling and performance modeling of multi-constituent materials. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/95274

Chicago Manual of Style (16^{th} Edition):

Gajendran, Harishanker. “A unified computational framework for process modeling and performance modeling of multi-constituent materials.” 2016. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed September 21, 2019. http://hdl.handle.net/2142/95274.

MLA Handbook (7^{th} Edition):

Gajendran, Harishanker. “A unified computational framework for process modeling and performance modeling of multi-constituent materials.” 2016. Web. 21 Sep 2019.

Vancouver:

Gajendran H. A unified computational framework for process modeling and performance modeling of multi-constituent materials. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2016. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/2142/95274.

Council of Science Editors:

Gajendran H. A unified computational framework for process modeling and performance modeling of multi-constituent materials. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2016. Available from: http://hdl.handle.net/2142/95274

University of Pennsylvania

16.
Liu, Chenchen.
Dynamic Behavior Of Elastic Metamaterials: *Multiscale* Modeling, Simulation, And Design.

Degree: 2018, University of Pennsylvania

URL: https://repository.upenn.edu/edissertations/2721

► Elastic/Acoustic metamaterials have exhibited a rapid increase of interest due to their surprising dynamic properties, such as subwavelength bandgaps and negative effective elastic constant and/or…
(more)

Subjects/Keywords: Dynamic homogenization; Finite element method; Hill's theorem; Metamaterials; Multiscale; Engineering Mechanics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Liu, C. (2018). Dynamic Behavior Of Elastic Metamaterials: Multiscale Modeling, Simulation, And Design. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/2721

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Liu, Chenchen. “Dynamic Behavior Of Elastic Metamaterials: Multiscale Modeling, Simulation, And Design.” 2018. Thesis, University of Pennsylvania. Accessed September 21, 2019. https://repository.upenn.edu/edissertations/2721.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Liu, Chenchen. “Dynamic Behavior Of Elastic Metamaterials: Multiscale Modeling, Simulation, And Design.” 2018. Web. 21 Sep 2019.

Vancouver:

Liu C. Dynamic Behavior Of Elastic Metamaterials: Multiscale Modeling, Simulation, And Design. [Internet] [Thesis]. University of Pennsylvania; 2018. [cited 2019 Sep 21]. Available from: https://repository.upenn.edu/edissertations/2721.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Liu C. Dynamic Behavior Of Elastic Metamaterials: Multiscale Modeling, Simulation, And Design. [Thesis]. University of Pennsylvania; 2018. Available from: https://repository.upenn.edu/edissertations/2721

Not specified: Masters Thesis or Doctoral Dissertation

17. Salazar, Daniel. Modeling and Computation of Immersed, Flexible Boundaries in Complex Fluids.

Degree: 2014, University of California – eScholarship, University of California

URL: http://www.escholarship.org/uc/item/6t10z5xs

► This thesis consists of two main parts related to the modeling and computation of elastic, immersed fiber-like structures in non-Newtonian flows. We focus on the…
(more)

Subjects/Keywords: Applied mathematics; complex fluids; FENE; Immersed Boundary Method; multiscale methods

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Salazar, D. (2014). Modeling and Computation of Immersed, Flexible Boundaries in Complex Fluids. (Thesis). University of California – eScholarship, University of California. Retrieved from http://www.escholarship.org/uc/item/6t10z5xs

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Salazar, Daniel. “Modeling and Computation of Immersed, Flexible Boundaries in Complex Fluids.” 2014. Thesis, University of California – eScholarship, University of California. Accessed September 21, 2019. http://www.escholarship.org/uc/item/6t10z5xs.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Salazar, Daniel. “Modeling and Computation of Immersed, Flexible Boundaries in Complex Fluids.” 2014. Web. 21 Sep 2019.

Vancouver:

Salazar D. Modeling and Computation of Immersed, Flexible Boundaries in Complex Fluids. [Internet] [Thesis]. University of California – eScholarship, University of California; 2014. [cited 2019 Sep 21]. Available from: http://www.escholarship.org/uc/item/6t10z5xs.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Salazar D. Modeling and Computation of Immersed, Flexible Boundaries in Complex Fluids. [Thesis]. University of California – eScholarship, University of California; 2014. Available from: http://www.escholarship.org/uc/item/6t10z5xs

Not specified: Masters Thesis or Doctoral Dissertation

Virginia Tech

18.
Wang, Xinfei.
* Multiscale* Modeling of friction Mechanisms with Hybrid Methods.

Degree: MS, Civil and Environmental Engineering, 2014, Virginia Tech

URL: http://hdl.handle.net/10919/78169

► This thesis presents a simulation model of sliding process of friction, which combines Newtonian particle dynamics and finite element *method* to study friction mechanisms that…
(more)

Subjects/Keywords: Newtonian dynamics; finite element method; friction; multiscale modeling

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang, X. (2014). Multiscale Modeling of friction Mechanisms with Hybrid Methods. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/78169

Chicago Manual of Style (16^{th} Edition):

Wang, Xinfei. “Multiscale Modeling of friction Mechanisms with Hybrid Methods.” 2014. Masters Thesis, Virginia Tech. Accessed September 21, 2019. http://hdl.handle.net/10919/78169.

MLA Handbook (7^{th} Edition):

Wang, Xinfei. “Multiscale Modeling of friction Mechanisms with Hybrid Methods.” 2014. Web. 21 Sep 2019.

Vancouver:

Wang X. Multiscale Modeling of friction Mechanisms with Hybrid Methods. [Internet] [Masters thesis]. Virginia Tech; 2014. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/10919/78169.

Council of Science Editors:

Wang X. Multiscale Modeling of friction Mechanisms with Hybrid Methods. [Masters Thesis]. Virginia Tech; 2014. Available from: http://hdl.handle.net/10919/78169

Universidade do Rio Grande do Sul

19. Ramos, Gustavo Roberto. Método multiescala para modelagem da condução de calor transiente com geração de calor : teoria e aplicação.

Degree: 2015, Universidade do Rio Grande do Sul

URL: http://hdl.handle.net/10183/133134

►

O presente trabalho trata da modelagem da condução de calor transiente com geração de calor em meios heterogêneos, e tem o objetivo de desenvolver um… (more)

Subjects/Keywords: Transient heat conduction; Simulação computacional; Calor; Heat generation; Multiscale method; Finite element method; Elastomers cure

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ramos, G. R. (2015). Método multiescala para modelagem da condução de calor transiente com geração de calor : teoria e aplicação. (Thesis). Universidade do Rio Grande do Sul. Retrieved from http://hdl.handle.net/10183/133134

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ramos, Gustavo Roberto. “Método multiescala para modelagem da condução de calor transiente com geração de calor : teoria e aplicação.” 2015. Thesis, Universidade do Rio Grande do Sul. Accessed September 21, 2019. http://hdl.handle.net/10183/133134.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ramos, Gustavo Roberto. “Método multiescala para modelagem da condução de calor transiente com geração de calor : teoria e aplicação.” 2015. Web. 21 Sep 2019.

Vancouver:

Ramos GR. Método multiescala para modelagem da condução de calor transiente com geração de calor : teoria e aplicação. [Internet] [Thesis]. Universidade do Rio Grande do Sul; 2015. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/10183/133134.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ramos GR. Método multiescala para modelagem da condução de calor transiente com geração de calor : teoria e aplicação. [Thesis]. Universidade do Rio Grande do Sul; 2015. Available from: http://hdl.handle.net/10183/133134

Not specified: Masters Thesis or Doctoral Dissertation

University of Cincinnati

20.
Chirputkar, Shardool U.
Bridging Scale Simulation of Lattice Fracture and Dynamics
using Enriched Space-Time Finite Element * Method*.

Degree: PhD, Engineering and Applied Science: Mechanical Engineering, 2011, University of Cincinnati

URL: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1313753940

► *Multiscale* methods based on coupled atomistic-continuum representations have received significant attention in recent years due to their unique approach in balancing accuracy with efficiency for…
(more)

Subjects/Keywords: Mechanics; Multiscale simulations; Lattice Fracture; Space-time finite element method; XFEM; Enriched finite element method

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chirputkar, S. U. (2011). Bridging Scale Simulation of Lattice Fracture and Dynamics using Enriched Space-Time Finite Element Method. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1313753940

Chicago Manual of Style (16^{th} Edition):

Chirputkar, Shardool U. “Bridging Scale Simulation of Lattice Fracture and Dynamics using Enriched Space-Time Finite Element Method.” 2011. Doctoral Dissertation, University of Cincinnati. Accessed September 21, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1313753940.

MLA Handbook (7^{th} Edition):

Chirputkar, Shardool U. “Bridging Scale Simulation of Lattice Fracture and Dynamics using Enriched Space-Time Finite Element Method.” 2011. Web. 21 Sep 2019.

Vancouver:

Chirputkar SU. Bridging Scale Simulation of Lattice Fracture and Dynamics using Enriched Space-Time Finite Element Method. [Internet] [Doctoral dissertation]. University of Cincinnati; 2011. [cited 2019 Sep 21]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1313753940.

Council of Science Editors:

Chirputkar SU. Bridging Scale Simulation of Lattice Fracture and Dynamics using Enriched Space-Time Finite Element Method. [Doctoral Dissertation]. University of Cincinnati; 2011. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1313753940

21.
Budáč, Ondrej.
* Multiscale* methods for Stokes flow in heterogeneous media.

Degree: 2016, EPFL

URL: http://infoscience.epfl.ch/record/222430

► Fluid flow in porous media is a *multiscale* process where the effective dynamics, which is often the goal of a computation, depends strongly on the…
(more)

Subjects/Keywords: multiscale; homogenization; porous media; Stokes flow; finite element; heterogeneous multiscale method; reduced basis; discontinuous Galerkin; adaptivity

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Budáč, O. (2016). Multiscale methods for Stokes flow in heterogeneous media. (Thesis). EPFL. Retrieved from http://infoscience.epfl.ch/record/222430

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Budáč, Ondrej. “Multiscale methods for Stokes flow in heterogeneous media.” 2016. Thesis, EPFL. Accessed September 21, 2019. http://infoscience.epfl.ch/record/222430.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Budáč, Ondrej. “Multiscale methods for Stokes flow in heterogeneous media.” 2016. Web. 21 Sep 2019.

Vancouver:

Budáč O. Multiscale methods for Stokes flow in heterogeneous media. [Internet] [Thesis]. EPFL; 2016. [cited 2019 Sep 21]. Available from: http://infoscience.epfl.ch/record/222430.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Budáč O. Multiscale methods for Stokes flow in heterogeneous media. [Thesis]. EPFL; 2016. Available from: http://infoscience.epfl.ch/record/222430

Not specified: Masters Thesis or Doctoral Dissertation

22.
Jecker, Orane Camille.
Optimization based methods for highly heterogeneous *multiscale* problems and *multiscale* methods for elastic waves.

Degree: 2017, EPFL

URL: http://infoscience.epfl.ch/record/225962

► *Multiscale* or multiphysics partial differential equations are used to model a wide range of physical systems with various applications, e.g. from material and natural science…
(more)

Subjects/Keywords: multiscale problems; heterogeneous multiscale method; homogenization; linear elasticity problems; wave equation; global to local methods; domain decompositions; optimization based methods

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jecker, O. C. (2017). Optimization based methods for highly heterogeneous multiscale problems and multiscale methods for elastic waves. (Thesis). EPFL. Retrieved from http://infoscience.epfl.ch/record/225962

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Jecker, Orane Camille. “Optimization based methods for highly heterogeneous multiscale problems and multiscale methods for elastic waves.” 2017. Thesis, EPFL. Accessed September 21, 2019. http://infoscience.epfl.ch/record/225962.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Jecker, Orane Camille. “Optimization based methods for highly heterogeneous multiscale problems and multiscale methods for elastic waves.” 2017. Web. 21 Sep 2019.

Vancouver:

Jecker OC. Optimization based methods for highly heterogeneous multiscale problems and multiscale methods for elastic waves. [Internet] [Thesis]. EPFL; 2017. [cited 2019 Sep 21]. Available from: http://infoscience.epfl.ch/record/225962.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jecker OC. Optimization based methods for highly heterogeneous multiscale problems and multiscale methods for elastic waves. [Thesis]. EPFL; 2017. Available from: http://infoscience.epfl.ch/record/225962

Not specified: Masters Thesis or Doctoral Dissertation

EPFL

23.
Nonnenmacher, Achim.
Adaptive Finite Element Methods for *Multiscale* Partial Differential Equations.

Degree: 2011, EPFL

URL: http://infoscience.epfl.ch/record/166119

► Engineers rely on efficient simulations that provide them with reliable data in order to make proper engineering design decisions. The purpose of this thesis is…
(more)

Subjects/Keywords: adaptive mesh refinement; a posteriori error estimate; finite element method; goal-oriented adaptivity; multiscale method; heterogeneous multiscale method; homogenization; raffinement adaptatif de maillage; estimation a posteriori; méthode des éléments finis; quantité d'intérêt; méthode multi-échelles; heterogeneous multiscale method; homogénéisation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nonnenmacher, A. (2011). Adaptive Finite Element Methods for Multiscale Partial Differential Equations. (Thesis). EPFL. Retrieved from http://infoscience.epfl.ch/record/166119

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Nonnenmacher, Achim. “Adaptive Finite Element Methods for Multiscale Partial Differential Equations.” 2011. Thesis, EPFL. Accessed September 21, 2019. http://infoscience.epfl.ch/record/166119.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Nonnenmacher, Achim. “Adaptive Finite Element Methods for Multiscale Partial Differential Equations.” 2011. Web. 21 Sep 2019.

Vancouver:

Nonnenmacher A. Adaptive Finite Element Methods for Multiscale Partial Differential Equations. [Internet] [Thesis]. EPFL; 2011. [cited 2019 Sep 21]. Available from: http://infoscience.epfl.ch/record/166119.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Nonnenmacher A. Adaptive Finite Element Methods for Multiscale Partial Differential Equations. [Thesis]. EPFL; 2011. Available from: http://infoscience.epfl.ch/record/166119

Not specified: Masters Thesis or Doctoral Dissertation

University of California – Berkeley

24.
Sengupta, Arkaprabha.
* Multiscale* Constitutive Modeling and Numerical Simulations of the Thermomechanical Response of Polycrystalline NiTi Shape Memory Alloy.

Degree: Mechanical Engineering, 2010, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/2dd044dc

► Shape memory alloys have found diverse applications in several engineering systems including biomedical devices and thermal actuators. Thisis due to their superelastic and shape-memory behavior,…
(more)

Subjects/Keywords: Mechanical engineering; Materials Science; finite element method; multiscale; Nitinol; phase transformation; polycrystal; thermomechanics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sengupta, A. (2010). Multiscale Constitutive Modeling and Numerical Simulations of the Thermomechanical Response of Polycrystalline NiTi Shape Memory Alloy. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/2dd044dc

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sengupta, Arkaprabha. “Multiscale Constitutive Modeling and Numerical Simulations of the Thermomechanical Response of Polycrystalline NiTi Shape Memory Alloy.” 2010. Thesis, University of California – Berkeley. Accessed September 21, 2019. http://www.escholarship.org/uc/item/2dd044dc.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sengupta, Arkaprabha. “Multiscale Constitutive Modeling and Numerical Simulations of the Thermomechanical Response of Polycrystalline NiTi Shape Memory Alloy.” 2010. Web. 21 Sep 2019.

Vancouver:

Sengupta A. Multiscale Constitutive Modeling and Numerical Simulations of the Thermomechanical Response of Polycrystalline NiTi Shape Memory Alloy. [Internet] [Thesis]. University of California – Berkeley; 2010. [cited 2019 Sep 21]. Available from: http://www.escholarship.org/uc/item/2dd044dc.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sengupta A. Multiscale Constitutive Modeling and Numerical Simulations of the Thermomechanical Response of Polycrystalline NiTi Shape Memory Alloy. [Thesis]. University of California – Berkeley; 2010. Available from: http://www.escholarship.org/uc/item/2dd044dc

Not specified: Masters Thesis or Doctoral Dissertation

University of Edinburgh

25.
Levrero Florencio, Francesc.
* Multiscale* modelling of trabecular bone : from micro to macroscale.

Degree: PhD, 2017, University of Edinburgh

URL: http://hdl.handle.net/1842/25417

► Trabecular bone has a complex and porous microstructure. This study develops approaches to determine the mechanical behaviour of this material at the macroscopic level through…
(more)

Subjects/Keywords: 610.28; biomechanics; anisotropic material; trabecular bone; finite element method; multiscale modelling; solid mechanics; yield surface

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Levrero Florencio, F. (2017). Multiscale modelling of trabecular bone : from micro to macroscale. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/25417

Chicago Manual of Style (16^{th} Edition):

Levrero Florencio, Francesc. “Multiscale modelling of trabecular bone : from micro to macroscale.” 2017. Doctoral Dissertation, University of Edinburgh. Accessed September 21, 2019. http://hdl.handle.net/1842/25417.

MLA Handbook (7^{th} Edition):

Levrero Florencio, Francesc. “Multiscale modelling of trabecular bone : from micro to macroscale.” 2017. Web. 21 Sep 2019.

Vancouver:

Levrero Florencio F. Multiscale modelling of trabecular bone : from micro to macroscale. [Internet] [Doctoral dissertation]. University of Edinburgh; 2017. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/1842/25417.

Council of Science Editors:

Levrero Florencio F. Multiscale modelling of trabecular bone : from micro to macroscale. [Doctoral Dissertation]. University of Edinburgh; 2017. Available from: http://hdl.handle.net/1842/25417

Iowa State University

26.
Chen, Hao.
* Multiscale* modelling of martensitic phase transformation: Example of Si I to Si II.

Degree: 2018, Iowa State University

URL: https://lib.dr.iastate.edu/etd/16798

► Martensitic phase transformations (PTs), amorphization, twinning, and dislocation motion are the main deformation mechanisms in many crystalline materials. However, the interaction between these material behaviors…
(more)

Subjects/Keywords: Concurrent Atomistic Continuum Method; Dislocations; Molecular Dynamics; Multiscale Modelling; phase transformation; silicon; Engineering; Engineering Mechanics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chen, H. (2018). Multiscale modelling of martensitic phase transformation: Example of Si I to Si II. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/etd/16798

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chen, Hao. “Multiscale modelling of martensitic phase transformation: Example of Si I to Si II.” 2018. Thesis, Iowa State University. Accessed September 21, 2019. https://lib.dr.iastate.edu/etd/16798.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chen, Hao. “Multiscale modelling of martensitic phase transformation: Example of Si I to Si II.” 2018. Web. 21 Sep 2019.

Vancouver:

Chen H. Multiscale modelling of martensitic phase transformation: Example of Si I to Si II. [Internet] [Thesis]. Iowa State University; 2018. [cited 2019 Sep 21]. Available from: https://lib.dr.iastate.edu/etd/16798.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen H. Multiscale modelling of martensitic phase transformation: Example of Si I to Si II. [Thesis]. Iowa State University; 2018. Available from: https://lib.dr.iastate.edu/etd/16798

Not specified: Masters Thesis or Doctoral Dissertation

University of Minnesota

27.
Stoter, Klaas.
The variational *multiscale* *method* for mixed finite element formulations.

Degree: MS, Mathematics, 2018, University of Minnesota

URL: http://hdl.handle.net/11299/198352

► In this thesis, the variational *multiscale* *method* is explored in the context of mixed formulations of partial differential equations. The domain decomposition variational *multiscale* *method*…
(more)

Subjects/Keywords: Discontinuous Galerkin; Hybridizable discontinuous Galerkin; Mixed finite element formulation; Partial differential equation; Variational multiscale method

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Stoter, K. (2018). The variational multiscale method for mixed finite element formulations. (Masters Thesis). University of Minnesota. Retrieved from http://hdl.handle.net/11299/198352

Chicago Manual of Style (16^{th} Edition):

Stoter, Klaas. “The variational multiscale method for mixed finite element formulations.” 2018. Masters Thesis, University of Minnesota. Accessed September 21, 2019. http://hdl.handle.net/11299/198352.

MLA Handbook (7^{th} Edition):

Stoter, Klaas. “The variational multiscale method for mixed finite element formulations.” 2018. Web. 21 Sep 2019.

Vancouver:

Stoter K. The variational multiscale method for mixed finite element formulations. [Internet] [Masters thesis]. University of Minnesota; 2018. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/11299/198352.

Council of Science Editors:

Stoter K. The variational multiscale method for mixed finite element formulations. [Masters Thesis]. University of Minnesota; 2018. Available from: http://hdl.handle.net/11299/198352

Duke University

28.
Chen, Jiefu.
A Hybrid Spectral-Element / Finite-Element Time-Domain *Method* for *Multiscale* Electromagnetic Simulations
.

Degree: 2010, Duke University

URL: http://hdl.handle.net/10161/3071

► In this study we propose a fast hybrid spectral-element time-domain (SETD) / finite-element time-domain (FETD) *method* for transient analysis of *multiscale* electromagnetic problems, where…
(more)

Subjects/Keywords: Electromagnetics; Electrical Engineering; computational electromagnetics; discontinuous Galerkin; finite element method; Maxwell's equations; multiscale simulation; spectral element method

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chen, J. (2010). A Hybrid Spectral-Element / Finite-Element Time-Domain Method for Multiscale Electromagnetic Simulations . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/3071

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chen, Jiefu. “A Hybrid Spectral-Element / Finite-Element Time-Domain Method for Multiscale Electromagnetic Simulations .” 2010. Thesis, Duke University. Accessed September 21, 2019. http://hdl.handle.net/10161/3071.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chen, Jiefu. “A Hybrid Spectral-Element / Finite-Element Time-Domain Method for Multiscale Electromagnetic Simulations .” 2010. Web. 21 Sep 2019.

Vancouver:

Chen J. A Hybrid Spectral-Element / Finite-Element Time-Domain Method for Multiscale Electromagnetic Simulations . [Internet] [Thesis]. Duke University; 2010. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/10161/3071.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen J. A Hybrid Spectral-Element / Finite-Element Time-Domain Method for Multiscale Electromagnetic Simulations . [Thesis]. Duke University; 2010. Available from: http://hdl.handle.net/10161/3071

Not specified: Masters Thesis or Doctoral Dissertation

University of Illinois – Urbana-Champaign

29.
Plews, Julia A.
* Multiscale* analysis of localized, nonlinear, three-dimensional thermo-structural effects.

Degree: PhD, Civil Engineering, 2015, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/88953

► There are a wide range of computational modeling challenges associated with structures subjected to sharp, local heating effects. Problems of this nature are prevalent in…
(more)

Subjects/Keywords: Generalized Finite Element Method (GFEM); extended finite element method; multiphysics; multiscale; parallel; thermomechanical; thermoelasticity; thermoplasticity; plasticity; heterogeneous materials

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Plews, J. A. (2015). Multiscale analysis of localized, nonlinear, three-dimensional thermo-structural effects. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/88953

Chicago Manual of Style (16^{th} Edition):

Plews, Julia A. “Multiscale analysis of localized, nonlinear, three-dimensional thermo-structural effects.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed September 21, 2019. http://hdl.handle.net/2142/88953.

MLA Handbook (7^{th} Edition):

Plews, Julia A. “Multiscale analysis of localized, nonlinear, three-dimensional thermo-structural effects.” 2015. Web. 21 Sep 2019.

Vancouver:

Plews JA. Multiscale analysis of localized, nonlinear, three-dimensional thermo-structural effects. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/2142/88953.

Council of Science Editors:

Plews JA. Multiscale analysis of localized, nonlinear, three-dimensional thermo-structural effects. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/88953

University of Illinois – Urbana-Champaign

30. Lee, Seung Jae. Developments in large scale discrete element simulations with polyhedral particles.

Degree: PhD, 0106, 2014, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/50542

► Granular material is pervasive in our environment, and of significant importance in a number of science and engineering research fields. It is characterized by the…
(more)

Subjects/Keywords: Discrete Element Method; Granular Materials; Geologic Materials; Micromechanical Modeling; Multiscale Modeling; Polyhedral Particle Modeling; Impulse-based Discrete Element Method

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, S. J. (2014). Developments in large scale discrete element simulations with polyhedral particles. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/50542

Chicago Manual of Style (16^{th} Edition):

Lee, Seung Jae. “Developments in large scale discrete element simulations with polyhedral particles.” 2014. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed September 21, 2019. http://hdl.handle.net/2142/50542.

MLA Handbook (7^{th} Edition):

Lee, Seung Jae. “Developments in large scale discrete element simulations with polyhedral particles.” 2014. Web. 21 Sep 2019.

Vancouver:

Lee SJ. Developments in large scale discrete element simulations with polyhedral particles. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2014. [cited 2019 Sep 21]. Available from: http://hdl.handle.net/2142/50542.

Council of Science Editors:

Lee SJ. Developments in large scale discrete element simulations with polyhedral particles. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2014. Available from: http://hdl.handle.net/2142/50542