Advanced search options
You searched for subject:(Multigrid Krylov)
.
Showing records 1 – 12 of
12 total matches.
▼ Search Limiters
Delft University of Technology
1. Diao, H. (author). Fourier Analysis of Iterative Methods for the Helmholtz Problem.
Degree: 2012, Delft University of Technology
URL: http://resolver.tudelft.nl/uuid:d82de64b-b446-4df6-b335-36a3e058c8f8
Subjects/Keywords: Helmholtz problem; Krylov subspace methods; multigrid method; multilevel Krylov multigrid method; shifted Laplacian preconditioner; deflation operator; Fourier analysis
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Diao, H. (. (2012). Fourier Analysis of Iterative Methods for the Helmholtz Problem. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:d82de64b-b446-4df6-b335-36a3e058c8f8
Chicago Manual of Style (16th Edition):
Diao, H (author). “Fourier Analysis of Iterative Methods for the Helmholtz Problem.” 2012. Masters Thesis, Delft University of Technology. Accessed March 02, 2021. http://resolver.tudelft.nl/uuid:d82de64b-b446-4df6-b335-36a3e058c8f8.
MLA Handbook (7th Edition):
Diao, H (author). “Fourier Analysis of Iterative Methods for the Helmholtz Problem.” 2012. Web. 02 Mar 2021.
Vancouver:
Diao H(. Fourier Analysis of Iterative Methods for the Helmholtz Problem. [Internet] [Masters thesis]. Delft University of Technology; 2012. [cited 2021 Mar 02]. Available from: http://resolver.tudelft.nl/uuid:d82de64b-b446-4df6-b335-36a3e058c8f8.
Council of Science Editors:
Diao H(. Fourier Analysis of Iterative Methods for the Helmholtz Problem. [Masters Thesis]. Delft University of Technology; 2012. Available from: http://resolver.tudelft.nl/uuid:d82de64b-b446-4df6-b335-36a3e058c8f8
INP Toulouse
2. Pinel, Xavier. A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique.
Degree: Docteur es, Mathématiques, Informatiques et Télécommunication, 2010, INP Toulouse
URL: http://www.theses.fr/2010INPT0033
Subjects/Keywords: Equation d'Helmholtz; Méthodes de Krylov; Multigrille; Analyse de Fourier; Programmation parrallèle; Seconds membres multiples; Krylov methods; Multigrid; Helmholtz problems; Fourier analysis; Super computers; Geophysics; Multiple right-hand sides problems
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Pinel, X. (2010). A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique. (Doctoral Dissertation). INP Toulouse. Retrieved from http://www.theses.fr/2010INPT0033
Chicago Manual of Style (16th Edition):
Pinel, Xavier. “A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique.” 2010. Doctoral Dissertation, INP Toulouse. Accessed March 02, 2021. http://www.theses.fr/2010INPT0033.
MLA Handbook (7th Edition):
Pinel, Xavier. “A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique.” 2010. Web. 02 Mar 2021.
Vancouver:
Pinel X. A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique. [Internet] [Doctoral dissertation]. INP Toulouse; 2010. [cited 2021 Mar 02]. Available from: http://www.theses.fr/2010INPT0033.
Council of Science Editors:
Pinel X. A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique. [Doctoral Dissertation]. INP Toulouse; 2010. Available from: http://www.theses.fr/2010INPT0033
3. Yang, Zhao, 1983-. A multigrid Krylov method for eigenvalue problems.
Degree: PhD, Baylor University. Dept. of Mathematics., 2015, Baylor University
URL: http://hdl.handle.net/2104/9514
Subjects/Keywords: Krylov subspaces. Arnoldi. Multigrid. Eigenvalue problems.
…Krylov subspace. These methods use the Rayleigh-Ritz procedure to extract eigenvalue… …information from the Krylov subspace. Arnoldi and Lanczos methods have several difficulties. The… …Arnoldi method computes the orthogonal projection of A onto an m dimensional Krylov subspace… …x5B;18], where the Ritz eigenvectors are attached to a Krylov subspace. It is proved to… …multigrid methods. Multigrid methods can tackle the original operator and exploit discretizations…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Yang, Zhao, 1. (2015). A multigrid Krylov method for eigenvalue problems. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/9514
Chicago Manual of Style (16th Edition):
Yang, Zhao, 1983-. “A multigrid Krylov method for eigenvalue problems.” 2015. Doctoral Dissertation, Baylor University. Accessed March 02, 2021. http://hdl.handle.net/2104/9514.
MLA Handbook (7th Edition):
Yang, Zhao, 1983-. “A multigrid Krylov method for eigenvalue problems.” 2015. Web. 02 Mar 2021.
Vancouver:
Yang, Zhao 1. A multigrid Krylov method for eigenvalue problems. [Internet] [Doctoral dissertation]. Baylor University; 2015. [cited 2021 Mar 02]. Available from: http://hdl.handle.net/2104/9514.
Council of Science Editors:
Yang, Zhao 1. A multigrid Krylov method for eigenvalue problems. [Doctoral Dissertation]. Baylor University; 2015. Available from: http://hdl.handle.net/2104/9514
Delft University of Technology
4. Bin Zubair, H. Efficient Multigrid Methods based on Improved Coarse Grid Correction Techniques.
Degree: 2009, Delft University of Technology
URL: http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f
;
urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f
;
urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f
;
http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f
Subjects/Keywords: multigrid; d-multigrid; sparse grids; multidimensional partial differential equations; multigrid preconditioned Krylov methods; grid-stretching; indefinite Helmholtz; adaptive mesh-refinement
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Bin Zubair, H. (2009). Efficient Multigrid Methods based on Improved Coarse Grid Correction Techniques. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f
Chicago Manual of Style (16th Edition):
Bin Zubair, H. “Efficient Multigrid Methods based on Improved Coarse Grid Correction Techniques.” 2009. Doctoral Dissertation, Delft University of Technology. Accessed March 02, 2021. http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f.
MLA Handbook (7th Edition):
Bin Zubair, H. “Efficient Multigrid Methods based on Improved Coarse Grid Correction Techniques.” 2009. Web. 02 Mar 2021.
Vancouver:
Bin Zubair H. Efficient Multigrid Methods based on Improved Coarse Grid Correction Techniques. [Internet] [Doctoral dissertation]. Delft University of Technology; 2009. [cited 2021 Mar 02]. Available from: http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f.
Council of Science Editors:
Bin Zubair H. Efficient Multigrid Methods based on Improved Coarse Grid Correction Techniques. [Doctoral Dissertation]. Delft University of Technology; 2009. Available from: http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f
Delft University of Technology
5. Sheikh, A.H. Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A Multigrid Deflation Technique.
Degree: 2014, Delft University of Technology
URL: http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1
;
urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1
;
urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1
;
http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1
Subjects/Keywords: Helmholtz; multigrid methods; Krylov; iterative solvers; wave equations; deflation method; multilevel methods
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Sheikh, A. H. (2014). Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A Multigrid Deflation Technique. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1
Chicago Manual of Style (16th Edition):
Sheikh, A H. “Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A Multigrid Deflation Technique.” 2014. Doctoral Dissertation, Delft University of Technology. Accessed March 02, 2021. http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1.
MLA Handbook (7th Edition):
Sheikh, A H. “Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A Multigrid Deflation Technique.” 2014. Web. 02 Mar 2021.
Vancouver:
Sheikh AH. Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A Multigrid Deflation Technique. [Internet] [Doctoral dissertation]. Delft University of Technology; 2014. [cited 2021 Mar 02]. Available from: http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1.
Council of Science Editors:
Sheikh AH. Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A Multigrid Deflation Technique. [Doctoral Dissertation]. Delft University of Technology; 2014. Available from: http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1
6. Duminil, Sébastien. Extrapolation vectorielle et applications aux équations aux dérivées partielles : Vector extrapolation and applications to partial differential equations.
Degree: Docteur es, Mathématiques appliquées, 2012, Littoral
URL: http://www.theses.fr/2012DUNK0336
Subjects/Keywords: Extrapolation vectorielle; RRE; MPE; MMPE; Systèmes linéaires; Méthodes de Krylov; CMRH; Implémentation parallèle; CMRH préconditionnée; Systèmes non linéaires; Équations de Navier-Stokes; Équations de Schrödinger; Méthodes multigrilles; Vector extrapolation; Reduced Rank Extrapolation; Minimal Polynomial Extrapolation; Modified Minimal Polynomial Extrapolation; Linear systems; Krylov method; CMRH; Parallel implementation; Preconditioned CMRH; Nonlinear systems; Navier-Stokes problem; Schrödinger equation; Multigrid method
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Duminil, S. (2012). Extrapolation vectorielle et applications aux équations aux dérivées partielles : Vector extrapolation and applications to partial differential equations. (Doctoral Dissertation). Littoral. Retrieved from http://www.theses.fr/2012DUNK0336
Chicago Manual of Style (16th Edition):
Duminil, Sébastien. “Extrapolation vectorielle et applications aux équations aux dérivées partielles : Vector extrapolation and applications to partial differential equations.” 2012. Doctoral Dissertation, Littoral. Accessed March 02, 2021. http://www.theses.fr/2012DUNK0336.
MLA Handbook (7th Edition):
Duminil, Sébastien. “Extrapolation vectorielle et applications aux équations aux dérivées partielles : Vector extrapolation and applications to partial differential equations.” 2012. Web. 02 Mar 2021.
Vancouver:
Duminil S. Extrapolation vectorielle et applications aux équations aux dérivées partielles : Vector extrapolation and applications to partial differential equations. [Internet] [Doctoral dissertation]. Littoral; 2012. [cited 2021 Mar 02]. Available from: http://www.theses.fr/2012DUNK0336.
Council of Science Editors:
Duminil S. Extrapolation vectorielle et applications aux équations aux dérivées partielles : Vector extrapolation and applications to partial differential equations. [Doctoral Dissertation]. Littoral; 2012. Available from: http://www.theses.fr/2012DUNK0336
7. Liu, Jun. NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS.
Degree: PhD, Mathematics, 2015, Southern Illinois University
URL: https://opensiuc.lib.siu.edu/dissertations/1076
Subjects/Keywords: finite difference scheme; multigrid method; optimal control; partial differential equations; preconditioned Krylov subspace method; semi-smooth Newton method
…multigrid, Algebraic multigrid. • Non-stationary methods: Krylov subspace methods, etc.; We will… …102.14 1.4.2 Krylov subspace method In the case of hyperbolic PDEs, multigrid methods turn… …16 1.4.1 Multigrid method… …16 1.4.2 Krylov subspace method… …23 1.5.2 Full approximation scheme (FAS) multigrid method…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Liu, J. (2015). NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS. (Doctoral Dissertation). Southern Illinois University. Retrieved from https://opensiuc.lib.siu.edu/dissertations/1076
Chicago Manual of Style (16th Edition):
Liu, Jun. “NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS.” 2015. Doctoral Dissertation, Southern Illinois University. Accessed March 02, 2021. https://opensiuc.lib.siu.edu/dissertations/1076.
MLA Handbook (7th Edition):
Liu, Jun. “NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS.” 2015. Web. 02 Mar 2021.
Vancouver:
Liu J. NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS. [Internet] [Doctoral dissertation]. Southern Illinois University; 2015. [cited 2021 Mar 02]. Available from: https://opensiuc.lib.siu.edu/dissertations/1076.
Council of Science Editors:
Liu J. NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS. [Doctoral Dissertation]. Southern Illinois University; 2015. Available from: https://opensiuc.lib.siu.edu/dissertations/1076
8. Köster, Michael. A Hierarchical Flow Solver for Optimisation with PDE Constraints.
Degree: 2011, Technische Universität Dortmund
URL: http://hdl.handle.net/2003/29239
Subjects/Keywords: Block-Glätter; Block smoother; CFD; Crank-Nicolson; Crystal growth; Czochralski; Distributed Control; Edge-oriented stabilisation; Elliptic; Elliptisch; EOJ stabilisation; EOJ Stabilisierung; FEAT; FEATFLOW; Finite Elemente; Finite Elements; First discretise then optimise; First discretize then optimize; First optimise then discretise; First optimize then discretize; Flow-Around-Cylinder; Full Newton-SAND; Heat equation; Hierarchical; Hierarchical solution concept; Hierarchisch; Hierarchisches Lösungskonzept; Inexact Newton; Inexaktes Newton-Verfahren; Instationär; Inverse Probleme; Inverse Problems; Kantenbasierte Stabilisierung; KKT system; Kristallwachstum; Krylov; Large-Scale; linear complexity; lineare Komplexität; Mehrgitter; Mehrgitter-Krylov; Monolithic; Monolithisch; Multigrid; Multigrid-Krylov; Multilevel; Navier-Stokes; Nichtparametrische Finite Elemente; Nonparametric finite elements; Nonstationary; OPTFLOW; Optimierung; Optimisation; Optimization; PDE Constraints; Raum-Zeit; saddle point; SAND; Sattelpunkt; Schur complement preconditioning; Schurkomplement-Vorkonditionierer; Space-time; SQP; Stokes; Theta schema; Theta scheme; Time-dependent; Transient; Unstructured Grids; Unstrukturierte Gitter; Vanka; Verteilte Kontrolle; Wärmeleitung; Wärmeleitungsgleichung; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Köster, M. (2011). A Hierarchical Flow Solver for Optimisation with PDE Constraints. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/29239
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Köster, Michael. “A Hierarchical Flow Solver for Optimisation with PDE Constraints.” 2011. Thesis, Technische Universität Dortmund. Accessed March 02, 2021. http://hdl.handle.net/2003/29239.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Köster, Michael. “A Hierarchical Flow Solver for Optimisation with PDE Constraints.” 2011. Web. 02 Mar 2021.
Vancouver:
Köster M. A Hierarchical Flow Solver for Optimisation with PDE Constraints. [Internet] [Thesis]. Technische Universität Dortmund; 2011. [cited 2021 Mar 02]. Available from: http://hdl.handle.net/2003/29239.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Köster M. A Hierarchical Flow Solver for Optimisation with PDE Constraints. [Thesis]. Technische Universität Dortmund; 2011. Available from: http://hdl.handle.net/2003/29239
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
9. Köster, Michael. A Hierarchical Flow Solver for Optimisation with PDE Constraints.
Degree: 2011, Technische Universität Dortmund
URL: http://dx.doi.org/10.17877/DE290R-6950
Subjects/Keywords: Block-Glätter; Czochralski; Elliptisch; EOJ Stabilisierung; Finite Elemente; Hierarchisch; Hierarchisches Lösungskonzept; Inexaktes Newton-Verfahren; Instationär; Inverse Probleme; Kantenbasierte Stabilisierung; Kristallwachstum; Krylov; lineare Komplexität; Mehrgitter; Mehrgitter-Krylov; Monolithisch; Navier-Stokes; Nichtparametrische Finite Elemente; Optimierung; Raum-Zeit; Sattelpunkt; Schurkomplement-Vorkonditionierer; Stokes; Unstrukturierte Gitter; Vanka; Verteilte Kontrolle; Wärmeleitung; Wärmeleitungsgleichung; Block smoother; CFD; Crank-Nicolson; Crystal growth; Distributed Control; Edge-oriented stabilisation; Elliptic; EOJ stabilisation; FEAT; FEATFLOW; Finite Elements; First discretise then optimise; First discretize then optimize; First optimise then discretise; First optimize then discretize; Flow-Around-Cylinder; Full Newton-SAND; Heat equation; Hierarchical; Hierarchical solution concept; Inexact Newton; Inverse Problems; KKT system; Large-Scale; linear complexity; Monolithic; Multigrid; Multigrid-Krylov; Multilevel; Nonparametric finite elements; Nonstationary; OPTFLOW; Optimisation; Optimization; PDE Constraints; saddle point; SAND; Schur complement preconditioning; Space-time; SQP; Theta schema; Theta scheme; Time-dependent; Transient; Unstructured Grids; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Köster, M. (2011). A Hierarchical Flow Solver for Optimisation with PDE Constraints. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-6950
Chicago Manual of Style (16th Edition):
Köster, Michael. “A Hierarchical Flow Solver for Optimisation with PDE Constraints.” 2011. Doctoral Dissertation, Technische Universität Dortmund. Accessed March 02, 2021. http://dx.doi.org/10.17877/DE290R-6950.
MLA Handbook (7th Edition):
Köster, Michael. “A Hierarchical Flow Solver for Optimisation with PDE Constraints.” 2011. Web. 02 Mar 2021.
Vancouver:
Köster M. A Hierarchical Flow Solver for Optimisation with PDE Constraints. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2011. [cited 2021 Mar 02]. Available from: http://dx.doi.org/10.17877/DE290R-6950.
Council of Science Editors:
Köster M. A Hierarchical Flow Solver for Optimisation with PDE Constraints. [Doctoral Dissertation]. Technische Universität Dortmund; 2011. Available from: http://dx.doi.org/10.17877/DE290R-6950
10. Wobker, Hilmar. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.
Degree: 2010, Technische Universität Dortmund
URL: http://hdl.handle.net/2003/26998
Subjects/Keywords: Adaptive coarse grid correction; Adaptive Grobgitterkorrektur; Damped Newton-Raphson; Domain decomposition; Elasticity; Elastizität; Elastodynamic; Elastodynamisch; Elastostatic; Elastostatisch; Equal-order finite elements; FEAST; FEAST; Festkörpermechanik; Finite deformation; Finite Deformation; Finite-Elemente-Methode; Finite element method; Gebietszerlegung; Gedämpftes Newton-Raphson; Gemischte Formulierung; Globales Newton-Raphson; Global Newton-Raphson; Große Deformation; Großskalig; Hardware-oriented; Hardware-orientiert; High performance computing; Incompressible material; Inexact Newton-Raphson; Inexaktes Newton-Raphson; Inkompressibles Material; Irreguläres Gitter; Irregular grids; Iterativer Löser; Iterative solver; Large deformation; Large-scale; LBB stabilisation; LBB Stabilisierung; Line-search; Liniensuche; Mehrgitter; Mehrgitter-Krylov; Minimale Überlappung; Minimal overlap; Mixed formulation; Multigrid; Multigrid-Krylov; Multilevel; Multilevel; Newton-Raphson; Nicht-konformes Mehrgitter; Nonconforming multigrid; Parallel computing; Parallele Effizienz; Parallel efficiency; Paralleles Rechnen; Saddle point problem; Sattelpunkt-Problem; ScaRC; ScaRC; Schubversteifung; Schur complement preconditioning; Schurkomplement-Vorkonditionierer; Shear locking; Solid mechanics; Structural mechanics; Strukturmechanik; Transient; Vanka; Vanka; Volume locking; Volumenversteifung; Zeitabhängig; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Wobker, H. (2010). Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/26998
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Wobker, Hilmar. “Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.” 2010. Thesis, Technische Universität Dortmund. Accessed March 02, 2021. http://hdl.handle.net/2003/26998.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Wobker, Hilmar. “Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.” 2010. Web. 02 Mar 2021.
Vancouver:
Wobker H. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. [Internet] [Thesis]. Technische Universität Dortmund; 2010. [cited 2021 Mar 02]. Available from: http://hdl.handle.net/2003/26998.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Wobker H. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. [Thesis]. Technische Universität Dortmund; 2010. Available from: http://hdl.handle.net/2003/26998
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
11. Rudi, Johann. Global convection in Earth's mantle : advanced numerical methods and extreme-scale simulations.
Degree: PhD, Computational Science, Engineering, and Mathematics, 2019, University of Texas – Austin
URL: http://dx.doi.org/10.26153/tsw/1258
Subjects/Keywords: Partial differential equations; Stokes; Numerical methods; Variable viscosity; Schur complement; Preconditioning; Multigrid; Scalable algorithms; Parallel computing; Iterative methods; Nonlinear problems; Inexact Newton-Krylov methods; Mantle convection
…42 5 Inexact Newton–Krylov Methods 45 5.1 Inexact Newton–Krylov methods for nonlinear… …77 7 Multigrid Preconditioning with HMG 80 7.1 An abstract multigrid method… …81 7.2 Hybrid spectral–geometric–algebraic multigrid (HMG)… …77 7.1 Hybrid spectral–geometric–algebraic multigrid (HMG) hierarchy and V… …104 8.2 Algorithmic scalability of inexact Newton–Krylov method…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Rudi, J. (2019). Global convection in Earth's mantle : advanced numerical methods and extreme-scale simulations. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/1258
Chicago Manual of Style (16th Edition):
Rudi, Johann. “Global convection in Earth's mantle : advanced numerical methods and extreme-scale simulations.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed March 02, 2021. http://dx.doi.org/10.26153/tsw/1258.
MLA Handbook (7th Edition):
Rudi, Johann. “Global convection in Earth's mantle : advanced numerical methods and extreme-scale simulations.” 2019. Web. 02 Mar 2021.
Vancouver:
Rudi J. Global convection in Earth's mantle : advanced numerical methods and extreme-scale simulations. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2021 Mar 02]. Available from: http://dx.doi.org/10.26153/tsw/1258.
Council of Science Editors:
Rudi J. Global convection in Earth's mantle : advanced numerical methods and extreme-scale simulations. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/1258
12. Wobker, Hilmar. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.
Degree: 2010, Technische Universität Dortmund
URL: http://dx.doi.org/10.17877/DE290R-497
Subjects/Keywords: Iterativer Löser; Multilevel; Mehrgitter; Gebietszerlegung; Mehrgitter-Krylov; Nicht-konformes Mehrgitter; ScaRC; Adaptive Grobgitterkorrektur; Minimale Überlappung; Sattelpunkt-Problem; Schurkomplement-Vorkonditionierer; Vanka; Gedämpftes Newton-Raphson; Globales Newton-Raphson; Inexaktes Newton-Raphson; Liniensuche; FEAST; Hardware-orientiert; Großskalig; Paralleles Rechnen; Parallele Effizienz; Finite-Elemente-Methode; Gemischte Formulierung; LBB Stabilisierung; Irreguläres Gitter; Festkörpermechanik; Strukturmechanik; Elastizität; Elastostatisch; Elastodynamisch; Zeitabhängig; Inkompressibles Material; Finite Deformation; Große Deformation; Volumenversteifung; Schubversteifung; Iterative solver; Multilevel; Multigrid; Domain decomposition; Multigrid-Krylov; Nonconforming multigrid; ScaRC; Adaptive coarse grid correction; Minimal overlap; Saddle point problem; Schur complement preconditioning; Vanka; Newton-Raphson; Damped Newton-Raphson; Global Newton-Raphson; Inexact Newton-Raphson; Line-search; FEAST; High performance computing; Hardware-oriented; Large-scale; Parallel computing; Parallel efficiency; Finite element method; Mixed formulation; LBB stabilisation; Equal-order finite elements; Irregular grids; Solid mechanics; Structural mechanics; Elasticity; Elastostatic; Elastodynamic; Transient; Incompressible material; Finite deformation; Large deformation; Volume locking; Shear locking; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Wobker, H. (2010). Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-497
Chicago Manual of Style (16th Edition):
Wobker, Hilmar. “Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.” 2010. Doctoral Dissertation, Technische Universität Dortmund. Accessed March 02, 2021. http://dx.doi.org/10.17877/DE290R-497.
MLA Handbook (7th Edition):
Wobker, Hilmar. “Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.” 2010. Web. 02 Mar 2021.
Vancouver:
Wobker H. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2010. [cited 2021 Mar 02]. Available from: http://dx.doi.org/10.17877/DE290R-497.
Council of Science Editors:
Wobker H. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. [Doctoral Dissertation]. Technische Universität Dortmund; 2010. Available from: http://dx.doi.org/10.17877/DE290R-497