Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Multigrid Krylov). Showing records 1 – 12 of 12 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Delft University of Technology

1. Diao, H. (author). Fourier Analysis of Iterative Methods for the Helmholtz Problem.

Degree: 2012, Delft University of Technology

This thesis attempts to explain the convergence behaviour of solving Helmholtz problem by investigating its spectral properties. Fourier analysis is employ to solve the eigenvalues… (more)

Subjects/Keywords: Helmholtz problem; Krylov subspace methods; multigrid method; multilevel Krylov multigrid method; shifted Laplacian preconditioner; deflation operator; Fourier analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Diao, H. (. (2012). Fourier Analysis of Iterative Methods for the Helmholtz Problem. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:d82de64b-b446-4df6-b335-36a3e058c8f8

Chicago Manual of Style (16th Edition):

Diao, H (author). “Fourier Analysis of Iterative Methods for the Helmholtz Problem.” 2012. Masters Thesis, Delft University of Technology. Accessed March 02, 2021. http://resolver.tudelft.nl/uuid:d82de64b-b446-4df6-b335-36a3e058c8f8.

MLA Handbook (7th Edition):

Diao, H (author). “Fourier Analysis of Iterative Methods for the Helmholtz Problem.” 2012. Web. 02 Mar 2021.

Vancouver:

Diao H(. Fourier Analysis of Iterative Methods for the Helmholtz Problem. [Internet] [Masters thesis]. Delft University of Technology; 2012. [cited 2021 Mar 02]. Available from: http://resolver.tudelft.nl/uuid:d82de64b-b446-4df6-b335-36a3e058c8f8.

Council of Science Editors:

Diao H(. Fourier Analysis of Iterative Methods for the Helmholtz Problem. [Masters Thesis]. Delft University of Technology; 2012. Available from: http://resolver.tudelft.nl/uuid:d82de64b-b446-4df6-b335-36a3e058c8f8


INP Toulouse

2. Pinel, Xavier. A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique.

Degree: Docteur es, Mathématiques, Informatiques et Télécommunication, 2010, INP Toulouse

Le sujet de cette thèse est le développement de méthodes itératives permettant la résolution degrands systèmes linéaires creux d'équations présentant plusieurs seconds membres simultanément. Ces… (more)

Subjects/Keywords: Equation d'Helmholtz; Méthodes de Krylov; Multigrille; Analyse de Fourier; Programmation parrallèle; Seconds membres multiples; Krylov methods; Multigrid; Helmholtz problems; Fourier analysis; Super computers; Geophysics; Multiple right-hand sides problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pinel, X. (2010). A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique. (Doctoral Dissertation). INP Toulouse. Retrieved from http://www.theses.fr/2010INPT0033

Chicago Manual of Style (16th Edition):

Pinel, Xavier. “A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique.” 2010. Doctoral Dissertation, INP Toulouse. Accessed March 02, 2021. http://www.theses.fr/2010INPT0033.

MLA Handbook (7th Edition):

Pinel, Xavier. “A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique.” 2010. Web. 02 Mar 2021.

Vancouver:

Pinel X. A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique. [Internet] [Doctoral dissertation]. INP Toulouse; 2010. [cited 2021 Mar 02]. Available from: http://www.theses.fr/2010INPT0033.

Council of Science Editors:

Pinel X. A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique. [Doctoral Dissertation]. INP Toulouse; 2010. Available from: http://www.theses.fr/2010INPT0033

3. Yang, Zhao, 1983-. A multigrid Krylov method for eigenvalue problems.

Degree: PhD, Baylor University. Dept. of Mathematics., 2015, Baylor University

 We are interested in computing eigenvalues and eigenvectors of matrices derived from differential equations. They are often large sparse matrices, including both symmetric and non… (more)

Subjects/Keywords: Krylov subspaces. Arnoldi. Multigrid. Eigenvalue problems.

Krylov subspace. These methods use the Rayleigh-Ritz procedure to extract eigenvalue… …information from the Krylov subspace. Arnoldi and Lanczos methods have several difficulties. The… …Arnoldi method computes the orthogonal projection of A onto an m dimensional Krylov subspace… …x5B;18], where the Ritz eigenvectors are attached to a Krylov subspace. It is proved to… …multigrid methods. Multigrid methods can tackle the original operator and exploit discretizations… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, Zhao, 1. (2015). A multigrid Krylov method for eigenvalue problems. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/9514

Chicago Manual of Style (16th Edition):

Yang, Zhao, 1983-. “A multigrid Krylov method for eigenvalue problems.” 2015. Doctoral Dissertation, Baylor University. Accessed March 02, 2021. http://hdl.handle.net/2104/9514.

MLA Handbook (7th Edition):

Yang, Zhao, 1983-. “A multigrid Krylov method for eigenvalue problems.” 2015. Web. 02 Mar 2021.

Vancouver:

Yang, Zhao 1. A multigrid Krylov method for eigenvalue problems. [Internet] [Doctoral dissertation]. Baylor University; 2015. [cited 2021 Mar 02]. Available from: http://hdl.handle.net/2104/9514.

Council of Science Editors:

Yang, Zhao 1. A multigrid Krylov method for eigenvalue problems. [Doctoral Dissertation]. Baylor University; 2015. Available from: http://hdl.handle.net/2104/9514


Delft University of Technology

4. Bin Zubair, H. Efficient Multigrid Methods based on Improved Coarse Grid Correction Techniques.

Degree: 2009, Delft University of Technology

Multigrid efficiency often suffers from inadequate coarse grid correction in different prototypic situations. We select a few problems, where coarse grid correction issues arise because… (more)

Subjects/Keywords: multigrid; d-multigrid; sparse grids; multidimensional partial differential equations; multigrid preconditioned Krylov methods; grid-stretching; indefinite Helmholtz; adaptive mesh-refinement

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bin Zubair, H. (2009). Efficient Multigrid Methods based on Improved Coarse Grid Correction Techniques. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f

Chicago Manual of Style (16th Edition):

Bin Zubair, H. “Efficient Multigrid Methods based on Improved Coarse Grid Correction Techniques.” 2009. Doctoral Dissertation, Delft University of Technology. Accessed March 02, 2021. http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f.

MLA Handbook (7th Edition):

Bin Zubair, H. “Efficient Multigrid Methods based on Improved Coarse Grid Correction Techniques.” 2009. Web. 02 Mar 2021.

Vancouver:

Bin Zubair H. Efficient Multigrid Methods based on Improved Coarse Grid Correction Techniques. [Internet] [Doctoral dissertation]. Delft University of Technology; 2009. [cited 2021 Mar 02]. Available from: http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f.

Council of Science Editors:

Bin Zubair H. Efficient Multigrid Methods based on Improved Coarse Grid Correction Techniques. [Doctoral Dissertation]. Delft University of Technology; 2009. Available from: http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; urn:NBN:nl:ui:24-uuid:e0b43b38-ad07-4076-baf1-aa02579c397f ; http://resolver.tudelft.nl/uuid:e0b43b38-ad07-4076-baf1-aa02579c397f


Delft University of Technology

5. Sheikh, A.H. Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A Multigrid Deflation Technique.

Degree: 2014, Delft University of Technology

 The Helmholtz equation is the simplest possible model for the wave propagation. Perhaps this is the reason, despite denying traditional iterative methods like Krylov sub-space… (more)

Subjects/Keywords: Helmholtz; multigrid methods; Krylov; iterative solvers; wave equations; deflation method; multilevel methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sheikh, A. H. (2014). Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A Multigrid Deflation Technique. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1

Chicago Manual of Style (16th Edition):

Sheikh, A H. “Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A Multigrid Deflation Technique.” 2014. Doctoral Dissertation, Delft University of Technology. Accessed March 02, 2021. http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1.

MLA Handbook (7th Edition):

Sheikh, A H. “Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A Multigrid Deflation Technique.” 2014. Web. 02 Mar 2021.

Vancouver:

Sheikh AH. Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A Multigrid Deflation Technique. [Internet] [Doctoral dissertation]. Delft University of Technology; 2014. [cited 2021 Mar 02]. Available from: http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1.

Council of Science Editors:

Sheikh AH. Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A Multigrid Deflation Technique. [Doctoral Dissertation]. Delft University of Technology; 2014. Available from: http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; urn:NBN:nl:ui:24-uuid:1020f418-b488-4435-81ee-2b4f6a5024e1 ; http://resolver.tudelft.nl/uuid:1020f418-b488-4435-81ee-2b4f6a5024e1

6. Duminil, Sébastien. Extrapolation vectorielle et applications aux équations aux dérivées partielles : Vector extrapolation and applications to partial differential equations.

Degree: Docteur es, Mathématiques appliquées, 2012, Littoral

Nous nous intéressons, dans cette thèse, à l'étude des méthodes d'extrapolation polynômiales et à l'application de ces méthodes dans l'accélération de méthodes de points fixes… (more)

Subjects/Keywords: Extrapolation vectorielle; RRE; MPE; MMPE; Systèmes linéaires; Méthodes de Krylov; CMRH; Implémentation parallèle; CMRH préconditionnée; Systèmes non linéaires; Équations de Navier-Stokes; Équations de Schrödinger; Méthodes multigrilles; Vector extrapolation; Reduced Rank Extrapolation; Minimal Polynomial Extrapolation; Modified Minimal Polynomial Extrapolation; Linear systems; Krylov method; CMRH; Parallel implementation; Preconditioned CMRH; Nonlinear systems; Navier-Stokes problem; Schrödinger equation; Multigrid method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Duminil, S. (2012). Extrapolation vectorielle et applications aux équations aux dérivées partielles : Vector extrapolation and applications to partial differential equations. (Doctoral Dissertation). Littoral. Retrieved from http://www.theses.fr/2012DUNK0336

Chicago Manual of Style (16th Edition):

Duminil, Sébastien. “Extrapolation vectorielle et applications aux équations aux dérivées partielles : Vector extrapolation and applications to partial differential equations.” 2012. Doctoral Dissertation, Littoral. Accessed March 02, 2021. http://www.theses.fr/2012DUNK0336.

MLA Handbook (7th Edition):

Duminil, Sébastien. “Extrapolation vectorielle et applications aux équations aux dérivées partielles : Vector extrapolation and applications to partial differential equations.” 2012. Web. 02 Mar 2021.

Vancouver:

Duminil S. Extrapolation vectorielle et applications aux équations aux dérivées partielles : Vector extrapolation and applications to partial differential equations. [Internet] [Doctoral dissertation]. Littoral; 2012. [cited 2021 Mar 02]. Available from: http://www.theses.fr/2012DUNK0336.

Council of Science Editors:

Duminil S. Extrapolation vectorielle et applications aux équations aux dérivées partielles : Vector extrapolation and applications to partial differential equations. [Doctoral Dissertation]. Littoral; 2012. Available from: http://www.theses.fr/2012DUNK0336

7. Liu, Jun. NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS.

Degree: PhD, Mathematics, 2015, Southern Illinois University

  Partial differential equations are the chief means of providing mathematical models in science, engineering and other fields. Optimal control of partial differential equations (PDEs)… (more)

Subjects/Keywords: finite difference scheme; multigrid method; optimal control; partial differential equations; preconditioned Krylov subspace method; semi-smooth Newton method

multigrid, Algebraic multigrid. • Non-stationary methods: Krylov subspace methods, etc.; We will… …102.14 1.4.2 Krylov subspace method In the case of hyperbolic PDEs, multigrid methods turn… …16 1.4.1 Multigrid method… …16 1.4.2 Krylov subspace method… …23 1.5.2 Full approximation scheme (FAS) multigrid method… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, J. (2015). NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS. (Doctoral Dissertation). Southern Illinois University. Retrieved from https://opensiuc.lib.siu.edu/dissertations/1076

Chicago Manual of Style (16th Edition):

Liu, Jun. “NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS.” 2015. Doctoral Dissertation, Southern Illinois University. Accessed March 02, 2021. https://opensiuc.lib.siu.edu/dissertations/1076.

MLA Handbook (7th Edition):

Liu, Jun. “NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS.” 2015. Web. 02 Mar 2021.

Vancouver:

Liu J. NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS. [Internet] [Doctoral dissertation]. Southern Illinois University; 2015. [cited 2021 Mar 02]. Available from: https://opensiuc.lib.siu.edu/dissertations/1076.

Council of Science Editors:

Liu J. NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS. [Doctoral Dissertation]. Southern Illinois University; 2015. Available from: https://opensiuc.lib.siu.edu/dissertations/1076

8. Köster, Michael. A Hierarchical Flow Solver for Optimisation with PDE Constraints.

Degree: 2011, Technische Universität Dortmund

 Active flow control plays a central role in many industrial applications such as e.g. control of crystal growth processes, where the flow in the melt… (more)

Subjects/Keywords: Block-Glätter; Block smoother; CFD; Crank-Nicolson; Crystal growth; Czochralski; Distributed Control; Edge-oriented stabilisation; Elliptic; Elliptisch; EOJ stabilisation; EOJ Stabilisierung; FEAT; FEATFLOW; Finite Elemente; Finite Elements; First discretise then optimise; First discretize then optimize; First optimise then discretise; First optimize then discretize; Flow-Around-Cylinder; Full Newton-SAND; Heat equation; Hierarchical; Hierarchical solution concept; Hierarchisch; Hierarchisches Lösungskonzept; Inexact Newton; Inexaktes Newton-Verfahren; Instationär; Inverse Probleme; Inverse Problems; Kantenbasierte Stabilisierung; KKT system; Kristallwachstum; Krylov; Large-Scale; linear complexity; lineare Komplexität; Mehrgitter; Mehrgitter-Krylov; Monolithic; Monolithisch; Multigrid; Multigrid-Krylov; Multilevel; Navier-Stokes; Nichtparametrische Finite Elemente; Nonparametric finite elements; Nonstationary; OPTFLOW; Optimierung; Optimisation; Optimization; PDE Constraints; Raum-Zeit; saddle point; SAND; Sattelpunkt; Schur complement preconditioning; Schurkomplement-Vorkonditionierer; Space-time; SQP; Stokes; Theta schema; Theta scheme; Time-dependent; Transient; Unstructured Grids; Unstrukturierte Gitter; Vanka; Verteilte Kontrolle; Wärmeleitung; Wärmeleitungsgleichung; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Köster, M. (2011). A Hierarchical Flow Solver for Optimisation with PDE Constraints. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/29239

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Köster, Michael. “A Hierarchical Flow Solver for Optimisation with PDE Constraints.” 2011. Thesis, Technische Universität Dortmund. Accessed March 02, 2021. http://hdl.handle.net/2003/29239.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Köster, Michael. “A Hierarchical Flow Solver for Optimisation with PDE Constraints.” 2011. Web. 02 Mar 2021.

Vancouver:

Köster M. A Hierarchical Flow Solver for Optimisation with PDE Constraints. [Internet] [Thesis]. Technische Universität Dortmund; 2011. [cited 2021 Mar 02]. Available from: http://hdl.handle.net/2003/29239.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Köster M. A Hierarchical Flow Solver for Optimisation with PDE Constraints. [Thesis]. Technische Universität Dortmund; 2011. Available from: http://hdl.handle.net/2003/29239

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

9. Köster, Michael. A Hierarchical Flow Solver for Optimisation with PDE Constraints.

Degree: 2011, Technische Universität Dortmund

 Active flow control plays a central role in many industrial applications such as e.g. control of crystal growth processes, where the flow in the melt… (more)

Subjects/Keywords: Block-Glätter; Czochralski; Elliptisch; EOJ Stabilisierung; Finite Elemente; Hierarchisch; Hierarchisches Lösungskonzept; Inexaktes Newton-Verfahren; Instationär; Inverse Probleme; Kantenbasierte Stabilisierung; Kristallwachstum; Krylov; lineare Komplexität; Mehrgitter; Mehrgitter-Krylov; Monolithisch; Navier-Stokes; Nichtparametrische Finite Elemente; Optimierung; Raum-Zeit; Sattelpunkt; Schurkomplement-Vorkonditionierer; Stokes; Unstrukturierte Gitter; Vanka; Verteilte Kontrolle; Wärmeleitung; Wärmeleitungsgleichung; Block smoother; CFD; Crank-Nicolson; Crystal growth; Distributed Control; Edge-oriented stabilisation; Elliptic; EOJ stabilisation; FEAT; FEATFLOW; Finite Elements; First discretise then optimise; First discretize then optimize; First optimise then discretise; First optimize then discretize; Flow-Around-Cylinder; Full Newton-SAND; Heat equation; Hierarchical; Hierarchical solution concept; Inexact Newton; Inverse Problems; KKT system; Large-Scale; linear complexity; Monolithic; Multigrid; Multigrid-Krylov; Multilevel; Nonparametric finite elements; Nonstationary; OPTFLOW; Optimisation; Optimization; PDE Constraints; saddle point; SAND; Schur complement preconditioning; Space-time; SQP; Theta schema; Theta scheme; Time-dependent; Transient; Unstructured Grids; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Köster, M. (2011). A Hierarchical Flow Solver for Optimisation with PDE Constraints. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-6950

Chicago Manual of Style (16th Edition):

Köster, Michael. “A Hierarchical Flow Solver for Optimisation with PDE Constraints.” 2011. Doctoral Dissertation, Technische Universität Dortmund. Accessed March 02, 2021. http://dx.doi.org/10.17877/DE290R-6950.

MLA Handbook (7th Edition):

Köster, Michael. “A Hierarchical Flow Solver for Optimisation with PDE Constraints.” 2011. Web. 02 Mar 2021.

Vancouver:

Köster M. A Hierarchical Flow Solver for Optimisation with PDE Constraints. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2011. [cited 2021 Mar 02]. Available from: http://dx.doi.org/10.17877/DE290R-6950.

Council of Science Editors:

Köster M. A Hierarchical Flow Solver for Optimisation with PDE Constraints. [Doctoral Dissertation]. Technische Universität Dortmund; 2011. Available from: http://dx.doi.org/10.17877/DE290R-6950

10. Wobker, Hilmar. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.

Degree: 2010, Technische Universität Dortmund

 Bei der Simulation realistischer strukturmechanischer Probleme können Gleichungssysteme mit mehreren hundert Millionen Unbekannten entstehen. Für die effiziente Lösung solcher Systeme sind parallele Multilevel-Methoden unerlässlich, die… (more)

Subjects/Keywords: Adaptive coarse grid correction; Adaptive Grobgitterkorrektur; Damped Newton-Raphson; Domain decomposition; Elasticity; Elastizität; Elastodynamic; Elastodynamisch; Elastostatic; Elastostatisch; Equal-order finite elements; FEAST; FEAST; Festkörpermechanik; Finite deformation; Finite Deformation; Finite-Elemente-Methode; Finite element method; Gebietszerlegung; Gedämpftes Newton-Raphson; Gemischte Formulierung; Globales Newton-Raphson; Global Newton-Raphson; Große Deformation; Großskalig; Hardware-oriented; Hardware-orientiert; High performance computing; Incompressible material; Inexact Newton-Raphson; Inexaktes Newton-Raphson; Inkompressibles Material; Irreguläres Gitter; Irregular grids; Iterativer Löser; Iterative solver; Large deformation; Large-scale; LBB stabilisation; LBB Stabilisierung; Line-search; Liniensuche; Mehrgitter; Mehrgitter-Krylov; Minimale Überlappung; Minimal overlap; Mixed formulation; Multigrid; Multigrid-Krylov; Multilevel; Multilevel; Newton-Raphson; Nicht-konformes Mehrgitter; Nonconforming multigrid; Parallel computing; Parallele Effizienz; Parallel efficiency; Paralleles Rechnen; Saddle point problem; Sattelpunkt-Problem; ScaRC; ScaRC; Schubversteifung; Schur complement preconditioning; Schurkomplement-Vorkonditionierer; Shear locking; Solid mechanics; Structural mechanics; Strukturmechanik; Transient; Vanka; Vanka; Volume locking; Volumenversteifung; Zeitabhängig; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wobker, H. (2010). Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/26998

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wobker, Hilmar. “Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.” 2010. Thesis, Technische Universität Dortmund. Accessed March 02, 2021. http://hdl.handle.net/2003/26998.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wobker, Hilmar. “Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.” 2010. Web. 02 Mar 2021.

Vancouver:

Wobker H. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. [Internet] [Thesis]. Technische Universität Dortmund; 2010. [cited 2021 Mar 02]. Available from: http://hdl.handle.net/2003/26998.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wobker H. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. [Thesis]. Technische Universität Dortmund; 2010. Available from: http://hdl.handle.net/2003/26998

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

11. Rudi, Johann. Global convection in Earth's mantle : advanced numerical methods and extreme-scale simulations.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2019, University of Texas – Austin

 The thermal convection of rock in Earth's mantle and associated plate tectonics are modeled by nonlinear incompressible Stokes and energy equations. This dissertation focuses on… (more)

Subjects/Keywords: Partial differential equations; Stokes; Numerical methods; Variable viscosity; Schur complement; Preconditioning; Multigrid; Scalable algorithms; Parallel computing; Iterative methods; Nonlinear problems; Inexact Newton-Krylov methods; Mantle convection

…42 5 Inexact Newton–Krylov Methods 45 5.1 Inexact Newton–Krylov methods for nonlinear… …77 7 Multigrid Preconditioning with HMG 80 7.1 An abstract multigrid method… …81 7.2 Hybrid spectral–geometric–algebraic multigrid (HMG)… …77 7.1 Hybrid spectral–geometric–algebraic multigrid (HMG) hierarchy and V… …104 8.2 Algorithmic scalability of inexact Newton–Krylov method… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rudi, J. (2019). Global convection in Earth's mantle : advanced numerical methods and extreme-scale simulations. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/1258

Chicago Manual of Style (16th Edition):

Rudi, Johann. “Global convection in Earth's mantle : advanced numerical methods and extreme-scale simulations.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed March 02, 2021. http://dx.doi.org/10.26153/tsw/1258.

MLA Handbook (7th Edition):

Rudi, Johann. “Global convection in Earth's mantle : advanced numerical methods and extreme-scale simulations.” 2019. Web. 02 Mar 2021.

Vancouver:

Rudi J. Global convection in Earth's mantle : advanced numerical methods and extreme-scale simulations. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2021 Mar 02]. Available from: http://dx.doi.org/10.26153/tsw/1258.

Council of Science Editors:

Rudi J. Global convection in Earth's mantle : advanced numerical methods and extreme-scale simulations. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/1258

12. Wobker, Hilmar. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.

Degree: 2010, Technische Universität Dortmund

 In the simulation of realistic solid mechanical problems, linear equation systems with hundreds of million unknowns can arise. For the efficient solution of such systems,… (more)

Subjects/Keywords: Iterativer Löser; Multilevel; Mehrgitter; Gebietszerlegung; Mehrgitter-Krylov; Nicht-konformes Mehrgitter; ScaRC; Adaptive Grobgitterkorrektur; Minimale Überlappung; Sattelpunkt-Problem; Schurkomplement-Vorkonditionierer; Vanka; Gedämpftes Newton-Raphson; Globales Newton-Raphson; Inexaktes Newton-Raphson; Liniensuche; FEAST; Hardware-orientiert; Großskalig; Paralleles Rechnen; Parallele Effizienz; Finite-Elemente-Methode; Gemischte Formulierung; LBB Stabilisierung; Irreguläres Gitter; Festkörpermechanik; Strukturmechanik; Elastizität; Elastostatisch; Elastodynamisch; Zeitabhängig; Inkompressibles Material; Finite Deformation; Große Deformation; Volumenversteifung; Schubversteifung; Iterative solver; Multilevel; Multigrid; Domain decomposition; Multigrid-Krylov; Nonconforming multigrid; ScaRC; Adaptive coarse grid correction; Minimal overlap; Saddle point problem; Schur complement preconditioning; Vanka; Newton-Raphson; Damped Newton-Raphson; Global Newton-Raphson; Inexact Newton-Raphson; Line-search; FEAST; High performance computing; Hardware-oriented; Large-scale; Parallel computing; Parallel efficiency; Finite element method; Mixed formulation; LBB stabilisation; Equal-order finite elements; Irregular grids; Solid mechanics; Structural mechanics; Elasticity; Elastostatic; Elastodynamic; Transient; Incompressible material; Finite deformation; Large deformation; Volume locking; Shear locking; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wobker, H. (2010). Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-497

Chicago Manual of Style (16th Edition):

Wobker, Hilmar. “Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.” 2010. Doctoral Dissertation, Technische Universität Dortmund. Accessed March 02, 2021. http://dx.doi.org/10.17877/DE290R-497.

MLA Handbook (7th Edition):

Wobker, Hilmar. “Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.” 2010. Web. 02 Mar 2021.

Vancouver:

Wobker H. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2010. [cited 2021 Mar 02]. Available from: http://dx.doi.org/10.17877/DE290R-497.

Council of Science Editors:

Wobker H. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. [Doctoral Dissertation]. Technische Universität Dortmund; 2010. Available from: http://dx.doi.org/10.17877/DE290R-497

.