Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Moyal space)`

.
Showing records 1 – 4 of
4 total matches.

▼ Search Limiters

Université Paris-Sud – Paris XI

1. Cagnache, Eric. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.

Degree: Docteur es, Physique mathématique, 2012, Université Paris-Sud – Paris XI

URL: http://www.theses.fr/2012PA112115

►

La géométrie non commutative, du fait qu'elle permet de généraliser des objets géométriques sous forme algébrique, offre des perspectives intéressantes pour réunir la théorie quantique… (more)

Subjects/Keywords: Géométrie non commutative; Triplets spectraux; Espace de Moyal; Tore non commutatif; Distance; Noncommutative geometry; Spectral triples; Moyal space; Noncommutative torus; Distance

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cagnache, E. (2012). Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2012PA112115

Chicago Manual of Style (16^{th} Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed March 06, 2021. http://www.theses.fr/2012PA112115.

MLA Handbook (7^{th} Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Web. 06 Mar 2021.

Vancouver:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2012. [cited 2021 Mar 06]. Available from: http://www.theses.fr/2012PA112115.

Council of Science Editors:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2012. Available from: http://www.theses.fr/2012PA112115

2.
Oliva, Maxime.
The quantum Wigner current : a geometric approach to quantum dynamics in phase * space*.

Degree: PhD, 2019, University of Hertfordshire

URL: http://hdl.handle.net/2299/22363

► Phase *space* is the unity of position and momentum configuration *space*. It allows for an effective description of dynamical systems and is particularly useful when…
(more)

Subjects/Keywords: Quantum; phase; space; theory; theoretical; physics; superoscillations; schrodinger; wigner; function; distribution; negative; probability; viscosity; fluid; mechanics; stagnation; topology; integral; moyal; groenewold; oliva; steuernagel; kakofengitis; feynman; Zurek; Planck; Structures; Scale; trajectory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Oliva, M. (2019). The quantum Wigner current : a geometric approach to quantum dynamics in phase space. (Doctoral Dissertation). University of Hertfordshire. Retrieved from http://hdl.handle.net/2299/22363

Chicago Manual of Style (16^{th} Edition):

Oliva, Maxime. “The quantum Wigner current : a geometric approach to quantum dynamics in phase space.” 2019. Doctoral Dissertation, University of Hertfordshire. Accessed March 06, 2021. http://hdl.handle.net/2299/22363.

MLA Handbook (7^{th} Edition):

Oliva, Maxime. “The quantum Wigner current : a geometric approach to quantum dynamics in phase space.” 2019. Web. 06 Mar 2021.

Vancouver:

Oliva M. The quantum Wigner current : a geometric approach to quantum dynamics in phase space. [Internet] [Doctoral dissertation]. University of Hertfordshire; 2019. [cited 2021 Mar 06]. Available from: http://hdl.handle.net/2299/22363.

Council of Science Editors:

Oliva M. The quantum Wigner current : a geometric approach to quantum dynamics in phase space. [Doctoral Dissertation]. University of Hertfordshire; 2019. Available from: http://hdl.handle.net/2299/22363

3.
Oliva, Maxime.
The quantum Wigner current : a geometric approach to quantum dynamics in phase * space*.

Degree: PhD, 2019, University of Hertfordshire

URL: https://doi.org/10.18745/th.22363 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.802947

► Phase *space* is the unity of position and momentum configuration *space*. It allows for an effective description of dynamical systems and is particularly useful when…
(more)

Subjects/Keywords: Quantum; phase; space; theory; theoretical; physics; superoscillations; schrodinger; wigner; function; distribution; negative; probability; viscosity; fluid; mechanics; stagnation; topology; integral; moyal; groenewold; oliva; steuernagel; kakofengitis; feynman; Zurek; Planck; Structures; Scale; trajectory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Oliva, M. (2019). The quantum Wigner current : a geometric approach to quantum dynamics in phase space. (Doctoral Dissertation). University of Hertfordshire. Retrieved from https://doi.org/10.18745/th.22363 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.802947

Chicago Manual of Style (16^{th} Edition):

Oliva, Maxime. “The quantum Wigner current : a geometric approach to quantum dynamics in phase space.” 2019. Doctoral Dissertation, University of Hertfordshire. Accessed March 06, 2021. https://doi.org/10.18745/th.22363 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.802947.

MLA Handbook (7^{th} Edition):

Oliva, Maxime. “The quantum Wigner current : a geometric approach to quantum dynamics in phase space.” 2019. Web. 06 Mar 2021.

Vancouver:

Oliva M. The quantum Wigner current : a geometric approach to quantum dynamics in phase space. [Internet] [Doctoral dissertation]. University of Hertfordshire; 2019. [cited 2021 Mar 06]. Available from: https://doi.org/10.18745/th.22363 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.802947.

Council of Science Editors:

Oliva M. The quantum Wigner current : a geometric approach to quantum dynamics in phase space. [Doctoral Dissertation]. University of Hertfordshire; 2019. Available from: https://doi.org/10.18745/th.22363 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.802947

University of Bradford

4.
Agyo, Sanfo David.
Bi-fractional transforms in phase * space*.

Degree: PhD, 2016, University of Bradford

URL: http://hdl.handle.net/10454/14522

► The displacement operator is related to the displaced parity operator through a two dimensional Fourier transform. Both operators are important operators in phase *space* and…
(more)

Subjects/Keywords: 515; Phase space methods; Coherent states; Bi-fractional coherent states; Bi-fractional Wigner function; Bi-fractional P-function; Bi-fractional Q-function; Bi-fractional Moyal star product; Bi-fractional Berezin formalism

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Agyo, S. D. (2016). Bi-fractional transforms in phase space. (Doctoral Dissertation). University of Bradford. Retrieved from http://hdl.handle.net/10454/14522

Chicago Manual of Style (16^{th} Edition):

Agyo, Sanfo David. “Bi-fractional transforms in phase space.” 2016. Doctoral Dissertation, University of Bradford. Accessed March 06, 2021. http://hdl.handle.net/10454/14522.

MLA Handbook (7^{th} Edition):

Agyo, Sanfo David. “Bi-fractional transforms in phase space.” 2016. Web. 06 Mar 2021.

Vancouver:

Agyo SD. Bi-fractional transforms in phase space. [Internet] [Doctoral dissertation]. University of Bradford; 2016. [cited 2021 Mar 06]. Available from: http://hdl.handle.net/10454/14522.

Council of Science Editors:

Agyo SD. Bi-fractional transforms in phase space. [Doctoral Dissertation]. University of Bradford; 2016. Available from: http://hdl.handle.net/10454/14522