Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Moduli spaces). Showing records 1 – 30 of 59 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

Degrees

Country

▼ Search Limiters


University of Illinois – Chicago

1. Ye, Fei. Topology of Moduli Spaces and Complements of Hyperplane Arrangements.

Degree: 2011, University of Illinois – Chicago

 A complex l-arrangement A is a finite collection of hyperplanes in a l-dimensional affine (or projective) space. The study of the interplay between the topology… (more)

Subjects/Keywords: Moduli spaces; Hyperplane arrangements

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ye, F. (2011). Topology of Moduli Spaces and Complements of Hyperplane Arrangements. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/8044

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ye, Fei. “Topology of Moduli Spaces and Complements of Hyperplane Arrangements.” 2011. Thesis, University of Illinois – Chicago. Accessed July 12, 2020. http://hdl.handle.net/10027/8044.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ye, Fei. “Topology of Moduli Spaces and Complements of Hyperplane Arrangements.” 2011. Web. 12 Jul 2020.

Vancouver:

Ye F. Topology of Moduli Spaces and Complements of Hyperplane Arrangements. [Internet] [Thesis]. University of Illinois – Chicago; 2011. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/10027/8044.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ye F. Topology of Moduli Spaces and Complements of Hyperplane Arrangements. [Thesis]. University of Illinois – Chicago; 2011. Available from: http://hdl.handle.net/10027/8044

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

2. Bridges, Mercer Truett. Effective Divisors on Kontsevich Moduli Spaces.

Degree: 2018, University of Illinois – Chicago

 We study the cone of effective divisors on Kontsevich's moduli space of genus 0 stable maps to projective space in the case where map is… (more)

Subjects/Keywords: birational geometry; moduli spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bridges, M. T. (2018). Effective Divisors on Kontsevich Moduli Spaces. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/23067

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bridges, Mercer Truett. “Effective Divisors on Kontsevich Moduli Spaces.” 2018. Thesis, University of Illinois – Chicago. Accessed July 12, 2020. http://hdl.handle.net/10027/23067.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bridges, Mercer Truett. “Effective Divisors on Kontsevich Moduli Spaces.” 2018. Web. 12 Jul 2020.

Vancouver:

Bridges MT. Effective Divisors on Kontsevich Moduli Spaces. [Internet] [Thesis]. University of Illinois – Chicago; 2018. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/10027/23067.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bridges MT. Effective Divisors on Kontsevich Moduli Spaces. [Thesis]. University of Illinois – Chicago; 2018. Available from: http://hdl.handle.net/10027/23067

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Michigan

3. Silversmith, Robert. Gromov-Witten Invariants of Symmetric Products of Projective Space.

Degree: PhD, Mathematics, 2017, University of Michigan

 Gromov-Witten invariants are numbers that roughly count curves of a fixed type on an algebraic variety X. For example, for 3 general points and 6… (more)

Subjects/Keywords: Moduli spaces; Orbifolds; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Silversmith, R. (2017). Gromov-Witten Invariants of Symmetric Products of Projective Space. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/138727

Chicago Manual of Style (16th Edition):

Silversmith, Robert. “Gromov-Witten Invariants of Symmetric Products of Projective Space.” 2017. Doctoral Dissertation, University of Michigan. Accessed July 12, 2020. http://hdl.handle.net/2027.42/138727.

MLA Handbook (7th Edition):

Silversmith, Robert. “Gromov-Witten Invariants of Symmetric Products of Projective Space.” 2017. Web. 12 Jul 2020.

Vancouver:

Silversmith R. Gromov-Witten Invariants of Symmetric Products of Projective Space. [Internet] [Doctoral dissertation]. University of Michigan; 2017. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/2027.42/138727.

Council of Science Editors:

Silversmith R. Gromov-Witten Invariants of Symmetric Products of Projective Space. [Doctoral Dissertation]. University of Michigan; 2017. Available from: http://hdl.handle.net/2027.42/138727


Queens University

4. Harder, Andrew. Moduli Spaces of K3 Surfaces with Large Picard Number .

Degree: Mathematics and Statistics, 2011, Queens University

 Morrison has constructed a geometric relationship between K3 surfaces with large Picard number and abelian surfaces. In particular, this establishes that the period spaces of… (more)

Subjects/Keywords: K3 Surfaces; Algebraic Geometry; Mathematics; Moduli spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Harder, A. (2011). Moduli Spaces of K3 Surfaces with Large Picard Number . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/6646

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Harder, Andrew. “Moduli Spaces of K3 Surfaces with Large Picard Number .” 2011. Thesis, Queens University. Accessed July 12, 2020. http://hdl.handle.net/1974/6646.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Harder, Andrew. “Moduli Spaces of K3 Surfaces with Large Picard Number .” 2011. Web. 12 Jul 2020.

Vancouver:

Harder A. Moduli Spaces of K3 Surfaces with Large Picard Number . [Internet] [Thesis]. Queens University; 2011. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/1974/6646.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Harder A. Moduli Spaces of K3 Surfaces with Large Picard Number . [Thesis]. Queens University; 2011. Available from: http://hdl.handle.net/1974/6646

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Northeastern University

5. He, Zhuang. Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines.

Degree: 2020, Northeastern University

 In this thesis we study the birational geometry of the blow-ups of toric varieties of Picard number one at a general point, and the blow-up… (more)

Subjects/Keywords: birational geometry; effective divisors; moduli spaces of curves; Mori dream spaces; toric varieties; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

He, Z. (2020). Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20356183

Chicago Manual of Style (16th Edition):

He, Zhuang. “Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines.” 2020. Doctoral Dissertation, Northeastern University. Accessed July 12, 2020. http://hdl.handle.net/2047/D20356183.

MLA Handbook (7th Edition):

He, Zhuang. “Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines.” 2020. Web. 12 Jul 2020.

Vancouver:

He Z. Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines. [Internet] [Doctoral dissertation]. Northeastern University; 2020. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/2047/D20356183.

Council of Science Editors:

He Z. Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines. [Doctoral Dissertation]. Northeastern University; 2020. Available from: http://hdl.handle.net/2047/D20356183


University of California – Berkeley

6. Solis, Pablo. Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves.

Degree: Mathematics, 2014, University of California – Berkeley

Moduli problems have become a central area of interest in a wide range of mathematical fields such as representation theory and topology but particularly in… (more)

Subjects/Keywords: Mathematics; algebraic geometry; compactification; curves; loop groups; moduli spaces; principal bundles

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Solis, P. (2014). Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/6ns944x1

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Solis, Pablo. “Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves.” 2014. Thesis, University of California – Berkeley. Accessed July 12, 2020. http://www.escholarship.org/uc/item/6ns944x1.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Solis, Pablo. “Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves.” 2014. Web. 12 Jul 2020.

Vancouver:

Solis P. Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves. [Internet] [Thesis]. University of California – Berkeley; 2014. [cited 2020 Jul 12]. Available from: http://www.escholarship.org/uc/item/6ns944x1.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Solis P. Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves. [Thesis]. University of California – Berkeley; 2014. Available from: http://www.escholarship.org/uc/item/6ns944x1

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Washington

7. Zsamboki, Pal. Toward the compactification of the stack of Lie(G)-forms using perfect complexes.

Degree: PhD, 2015, University of Washington

 To establish geometric properties of an algebraic stack, one can find a compactification. This method has been successfully employed to find irreducible components for example… (more)

Subjects/Keywords: derived algebraic geometry; moduli spaces; torsors; Mathematics; mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zsamboki, P. (2015). Toward the compactification of the stack of Lie(G)-forms using perfect complexes. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/34022

Chicago Manual of Style (16th Edition):

Zsamboki, Pal. “Toward the compactification of the stack of Lie(G)-forms using perfect complexes.” 2015. Doctoral Dissertation, University of Washington. Accessed July 12, 2020. http://hdl.handle.net/1773/34022.

MLA Handbook (7th Edition):

Zsamboki, Pal. “Toward the compactification of the stack of Lie(G)-forms using perfect complexes.” 2015. Web. 12 Jul 2020.

Vancouver:

Zsamboki P. Toward the compactification of the stack of Lie(G)-forms using perfect complexes. [Internet] [Doctoral dissertation]. University of Washington; 2015. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/1773/34022.

Council of Science Editors:

Zsamboki P. Toward the compactification of the stack of Lie(G)-forms using perfect complexes. [Doctoral Dissertation]. University of Washington; 2015. Available from: http://hdl.handle.net/1773/34022

8. Rembado, Gabriele. Quantisation of moduli spaces and connections : Quantification d'espaces de modules et de connexions.

Degree: Docteur es, Mathématiques fondamentales, 2018, Université Paris-Saclay (ComUE)

On construit de nouvelles connexions quantiques intégrables dans fibrés vectoriels au-dessus d'espaces de modules de surfaces de Riemann et de leurs généralisations sauvages, en utilisant… (more)

Subjects/Keywords: Quantification; Connexions; Espaces de Modules; Quantisation; Connections; Moduli Spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rembado, G. (2018). Quantisation of moduli spaces and connections : Quantification d'espaces de modules et de connexions. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2018SACLS008

Chicago Manual of Style (16th Edition):

Rembado, Gabriele. “Quantisation of moduli spaces and connections : Quantification d'espaces de modules et de connexions.” 2018. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed July 12, 2020. http://www.theses.fr/2018SACLS008.

MLA Handbook (7th Edition):

Rembado, Gabriele. “Quantisation of moduli spaces and connections : Quantification d'espaces de modules et de connexions.” 2018. Web. 12 Jul 2020.

Vancouver:

Rembado G. Quantisation of moduli spaces and connections : Quantification d'espaces de modules et de connexions. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2018. [cited 2020 Jul 12]. Available from: http://www.theses.fr/2018SACLS008.

Council of Science Editors:

Rembado G. Quantisation of moduli spaces and connections : Quantification d'espaces de modules et de connexions. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2018. Available from: http://www.theses.fr/2018SACLS008

9. Han, Changho. Stable log surfaces, trigonal covers, and canonical curves of genus 4.

Degree: PhD, 2019, Harvard University

We describe a compactification of the moduli space of pairs (S, C) where S is isomorphic to \PP1  ×  \PP1 and C \subset S is… (more)

Subjects/Keywords: Algebraic Geometry; Moduli spaces

…varieties are themselves parametrized by points of algebraic varieties, called moduli spaces. A… …families of objects. A crucial step in the study of moduli spaces is the notion of a modular… …noncompact spaces, it is useful to have a modular compactification. Note that moduli spaces of… …characteristics, by using the existence of M g . 1 In contrast to the geometry of the moduli spaces… …of curves, the geometry of moduli spaces of surfaces are generally unknown. Even… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Han, C. (2019). Stable log surfaces, trigonal covers, and canonical curves of genus 4. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707

Chicago Manual of Style (16th Edition):

Han, Changho. “Stable log surfaces, trigonal covers, and canonical curves of genus 4.” 2019. Doctoral Dissertation, Harvard University. Accessed July 12, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707.

MLA Handbook (7th Edition):

Han, Changho. “Stable log surfaces, trigonal covers, and canonical curves of genus 4.” 2019. Web. 12 Jul 2020.

Vancouver:

Han C. Stable log surfaces, trigonal covers, and canonical curves of genus 4. [Internet] [Doctoral dissertation]. Harvard University; 2019. [cited 2020 Jul 12]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707.

Council of Science Editors:

Han C. Stable log surfaces, trigonal covers, and canonical curves of genus 4. [Doctoral Dissertation]. Harvard University; 2019. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707


University of Melbourne

10. Leigh, Oliver. Enumerative problems in algebraic geometry motivated from physics.

Degree: 2019, University of Melbourne

 This thesis contains two chapters which reflect the two main viewpoints of modern enumerative geometry. In chapter 1 we develop a theory for stable maps… (more)

Subjects/Keywords: moduli spaces; stable maps; twisted curves; spin structures; Hurwitz numbers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leigh, O. (2019). Enumerative problems in algebraic geometry motivated from physics. (Doctoral Dissertation). University of Melbourne. Retrieved from http://hdl.handle.net/11343/225589

Chicago Manual of Style (16th Edition):

Leigh, Oliver. “Enumerative problems in algebraic geometry motivated from physics.” 2019. Doctoral Dissertation, University of Melbourne. Accessed July 12, 2020. http://hdl.handle.net/11343/225589.

MLA Handbook (7th Edition):

Leigh, Oliver. “Enumerative problems in algebraic geometry motivated from physics.” 2019. Web. 12 Jul 2020.

Vancouver:

Leigh O. Enumerative problems in algebraic geometry motivated from physics. [Internet] [Doctoral dissertation]. University of Melbourne; 2019. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/11343/225589.

Council of Science Editors:

Leigh O. Enumerative problems in algebraic geometry motivated from physics. [Doctoral Dissertation]. University of Melbourne; 2019. Available from: http://hdl.handle.net/11343/225589


University of Arizona

11. Maienschein, Thomas Daniel. Desingularizing the boundary of the moduli space of genus one stable quotients .

Degree: 2014, University of Arizona

 The moduli space of stable quotients, introduced by Marian, Oprea, and Pandharipande, provides a nonsingular compactification of the moduli space of degree d maps from… (more)

Subjects/Keywords: quot schemes; stable maps; stable quotients; Mathematics; moduli spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maienschein, T. D. (2014). Desingularizing the boundary of the moduli space of genus one stable quotients . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/325213

Chicago Manual of Style (16th Edition):

Maienschein, Thomas Daniel. “Desingularizing the boundary of the moduli space of genus one stable quotients .” 2014. Doctoral Dissertation, University of Arizona. Accessed July 12, 2020. http://hdl.handle.net/10150/325213.

MLA Handbook (7th Edition):

Maienschein, Thomas Daniel. “Desingularizing the boundary of the moduli space of genus one stable quotients .” 2014. Web. 12 Jul 2020.

Vancouver:

Maienschein TD. Desingularizing the boundary of the moduli space of genus one stable quotients . [Internet] [Doctoral dissertation]. University of Arizona; 2014. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/10150/325213.

Council of Science Editors:

Maienschein TD. Desingularizing the boundary of the moduli space of genus one stable quotients . [Doctoral Dissertation]. University of Arizona; 2014. Available from: http://hdl.handle.net/10150/325213

12. Minets, Alexandre. Algèbres de Hall cohomologiques et variétés de Nakajima associées a des courbes : Cohomological Hall algebras and Nakajima varieties associated to curves.

Degree: Docteur es, Mathématiques fondamentales, 2018, Université Paris-Saclay (ComUE)

Pour toute courbe projective lisse C et théorie homologique orientée de Borel-Moore libre A, on construit un produit associatif de type Hall sur les A-groupes… (more)

Subjects/Keywords: Fibrés de Higgs; Théorie de représentations; Algèbres de battage; Algèbres de Hall; Espaces de modules; Moduli spaces; Higgs bundles; Representation theory; Hall algebras; Moduli spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Minets, A. (2018). Algèbres de Hall cohomologiques et variétés de Nakajima associées a des courbes : Cohomological Hall algebras and Nakajima varieties associated to curves. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2018SACLS228

Chicago Manual of Style (16th Edition):

Minets, Alexandre. “Algèbres de Hall cohomologiques et variétés de Nakajima associées a des courbes : Cohomological Hall algebras and Nakajima varieties associated to curves.” 2018. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed July 12, 2020. http://www.theses.fr/2018SACLS228.

MLA Handbook (7th Edition):

Minets, Alexandre. “Algèbres de Hall cohomologiques et variétés de Nakajima associées a des courbes : Cohomological Hall algebras and Nakajima varieties associated to curves.” 2018. Web. 12 Jul 2020.

Vancouver:

Minets A. Algèbres de Hall cohomologiques et variétés de Nakajima associées a des courbes : Cohomological Hall algebras and Nakajima varieties associated to curves. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2018. [cited 2020 Jul 12]. Available from: http://www.theses.fr/2018SACLS228.

Council of Science Editors:

Minets A. Algèbres de Hall cohomologiques et variétés de Nakajima associées a des courbes : Cohomological Hall algebras and Nakajima varieties associated to curves. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2018. Available from: http://www.theses.fr/2018SACLS228


Universidade Nova

13. Ferreira, Susana Raquel Carvalho. Schottky principal G-bundles over compact Riemann surfaces.

Degree: 2014, Universidade Nova

Fundação para a Ciência e a Tecnologia (FCT)- PhD grant SFRH/BD/37151/2007; projects PTDC/MAT/099275/2008; PTDC/MAT/119689/2010; PTDC/MAT/120411/2010; PTDC/MAT-GEO/0675/2012 Advisors/Committee Members: Florentino, Carlos, Casimiro, Ana.

Subjects/Keywords: Representations of the fundamental group; Character varieties; Principal bundles; Moduli spaces; Compact Riemann surface

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ferreira, S. R. C. (2014). Schottky principal G-bundles over compact Riemann surfaces. (Thesis). Universidade Nova. Retrieved from http://www.rcaap.pt/detail.jsp?id=oai:run.unl.pt:10362/13333

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ferreira, Susana Raquel Carvalho. “Schottky principal G-bundles over compact Riemann surfaces.” 2014. Thesis, Universidade Nova. Accessed July 12, 2020. http://www.rcaap.pt/detail.jsp?id=oai:run.unl.pt:10362/13333.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ferreira, Susana Raquel Carvalho. “Schottky principal G-bundles over compact Riemann surfaces.” 2014. Web. 12 Jul 2020.

Vancouver:

Ferreira SRC. Schottky principal G-bundles over compact Riemann surfaces. [Internet] [Thesis]. Universidade Nova; 2014. [cited 2020 Jul 12]. Available from: http://www.rcaap.pt/detail.jsp?id=oai:run.unl.pt:10362/13333.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ferreira SRC. Schottky principal G-bundles over compact Riemann surfaces. [Thesis]. Universidade Nova; 2014. Available from: http://www.rcaap.pt/detail.jsp?id=oai:run.unl.pt:10362/13333

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

14. Hoskins, Victoria Amy. Moduli spaces of complexes of sheaves.

Degree: PhD, 2011, University of Oxford

 This thesis is on moduli spaces of complexes of sheaves and diagrams of such moduli spaces. The objects in these diagrams are constructed as geometric… (more)

Subjects/Keywords: 514.224; Algebraic geometry; moduli spaces; sheaves; complexes; geometric invariant theory; Harder-Narasimhan stratifications

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hoskins, V. A. (2011). Moduli spaces of complexes of sheaves. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:aedd2719-2a38-41f9-9825-aa8f43fb872c ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558390

Chicago Manual of Style (16th Edition):

Hoskins, Victoria Amy. “Moduli spaces of complexes of sheaves.” 2011. Doctoral Dissertation, University of Oxford. Accessed July 12, 2020. http://ora.ox.ac.uk/objects/uuid:aedd2719-2a38-41f9-9825-aa8f43fb872c ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558390.

MLA Handbook (7th Edition):

Hoskins, Victoria Amy. “Moduli spaces of complexes of sheaves.” 2011. Web. 12 Jul 2020.

Vancouver:

Hoskins VA. Moduli spaces of complexes of sheaves. [Internet] [Doctoral dissertation]. University of Oxford; 2011. [cited 2020 Jul 12]. Available from: http://ora.ox.ac.uk/objects/uuid:aedd2719-2a38-41f9-9825-aa8f43fb872c ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558390.

Council of Science Editors:

Hoskins VA. Moduli spaces of complexes of sheaves. [Doctoral Dissertation]. University of Oxford; 2011. Available from: http://ora.ox.ac.uk/objects/uuid:aedd2719-2a38-41f9-9825-aa8f43fb872c ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558390


Northeastern University

15. Bolognese, Barbara. Two results on divisors on moduli spaces of sheaves on algebraic surfaces: generic Strange Duality on abelian surfaces and Nef cones of Hilbert schemes of points on surfaces with irregularity zero.

Degree: PhD, Department of Mathematics, 2016, Northeastern University

 In the first part of this thesis, we consider a special version of Le Potier's strange duality conjecture for sheaves over abelian surfaces, after other… (more)

Subjects/Keywords: Abelian surfaces; Bridgeland stability; moduli spaces; Nef cone; strange duality; Theta divisors; Sheaf theory; Moduli theory; Surfaces, Algebraic; Abelian varieties; Cone; Stability; Functions, Theta

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bolognese, B. (2016). Two results on divisors on moduli spaces of sheaves on algebraic surfaces: generic Strange Duality on abelian surfaces and Nef cones of Hilbert schemes of points on surfaces with irregularity zero. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20211213

Chicago Manual of Style (16th Edition):

Bolognese, Barbara. “Two results on divisors on moduli spaces of sheaves on algebraic surfaces: generic Strange Duality on abelian surfaces and Nef cones of Hilbert schemes of points on surfaces with irregularity zero.” 2016. Doctoral Dissertation, Northeastern University. Accessed July 12, 2020. http://hdl.handle.net/2047/D20211213.

MLA Handbook (7th Edition):

Bolognese, Barbara. “Two results on divisors on moduli spaces of sheaves on algebraic surfaces: generic Strange Duality on abelian surfaces and Nef cones of Hilbert schemes of points on surfaces with irregularity zero.” 2016. Web. 12 Jul 2020.

Vancouver:

Bolognese B. Two results on divisors on moduli spaces of sheaves on algebraic surfaces: generic Strange Duality on abelian surfaces and Nef cones of Hilbert schemes of points on surfaces with irregularity zero. [Internet] [Doctoral dissertation]. Northeastern University; 2016. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/2047/D20211213.

Council of Science Editors:

Bolognese B. Two results on divisors on moduli spaces of sheaves on algebraic surfaces: generic Strange Duality on abelian surfaces and Nef cones of Hilbert schemes of points on surfaces with irregularity zero. [Doctoral Dissertation]. Northeastern University; 2016. Available from: http://hdl.handle.net/2047/D20211213


University of Georgia

16. Schaffler, Luca. The KSBA compactification of a 4-dimensional family of polarized enriques surfaces.

Degree: PhD, Mathematics, 2017, University of Georgia

 We describe the moduli compactification by stable pairs (also known as KSBA compactification) of a 4-dimensional family of Enriques surfaces, which arise as specific bidouble… (more)

Subjects/Keywords: Moduli spaces; compactifications; stable pairs; Enriques surfaces; stable toric pairs; secondary polytopes; lattices; discrete reflection groups.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schaffler, L. (2017). The KSBA compactification of a 4-dimensional family of polarized enriques surfaces. (Doctoral Dissertation). University of Georgia. Retrieved from http://hdl.handle.net/10724/37503

Chicago Manual of Style (16th Edition):

Schaffler, Luca. “The KSBA compactification of a 4-dimensional family of polarized enriques surfaces.” 2017. Doctoral Dissertation, University of Georgia. Accessed July 12, 2020. http://hdl.handle.net/10724/37503.

MLA Handbook (7th Edition):

Schaffler, Luca. “The KSBA compactification of a 4-dimensional family of polarized enriques surfaces.” 2017. Web. 12 Jul 2020.

Vancouver:

Schaffler L. The KSBA compactification of a 4-dimensional family of polarized enriques surfaces. [Internet] [Doctoral dissertation]. University of Georgia; 2017. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/10724/37503.

Council of Science Editors:

Schaffler L. The KSBA compactification of a 4-dimensional family of polarized enriques surfaces. [Doctoral Dissertation]. University of Georgia; 2017. Available from: http://hdl.handle.net/10724/37503

17. Fernández Vargas, Néstor. Fibres vectoriels sur des courbes hyperelliptiques : Vector bundles on hyperelliptic curves.

Degree: Docteur es, Mathématiques, 2018, Rennes 1

Cette thèse est dédiée à l'étude des espaces de modules de fibrés sur une courbe algébrique et lisse sur le corps des nombres complexes.  Le… (more)

Subjects/Keywords: Fibrés vectoriels; Courbes algébriques; Espaces de modules; Fibrés quasi-Paraboliques; Vector bundles; Algebraic curves; Moduli spaces; Quasi-Parabolic bundles

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fernández Vargas, N. (2018). Fibres vectoriels sur des courbes hyperelliptiques : Vector bundles on hyperelliptic curves. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2018REN1S051

Chicago Manual of Style (16th Edition):

Fernández Vargas, Néstor. “Fibres vectoriels sur des courbes hyperelliptiques : Vector bundles on hyperelliptic curves.” 2018. Doctoral Dissertation, Rennes 1. Accessed July 12, 2020. http://www.theses.fr/2018REN1S051.

MLA Handbook (7th Edition):

Fernández Vargas, Néstor. “Fibres vectoriels sur des courbes hyperelliptiques : Vector bundles on hyperelliptic curves.” 2018. Web. 12 Jul 2020.

Vancouver:

Fernández Vargas N. Fibres vectoriels sur des courbes hyperelliptiques : Vector bundles on hyperelliptic curves. [Internet] [Doctoral dissertation]. Rennes 1; 2018. [cited 2020 Jul 12]. Available from: http://www.theses.fr/2018REN1S051.

Council of Science Editors:

Fernández Vargas N. Fibres vectoriels sur des courbes hyperelliptiques : Vector bundles on hyperelliptic curves. [Doctoral Dissertation]. Rennes 1; 2018. Available from: http://www.theses.fr/2018REN1S051


Freie Universität Berlin

18. Beck, Nikolai. Moduli spaces of decorated principal bundles on a projective curve.

Degree: 2014, Freie Universität Berlin

 The aim of this work is the construction of a coarse moduli space for prinicpal bundles on a smooth projective cruve X with a decoration… (more)

Subjects/Keywords: moduli spaces; principal bundles; geometric invariant theory; parabolic bundles; level structure;

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Beck, N. (2014). Moduli spaces of decorated principal bundles on a projective curve. (Thesis). Freie Universität Berlin. Retrieved from http://dx.doi.org/10.17169/refubium-10009

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Beck, Nikolai. “Moduli spaces of decorated principal bundles on a projective curve.” 2014. Thesis, Freie Universität Berlin. Accessed July 12, 2020. http://dx.doi.org/10.17169/refubium-10009.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Beck, Nikolai. “Moduli spaces of decorated principal bundles on a projective curve.” 2014. Web. 12 Jul 2020.

Vancouver:

Beck N. Moduli spaces of decorated principal bundles on a projective curve. [Internet] [Thesis]. Freie Universität Berlin; 2014. [cited 2020 Jul 12]. Available from: http://dx.doi.org/10.17169/refubium-10009.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Beck N. Moduli spaces of decorated principal bundles on a projective curve. [Thesis]. Freie Universität Berlin; 2014. Available from: http://dx.doi.org/10.17169/refubium-10009

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

19. Ryan, Timothy L. The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface.

Degree: 2016, University of Illinois – Chicago

 In this paper, we provide an approach to computing the effective cone of moduli spaces of sheaves on a smooth quadric surface. We find Brill-Noether… (more)

Subjects/Keywords: algebraic geometry; moduli spaces; bridgeland stability; stability; birational geometry; effective cone; quadric surface; mmp; minimal model program

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ryan, T. L. (2016). The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/21355

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ryan, Timothy L. “The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface.” 2016. Thesis, University of Illinois – Chicago. Accessed July 12, 2020. http://hdl.handle.net/10027/21355.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ryan, Timothy L. “The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface.” 2016. Web. 12 Jul 2020.

Vancouver:

Ryan TL. The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface. [Internet] [Thesis]. University of Illinois – Chicago; 2016. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/10027/21355.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ryan TL. The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface. [Thesis]. University of Illinois – Chicago; 2016. Available from: http://hdl.handle.net/10027/21355

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

20. Schlüeter, Dirk Christopher. Universal moduli of parabolic sheaves on stable marked curves.

Degree: PhD, 2011, University of Oxford

 The topic of this thesis is the moduli theory of (parabolic) sheaves on stable curves. Using geometric invariant theory (GIT), universal moduli spaces of semistable… (more)

Subjects/Keywords: 516.35; Mathematics; Geometry; algebraic geometry; moduli spaces; geometric invariant theory; parabolic sheaves; parabolic bundles; marked curves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schlüeter, D. C. (2011). Universal moduli of parabolic sheaves on stable marked curves. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:b0260f8e-6654-4bec-b670-5e925fd403dd ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572475

Chicago Manual of Style (16th Edition):

Schlüeter, Dirk Christopher. “Universal moduli of parabolic sheaves on stable marked curves.” 2011. Doctoral Dissertation, University of Oxford. Accessed July 12, 2020. http://ora.ox.ac.uk/objects/uuid:b0260f8e-6654-4bec-b670-5e925fd403dd ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572475.

MLA Handbook (7th Edition):

Schlüeter, Dirk Christopher. “Universal moduli of parabolic sheaves on stable marked curves.” 2011. Web. 12 Jul 2020.

Vancouver:

Schlüeter DC. Universal moduli of parabolic sheaves on stable marked curves. [Internet] [Doctoral dissertation]. University of Oxford; 2011. [cited 2020 Jul 12]. Available from: http://ora.ox.ac.uk/objects/uuid:b0260f8e-6654-4bec-b670-5e925fd403dd ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572475.

Council of Science Editors:

Schlüeter DC. Universal moduli of parabolic sheaves on stable marked curves. [Doctoral Dissertation]. University of Oxford; 2011. Available from: http://ora.ox.ac.uk/objects/uuid:b0260f8e-6654-4bec-b670-5e925fd403dd ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572475


Queens University

21. Ren, Owen. Moduli spaces of vector bundles on toric surfaces .

Degree: Mathematics and Statistics, Queens University

 The moduli spaces parametrizing isomorphism classes of vector bundles are poorly understood. For certain choices of the first Chern class and a suitable second Chern… (more)

Subjects/Keywords: Mathematics; Moduli spaces; Algebraic geometry; Toric surfaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ren, O. (n.d.). Moduli spaces of vector bundles on toric surfaces . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/24812

Note: this citation may be lacking information needed for this citation format:
No year of publication.
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ren, Owen. “Moduli spaces of vector bundles on toric surfaces .” Thesis, Queens University. Accessed July 12, 2020. http://hdl.handle.net/1974/24812.

Note: this citation may be lacking information needed for this citation format:
No year of publication.
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ren, Owen. “Moduli spaces of vector bundles on toric surfaces .” Web. 12 Jul 2020.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Vancouver:

Ren O. Moduli spaces of vector bundles on toric surfaces . [Internet] [Thesis]. Queens University; [cited 2020 Jul 12]. Available from: http://hdl.handle.net/1974/24812.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
No year of publication.

Council of Science Editors:

Ren O. Moduli spaces of vector bundles on toric surfaces . [Thesis]. Queens University; Available from: http://hdl.handle.net/1974/24812

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
No year of publication.

22. Galeotti, Mattia Francesco. Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale.

Degree: Docteur es, Mathématiques, 2017, Université Pierre et Marie Curie – Paris VI

L'espace de modules Mgbar des courbes stables de genre g est un object central en géométrie algébrique. Du point de vue de la géométrie birationelle,… (more)

Subjects/Keywords: Géométrie algébrique; Espaces de modules; Courbes; Singularités; Recouvrements; Anneau tautologique; Algebraic geometry; Moduli spaces; Tautological ring; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Galeotti, M. F. (2017). Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2017PA066485

Chicago Manual of Style (16th Edition):

Galeotti, Mattia Francesco. “Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale.” 2017. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed July 12, 2020. http://www.theses.fr/2017PA066485.

MLA Handbook (7th Edition):

Galeotti, Mattia Francesco. “Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale.” 2017. Web. 12 Jul 2020.

Vancouver:

Galeotti MF. Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. [cited 2020 Jul 12]. Available from: http://www.theses.fr/2017PA066485.

Council of Science Editors:

Galeotti MF. Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. Available from: http://www.theses.fr/2017PA066485

23. Granier, Jordane. Groupes discrets en géométrie hyperbolique : aspects effectifs : Discrete groups in hyperbolic geometry : effective aspects.

Degree: Docteur es, Mathématiques, 2015, Université Grenoble Alpes (ComUE); Université de Fribourg (Suisse)

Cette thèse traite de deux problèmes en géométrie hyperbolique réelle et complexe. On étudie dans un premier temps des structures géométriques sur des espaces de… (more)

Subjects/Keywords: Géométrie hyperbolique; Groupes discrets; Ensembles limites; Réseaux; Espaces de modules; Hyperbolic geometry; Discrete groups; Limit sets; Lattices; Moduli spaces; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Granier, J. (2015). Groupes discrets en géométrie hyperbolique : aspects effectifs : Discrete groups in hyperbolic geometry : effective aspects. (Doctoral Dissertation). Université Grenoble Alpes (ComUE); Université de Fribourg (Suisse). Retrieved from http://www.theses.fr/2015GREAM078

Chicago Manual of Style (16th Edition):

Granier, Jordane. “Groupes discrets en géométrie hyperbolique : aspects effectifs : Discrete groups in hyperbolic geometry : effective aspects.” 2015. Doctoral Dissertation, Université Grenoble Alpes (ComUE); Université de Fribourg (Suisse). Accessed July 12, 2020. http://www.theses.fr/2015GREAM078.

MLA Handbook (7th Edition):

Granier, Jordane. “Groupes discrets en géométrie hyperbolique : aspects effectifs : Discrete groups in hyperbolic geometry : effective aspects.” 2015. Web. 12 Jul 2020.

Vancouver:

Granier J. Groupes discrets en géométrie hyperbolique : aspects effectifs : Discrete groups in hyperbolic geometry : effective aspects. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); Université de Fribourg (Suisse); 2015. [cited 2020 Jul 12]. Available from: http://www.theses.fr/2015GREAM078.

Council of Science Editors:

Granier J. Groupes discrets en géométrie hyperbolique : aspects effectifs : Discrete groups in hyperbolic geometry : effective aspects. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); Université de Fribourg (Suisse); 2015. Available from: http://www.theses.fr/2015GREAM078


University of Western Ontario

24. Rosario-Ortega, Josue. Moduli space and deformations of special Lagrangian submanifolds with edge singularities.

Degree: 2016, University of Western Ontario

 Special Lagrangian submanifolds are submanifolds of a Calabi-Yau manifold calibrated by the real part of the holomorphic volume form. In this thesis we use elliptic… (more)

Subjects/Keywords: singular manifolds; special Lagrangian submanifolds; edge-degenerate differential operators; boundary value problems; moduli spaces; Analysis; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rosario-Ortega, J. (2016). Moduli space and deformations of special Lagrangian submanifolds with edge singularities. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3924

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rosario-Ortega, Josue. “Moduli space and deformations of special Lagrangian submanifolds with edge singularities.” 2016. Thesis, University of Western Ontario. Accessed July 12, 2020. https://ir.lib.uwo.ca/etd/3924.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rosario-Ortega, Josue. “Moduli space and deformations of special Lagrangian submanifolds with edge singularities.” 2016. Web. 12 Jul 2020.

Vancouver:

Rosario-Ortega J. Moduli space and deformations of special Lagrangian submanifolds with edge singularities. [Internet] [Thesis]. University of Western Ontario; 2016. [cited 2020 Jul 12]. Available from: https://ir.lib.uwo.ca/etd/3924.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rosario-Ortega J. Moduli space and deformations of special Lagrangian submanifolds with edge singularities. [Thesis]. University of Western Ontario; 2016. Available from: https://ir.lib.uwo.ca/etd/3924

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

25. Zelaci, Hacen. Espaces de modules de fibrés vectoriels anti-invariants sur les courbes et blocs conformes : Moduli spaces of anti-invariant vector bundles over curves and conformal blocks.

Degree: Docteur es, Mathématiques, 2017, Université Côte d'Azur (ComUE)

Soit X une courbe projective lisse et irréductible munie d'une involution σ. Dans cette thèse, nous étudions les fibrés vectoriels invariants and anti-invariants sur X… (more)

Subjects/Keywords: Fibrés vectoriels; Espaces de modules; Torpeurs parahoriques; Systèmes de Hitchin; Vector bundles; Moduli spaces; Parahoric torsos; Hitching systems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zelaci, H. (2017). Espaces de modules de fibrés vectoriels anti-invariants sur les courbes et blocs conformes : Moduli spaces of anti-invariant vector bundles over curves and conformal blocks. (Doctoral Dissertation). Université Côte d'Azur (ComUE). Retrieved from http://www.theses.fr/2017AZUR4063

Chicago Manual of Style (16th Edition):

Zelaci, Hacen. “Espaces de modules de fibrés vectoriels anti-invariants sur les courbes et blocs conformes : Moduli spaces of anti-invariant vector bundles over curves and conformal blocks.” 2017. Doctoral Dissertation, Université Côte d'Azur (ComUE). Accessed July 12, 2020. http://www.theses.fr/2017AZUR4063.

MLA Handbook (7th Edition):

Zelaci, Hacen. “Espaces de modules de fibrés vectoriels anti-invariants sur les courbes et blocs conformes : Moduli spaces of anti-invariant vector bundles over curves and conformal blocks.” 2017. Web. 12 Jul 2020.

Vancouver:

Zelaci H. Espaces de modules de fibrés vectoriels anti-invariants sur les courbes et blocs conformes : Moduli spaces of anti-invariant vector bundles over curves and conformal blocks. [Internet] [Doctoral dissertation]. Université Côte d'Azur (ComUE); 2017. [cited 2020 Jul 12]. Available from: http://www.theses.fr/2017AZUR4063.

Council of Science Editors:

Zelaci H. Espaces de modules de fibrés vectoriels anti-invariants sur les courbes et blocs conformes : Moduli spaces of anti-invariant vector bundles over curves and conformal blocks. [Doctoral Dissertation]. Université Côte d'Azur (ComUE); 2017. Available from: http://www.theses.fr/2017AZUR4063

26. Ramadas, Rohini. Dynamics on the Moduli Space of Pointed Rational Curves.

Degree: PhD, Mathematics, 2017, University of Michigan

 The moduli space M0,n parametrizes all ways of labelling n distinct points on the Riemann sphere P1, up to change of coordinates by Mobius transformations.… (more)

Subjects/Keywords: Moduli spaces; Complex dynamics; Mathematics; Science

moduli spaces Mg,n classify smooth genus g algebraic curves/Riemann surfaces with n distinct… …various moduli spaces Mg,n and Mg,n . It is common to use tautological maps to study all of… …invariants called dynamical degrees. In this chapter, we give brief introductions to moduli spaces… …summarize the results in this thesis. 1.1 Moduli spaces of genus 0 curves Every smooth genus 0… …takes one to the other. This implies that each of the moduli spaces M0,0 , 1 M0,1 , M0,2 and… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ramadas, R. (2017). Dynamics on the Moduli Space of Pointed Rational Curves. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/138644

Chicago Manual of Style (16th Edition):

Ramadas, Rohini. “Dynamics on the Moduli Space of Pointed Rational Curves.” 2017. Doctoral Dissertation, University of Michigan. Accessed July 12, 2020. http://hdl.handle.net/2027.42/138644.

MLA Handbook (7th Edition):

Ramadas, Rohini. “Dynamics on the Moduli Space of Pointed Rational Curves.” 2017. Web. 12 Jul 2020.

Vancouver:

Ramadas R. Dynamics on the Moduli Space of Pointed Rational Curves. [Internet] [Doctoral dissertation]. University of Michigan; 2017. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/2027.42/138644.

Council of Science Editors:

Ramadas R. Dynamics on the Moduli Space of Pointed Rational Curves. [Doctoral Dissertation]. University of Michigan; 2017. Available from: http://hdl.handle.net/2027.42/138644


Kyoto University / 京都大学

27. Choy, Jaeyoo. Moduli spaces of framed symplectic and orthogonal bundles on P2 and the K-theoretic Nekrasov partition functions : 複素射影平面上のシンプレクティック束及び直交束のモジュライ空間とK理論ネクラソフ分配関数.

Degree: 博士(理学), 2015, Kyoto University / 京都大学

新制・論文博士

乙第12910号

論理博第1546号

Subjects/Keywords: moduli spaces; framed symplectic and orthogonal bundles; instantons; K-theoretic Nekrasov partition function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Choy, J. (2015). Moduli spaces of framed symplectic and orthogonal bundles on P2 and the K-theoretic Nekrasov partition functions : 複素射影平面上のシンプレクティック束及び直交束のモジュライ空間とK理論ネクラソフ分配関数. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/198873 ; http://dx.doi.org/10.14989/doctor.r12910

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Choy, Jaeyoo. “Moduli spaces of framed symplectic and orthogonal bundles on P2 and the K-theoretic Nekrasov partition functions : 複素射影平面上のシンプレクティック束及び直交束のモジュライ空間とK理論ネクラソフ分配関数.” 2015. Thesis, Kyoto University / 京都大学. Accessed July 12, 2020. http://hdl.handle.net/2433/198873 ; http://dx.doi.org/10.14989/doctor.r12910.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Choy, Jaeyoo. “Moduli spaces of framed symplectic and orthogonal bundles on P2 and the K-theoretic Nekrasov partition functions : 複素射影平面上のシンプレクティック束及び直交束のモジュライ空間とK理論ネクラソフ分配関数.” 2015. Web. 12 Jul 2020.

Vancouver:

Choy J. Moduli spaces of framed symplectic and orthogonal bundles on P2 and the K-theoretic Nekrasov partition functions : 複素射影平面上のシンプレクティック束及び直交束のモジュライ空間とK理論ネクラソフ分配関数. [Internet] [Thesis]. Kyoto University / 京都大学; 2015. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/2433/198873 ; http://dx.doi.org/10.14989/doctor.r12910.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Choy J. Moduli spaces of framed symplectic and orthogonal bundles on P2 and the K-theoretic Nekrasov partition functions : 複素射影平面上のシンプレクティック束及び直交束のモジュライ空間とK理論ネクラソフ分配関数. [Thesis]. Kyoto University / 京都大学; 2015. Available from: http://hdl.handle.net/2433/198873 ; http://dx.doi.org/10.14989/doctor.r12910

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Johannes Gutenberg Universität Mainz

28. Becker, Tanja. Moduli spaces of (G,h)-constellations.

Degree: 2011, Johannes Gutenberg Universität Mainz

Given a reductive group G acting on an affine scheme X over C and a Hilbert function h: Irr G → N_0, we construct the… (more)

Subjects/Keywords: Modulräume von Garben, Invariante Hilbertschemata, Auflösungen von Singularitäten, Geometrische Invariantentheorie; Moduli spaces of sheaves, Invariant Hilbert schemes, Resolutions of singularities, Geometric Invariant Theory; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Becker, T. (2011). Moduli spaces of (G,h)-constellations. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2011/2919/

Chicago Manual of Style (16th Edition):

Becker, Tanja. “Moduli spaces of (G,h)-constellations.” 2011. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed July 12, 2020. http://ubm.opus.hbz-nrw.de/volltexte/2011/2919/.

MLA Handbook (7th Edition):

Becker, Tanja. “Moduli spaces of (G,h)-constellations.” 2011. Web. 12 Jul 2020.

Vancouver:

Becker T. Moduli spaces of (G,h)-constellations. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2011. [cited 2020 Jul 12]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2011/2919/.

Council of Science Editors:

Becker T. Moduli spaces of (G,h)-constellations. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2011. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2011/2919/


Université du Luxembourg

29. Leytem, Alain. Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane.

Degree: 2016, Université du Luxembourg

 This thesis consists of two individual parts, each one having an interest in itself, but which are also related to each other. In Part I… (more)

Subjects/Keywords: algebraic geometry; non-integral torsion; purity; Simpson moduli spaces; singular sheaves; codimension; Physical, chemical, mathematical & earth Sciences :: Mathematics [G03]; Physique, chimie, mathématiques & sciences de la terre :: Mathématiques [G03]

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leytem, A. (2016). Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane. (Doctoral Dissertation). Université du Luxembourg. Retrieved from http://orbilu.uni.lu/handle/10993/23380

Chicago Manual of Style (16th Edition):

Leytem, Alain. “Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane.” 2016. Doctoral Dissertation, Université du Luxembourg. Accessed July 12, 2020. http://orbilu.uni.lu/handle/10993/23380.

MLA Handbook (7th Edition):

Leytem, Alain. “Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane.” 2016. Web. 12 Jul 2020.

Vancouver:

Leytem A. Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane. [Internet] [Doctoral dissertation]. Université du Luxembourg; 2016. [cited 2020 Jul 12]. Available from: http://orbilu.uni.lu/handle/10993/23380.

Council of Science Editors:

Leytem A. Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane. [Doctoral Dissertation]. Université du Luxembourg; 2016. Available from: http://orbilu.uni.lu/handle/10993/23380

30. A. Cattaneo. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.

Degree: 2018, Università degli Studi di Milano

La tesi si concentra sullo studio degli automorfismi di varietà olomorfe simplettiche irriducibili di tipo K3^[n], ovvero varietà equivalenti per deformazione allo schema di Hilbert… (more)

Subjects/Keywords: complex algebraic geometry; lattice theory; holomorphic symplectic manifold; Hilbert schemes of points on K3 surfaces; automorphisms; Torelli theorem; moduli spaces; Settore MAT/03 - Geometria

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cattaneo, A. (2018). NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/606455

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cattaneo, A.. “NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.” 2018. Thesis, Università degli Studi di Milano. Accessed July 12, 2020. http://hdl.handle.net/2434/606455.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cattaneo, A.. “NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.” 2018. Web. 12 Jul 2020.

Vancouver:

Cattaneo A. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. [Internet] [Thesis]. Università degli Studi di Milano; 2018. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/2434/606455.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cattaneo A. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. [Thesis]. Università degli Studi di Milano; 2018. Available from: http://hdl.handle.net/2434/606455

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2]

.