Advanced search options
You searched for subject:(Mixing limit)
.
Showing records 1 – 3 of
3 total matches.
▼ Search Limiters
Georgia Tech
1. Diaz-Mercado, Yancy J. Interactions in multi-robot systems.
Degree: PhD, Electrical and Computer Engineering, 2016, Georgia Tech
URL: http://hdl.handle.net/1853/55020
Subjects/Keywords: Multi-robot control; Human-swarm interactions; Coverage control; Coverage of time-varying density functions; Braids; Multi-robot mixing; Inter-robot interactions; Mixing limit; Symbolic motion planning
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Diaz-Mercado, Y. J. (2016). Interactions in multi-robot systems. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/55020
Chicago Manual of Style (16th Edition):
Diaz-Mercado, Yancy J. “Interactions in multi-robot systems.” 2016. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/55020.
MLA Handbook (7th Edition):
Diaz-Mercado, Yancy J. “Interactions in multi-robot systems.” 2016. Web. 01 Mar 2021.
Vancouver:
Diaz-Mercado YJ. Interactions in multi-robot systems. [Internet] [Doctoral dissertation]. Georgia Tech; 2016. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/55020.
Council of Science Editors:
Diaz-Mercado YJ. Interactions in multi-robot systems. [Doctoral Dissertation]. Georgia Tech; 2016. Available from: http://hdl.handle.net/1853/55020
University of Cincinnati
2. Gonchigdanzan, Khurelbaatar. ALMOST SURE CENTRAL LIMIT THEOREMS.
Degree: PhD, Arts and Sciences : Mathematics, 2001, University of Cincinnati
URL: http://rave.ohiolink.edu/etdc/view?acc_num=ucin990028192
Subjects/Keywords: Mathematics; Statistics; LIMIT THEOREMS; DEPENDEND VARIABLES; ALMOST SURE CENTRAL LIMIT THEOREMS; LOGARITHMIC AVERAGE; G-MIXING, STRONG MIXING, ASSOCIATED VARIABLES
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Gonchigdanzan, K. (2001). ALMOST SURE CENTRAL LIMIT THEOREMS. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin990028192
Chicago Manual of Style (16th Edition):
Gonchigdanzan, Khurelbaatar. “ALMOST SURE CENTRAL LIMIT THEOREMS.” 2001. Doctoral Dissertation, University of Cincinnati. Accessed March 01, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin990028192.
MLA Handbook (7th Edition):
Gonchigdanzan, Khurelbaatar. “ALMOST SURE CENTRAL LIMIT THEOREMS.” 2001. Web. 01 Mar 2021.
Vancouver:
Gonchigdanzan K. ALMOST SURE CENTRAL LIMIT THEOREMS. [Internet] [Doctoral dissertation]. University of Cincinnati; 2001. [cited 2021 Mar 01]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin990028192.
Council of Science Editors:
Gonchigdanzan K. ALMOST SURE CENTRAL LIMIT THEOREMS. [Doctoral Dissertation]. University of Cincinnati; 2001. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin990028192
3. Reding, Lucas. Contributions au théorème central limite et à l'estimation non paramétrique pour les champs de variables aléatoires dépendantes. : Contributions to the central limit theorem and to nonparametric estimation for dependent random fields.
Degree: Docteur es, Mathématiques, 2020, Normandie
URL: http://www.theses.fr/2020NORMR049
La thèse suivante traite du Théorème Central Limite pour des champs de variables aléatoires dépendantes et de son application à l’estimation non-paramétrique. Dans une première partie, nous établissons des théorèmes centraux limite quenched pour des champs satisfaisant une condition projective à la Hannan (1973). Les versions fonctionnelles de ces théorèmes sont également considérées. Dans une seconde partie, nous établissons la normalité asymptotique d’estimateurs à noyau de la densité et de la régression pour des champs fortement mélangeants au sens de Rosenblatt (1956) ou bien des champs faiblement dépendants au sens de Wu (2005). Dans un premier temps, nous établissons les résultats pour l’estimateur à noyau de la régression introduit par Elizbar Nadaraya (1964) et Geoffrey Watson (1964). Puis, dans un second temps, nous étendons ces résultats à une large classe d’estimateurs récursifs introduite par Peter Hall et Prakash Patil (1994).
This thesis deals with the central limit theorem for dependent random fields and its applications to nonparametric statistics. In the first part, we establish some quenched central limit theorems for random fields satisfying a projective condition à la Hannan (1973). Functional versions of these theorems are also considered. In the second part, we prove the asymptotic normality of kernel density and regression estimators for strongly mixing random fields in the sense of Rosenblatt (1956) and for weakly dependent random fields in the sense of Wu (2005). First, we establish the result for the kernel regression estimator introduced by Elizbar Nadaraya (1964) and Geoffrey Watson (1964). Then, we extend these results to a large class of recursive estimators defined by Peter Hall and Prakash Patil (1994).
Advisors/Committee Members: Volny, Dalibor (thesis director), El Machkouri, Mohamed (thesis director).Subjects/Keywords: Champs de variables aléatoires; Théorème central limite quenched; Théorème central limite fonctionnel quenched; Approximation par ortho-martingale; Condition projective; Estimation non-paramétrique; Estimation de la densité; Estimation de la régression; Estimateur de Nadaraya-Watson; Estimateur récursif; Normalité asymptotique; Données spatiales; Mélange fort; M-dépendance; Mesure de dépendance physique; Dépendance faible; Méthode de Lindeberg; Random fields; Quenched central limit theorem; Quenched functional central limit theorem; Ortho-martingale approximation; Projective condition; Nonparametric estimation; Density estimation; Regression estimation; Nadaraya-Watson estimator; Recursive estimator; Asymptotic normality; Spatial data; Strong mixing; M-dependence; Physical dependence measure; Weak dependence; Linderberg's method; 519.4
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Reding, L. (2020). Contributions au théorème central limite et à l'estimation non paramétrique pour les champs de variables aléatoires dépendantes. : Contributions to the central limit theorem and to nonparametric estimation for dependent random fields. (Doctoral Dissertation). Normandie. Retrieved from http://www.theses.fr/2020NORMR049
Chicago Manual of Style (16th Edition):
Reding, Lucas. “Contributions au théorème central limite et à l'estimation non paramétrique pour les champs de variables aléatoires dépendantes. : Contributions to the central limit theorem and to nonparametric estimation for dependent random fields.” 2020. Doctoral Dissertation, Normandie. Accessed March 01, 2021. http://www.theses.fr/2020NORMR049.
MLA Handbook (7th Edition):
Reding, Lucas. “Contributions au théorème central limite et à l'estimation non paramétrique pour les champs de variables aléatoires dépendantes. : Contributions to the central limit theorem and to nonparametric estimation for dependent random fields.” 2020. Web. 01 Mar 2021.
Vancouver:
Reding L. Contributions au théorème central limite et à l'estimation non paramétrique pour les champs de variables aléatoires dépendantes. : Contributions to the central limit theorem and to nonparametric estimation for dependent random fields. [Internet] [Doctoral dissertation]. Normandie; 2020. [cited 2021 Mar 01]. Available from: http://www.theses.fr/2020NORMR049.
Council of Science Editors:
Reding L. Contributions au théorème central limite et à l'estimation non paramétrique pour les champs de variables aléatoires dépendantes. : Contributions to the central limit theorem and to nonparametric estimation for dependent random fields. [Doctoral Dissertation]. Normandie; 2020. Available from: http://www.theses.fr/2020NORMR049