Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Dates: Last 2 Years

You searched for subject:(Microbial rhodopsin). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Guelph

1. Harris, Andrew. Spectroscopic Characterization of Atypical Ion Pumping Microbial Rhodopsins.

Degree: PhD, Department of Physics, 2020, University of Guelph

Microbial rhodopsins are seven transmembrane α-helical proteins with a retinal cofactor which affords the sensitivity to a broad spectrum of visible light and provides the driving energy needed for transport. They are ubiquitous in nature, are expressed in all three domains of life, and their hosts are found in a wide variety of environments. A great deal is known regarding proton transport in the extracellular direction and chloride transport in the cytoplasmic direction, primarily through the study of the prototypical proton pump, bacteriorhodopsin and archaeal chloride pumping halorhodopsins. Recently, in the last six years, microbial rhodopsin chloride transport in bacteria and inward proton transport were discovered. Here, two new and atypical groups of microbial rhodopsin ion pumps are described and characterized largely through time-resolved vibrational and visible light spectroscopy in parallel with site directed mutagenesis. First, we investigated a group of chloride pumping microbial rhodopsins from cyanobacteria with an unusual, bacteriorhodopsin-like sequence. We observed deprotonation of a key residue in the so-called proton donor position, which is likely a regulatory mechanism to ensure efficient chloride transport and prevent the backflow of chloride. Next, a new group of inward proton pumps from Antarctic, alkaline, freshwater lakes with a highly hydrophilic primary sequence was characterized. The mechanism of proton transport, along with several important residues were identified including a central amino acid which forms hydrogen bonds to bridge the cytoplasmic and extracellular sides of the protein and is apparently crucial for transport. Additionally, two thermally stable isomeric forms of retinal are accommodated in the binding pocket and the equilibrium between these states is dependent on the wavelength of illumination and pH. Hypotheses regarding the unanswered question of the biological role of inward proton transport are discussed. Ion transporting microbial rhodopsins are of interest to researchers in the field of optogenetics for the optical control of cells or organelles that express them. These proteins have the potential to be used in the field in their native state or with improved properties after mutagenesis. Advisors/Committee Members: Brown, Leonid (advisor).

Subjects/Keywords: rhodopsin; ftir; spectroscopy; ion translocation; optogenetics; microbial rhodopsin; flash photolysis; molecular mechanism; chloride transport; inward proton transport; bistable

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Harris, A. (2020). Spectroscopic Characterization of Atypical Ion Pumping Microbial Rhodopsins. (Doctoral Dissertation). University of Guelph. Retrieved from https://atrium.lib.uoguelph.ca/xmlui/handle/10214/21298

Chicago Manual of Style (16th Edition):

Harris, Andrew. “Spectroscopic Characterization of Atypical Ion Pumping Microbial Rhodopsins.” 2020. Doctoral Dissertation, University of Guelph. Accessed October 31, 2020. https://atrium.lib.uoguelph.ca/xmlui/handle/10214/21298.

MLA Handbook (7th Edition):

Harris, Andrew. “Spectroscopic Characterization of Atypical Ion Pumping Microbial Rhodopsins.” 2020. Web. 31 Oct 2020.

Vancouver:

Harris A. Spectroscopic Characterization of Atypical Ion Pumping Microbial Rhodopsins. [Internet] [Doctoral dissertation]. University of Guelph; 2020. [cited 2020 Oct 31]. Available from: https://atrium.lib.uoguelph.ca/xmlui/handle/10214/21298.

Council of Science Editors:

Harris A. Spectroscopic Characterization of Atypical Ion Pumping Microbial Rhodopsins. [Doctoral Dissertation]. University of Guelph; 2020. Available from: https://atrium.lib.uoguelph.ca/xmlui/handle/10214/21298

.