Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Metric problem). Showing records 1 – 18 of 18 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Ottawa

1. Desjardins, Nicholas. On Applying Methods for Graph-TSP to Metric TSP .

Degree: 2016, University of Ottawa

 The Metric Travelling Salesman Problem, henceforth metric TSP, is a fundamental problem in combinatorial optimization which consists of finding a minimum cost Hamiltonian cycle (also… (more)

Subjects/Keywords: travelling salesman problem; integrality gap; T-joins; approximation algorithm; heuristic; metric travelling; salesman problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Desjardins, N. (2016). On Applying Methods for Graph-TSP to Metric TSP . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/35613

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Desjardins, Nicholas. “On Applying Methods for Graph-TSP to Metric TSP .” 2016. Thesis, University of Ottawa. Accessed October 14, 2019. http://hdl.handle.net/10393/35613.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Desjardins, Nicholas. “On Applying Methods for Graph-TSP to Metric TSP .” 2016. Web. 14 Oct 2019.

Vancouver:

Desjardins N. On Applying Methods for Graph-TSP to Metric TSP . [Internet] [Thesis]. University of Ottawa; 2016. [cited 2019 Oct 14]. Available from: http://hdl.handle.net/10393/35613.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Desjardins N. On Applying Methods for Graph-TSP to Metric TSP . [Thesis]. University of Ottawa; 2016. Available from: http://hdl.handle.net/10393/35613

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Texas A&M University

2. Kim, Mijoung. The d-bar-Neumann operator and the Kobayashi metric.

Degree: 2004, Texas A&M University

 We study the ?-Neumann operator and the Kobayashi metric. We observe that under certain conditions, a higher-dimensional domain fibered over ? can inherit noncompactness of… (more)

Subjects/Keywords: d-bar problem; Kobayashi Metric; compact Neumann operator

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kim, M. (2004). The d-bar-Neumann operator and the Kobayashi metric. (Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/94

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kim, Mijoung. “The d-bar-Neumann operator and the Kobayashi metric.” 2004. Thesis, Texas A&M University. Accessed October 14, 2019. http://hdl.handle.net/1969.1/94.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kim, Mijoung. “The d-bar-Neumann operator and the Kobayashi metric.” 2004. Web. 14 Oct 2019.

Vancouver:

Kim M. The d-bar-Neumann operator and the Kobayashi metric. [Internet] [Thesis]. Texas A&M University; 2004. [cited 2019 Oct 14]. Available from: http://hdl.handle.net/1969.1/94.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kim M. The d-bar-Neumann operator and the Kobayashi metric. [Thesis]. Texas A&M University; 2004. Available from: http://hdl.handle.net/1969.1/94

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


North Carolina State University

3. Zhao, Jieping. Multivariate Statistical Analysis of Protein Variation.

Degree: PhD, Bioinformatics, 2006, North Carolina State University

 The purpose of this research is to study the protein sequence metric problem solution and apply it to explore the structural, functional and evolutionary aspects… (more)

Subjects/Keywords: basic helix-loop-helix; multivariate analysis; sequence metric problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhao, J. (2006). Multivariate Statistical Analysis of Protein Variation. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/5446

Chicago Manual of Style (16th Edition):

Zhao, Jieping. “Multivariate Statistical Analysis of Protein Variation.” 2006. Doctoral Dissertation, North Carolina State University. Accessed October 14, 2019. http://www.lib.ncsu.edu/resolver/1840.16/5446.

MLA Handbook (7th Edition):

Zhao, Jieping. “Multivariate Statistical Analysis of Protein Variation.” 2006. Web. 14 Oct 2019.

Vancouver:

Zhao J. Multivariate Statistical Analysis of Protein Variation. [Internet] [Doctoral dissertation]. North Carolina State University; 2006. [cited 2019 Oct 14]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5446.

Council of Science Editors:

Zhao J. Multivariate Statistical Analysis of Protein Variation. [Doctoral Dissertation]. North Carolina State University; 2006. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5446


Michigan State University

4. Patel, Jignesh. Restricted k-server problem.

Degree: MS, Department of Computer Science and Engineering, 2004, Michigan State University

Subjects/Keywords: Online databases; Problem solving – Data processing; Metric spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Patel, J. (2004). Restricted k-server problem. (Masters Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:32678

Chicago Manual of Style (16th Edition):

Patel, Jignesh. “Restricted k-server problem.” 2004. Masters Thesis, Michigan State University. Accessed October 14, 2019. http://etd.lib.msu.edu/islandora/object/etd:32678.

MLA Handbook (7th Edition):

Patel, Jignesh. “Restricted k-server problem.” 2004. Web. 14 Oct 2019.

Vancouver:

Patel J. Restricted k-server problem. [Internet] [Masters thesis]. Michigan State University; 2004. [cited 2019 Oct 14]. Available from: http://etd.lib.msu.edu/islandora/object/etd:32678.

Council of Science Editors:

Patel J. Restricted k-server problem. [Masters Thesis]. Michigan State University; 2004. Available from: http://etd.lib.msu.edu/islandora/object/etd:32678


Indian Institute of Science

5. Ram Mohan, Devang S. An Introduction to Minimal Surfaces.

Degree: 2014, Indian Institute of Science

 In the first chapter of this report, our aim is to introduce harmonic maps between Riemann surfaces using the Energy integral of a map. Once… (more)

Subjects/Keywords: Minimal Surfaces; Riemann Surfaces; Harmonic Maps; Plateau's Problem; Riemannian Metric; Hilbert Space; Sobolev Space; Energy of a Map; Weingarten Map; Catenoid; Helicoid; Enneper Surface; Hurwitz's Automorphism Theorem; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ram Mohan, D. S. (2014). An Introduction to Minimal Surfaces. (Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ernet.in/handle/2005/2890 ; http://etd.ncsi.iisc.ernet.in/abstracts/3752/G26306-Abs.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ram Mohan, Devang S. “An Introduction to Minimal Surfaces.” 2014. Thesis, Indian Institute of Science. Accessed October 14, 2019. http://etd.iisc.ernet.in/handle/2005/2890 ; http://etd.ncsi.iisc.ernet.in/abstracts/3752/G26306-Abs.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ram Mohan, Devang S. “An Introduction to Minimal Surfaces.” 2014. Web. 14 Oct 2019.

Vancouver:

Ram Mohan DS. An Introduction to Minimal Surfaces. [Internet] [Thesis]. Indian Institute of Science; 2014. [cited 2019 Oct 14]. Available from: http://etd.iisc.ernet.in/handle/2005/2890 ; http://etd.ncsi.iisc.ernet.in/abstracts/3752/G26306-Abs.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ram Mohan DS. An Introduction to Minimal Surfaces. [Thesis]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ernet.in/handle/2005/2890 ; http://etd.ncsi.iisc.ernet.in/abstracts/3752/G26306-Abs.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Ohio University

6. Marinchek, Dean A. Manufacturing Facility Layout: A Methodology Incorporating Rotated Aisles into Layout Design.

Degree: MS, Industrial and Systems Engineering (Engineering and Technology), 2014, Ohio University

 This thesis provides a methodology to allow for rotated interior aisles to reduce the total transportation cost within a facility that is using the flexible… (more)

Subjects/Keywords: Engineering; Industrial Engineering; manufacturing facility layout; facility layout problem; FLP; flexible bay layout; flexible bay; rotated aisles; aisle rotation; contour distance metric; contour distance; aisle structure

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marinchek, D. A. (2014). Manufacturing Facility Layout: A Methodology Incorporating Rotated Aisles into Layout Design. (Masters Thesis). Ohio University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1417537173

Chicago Manual of Style (16th Edition):

Marinchek, Dean A. “Manufacturing Facility Layout: A Methodology Incorporating Rotated Aisles into Layout Design.” 2014. Masters Thesis, Ohio University. Accessed October 14, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1417537173.

MLA Handbook (7th Edition):

Marinchek, Dean A. “Manufacturing Facility Layout: A Methodology Incorporating Rotated Aisles into Layout Design.” 2014. Web. 14 Oct 2019.

Vancouver:

Marinchek DA. Manufacturing Facility Layout: A Methodology Incorporating Rotated Aisles into Layout Design. [Internet] [Masters thesis]. Ohio University; 2014. [cited 2019 Oct 14]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1417537173.

Council of Science Editors:

Marinchek DA. Manufacturing Facility Layout: A Methodology Incorporating Rotated Aisles into Layout Design. [Masters Thesis]. Ohio University; 2014. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1417537173

7. Tamanini, Luca. Analysis and Geometry of RCD spaces via the Schrödinger problem : Analyse et géométrie des espaces RCD par le biais du problème de Schrödinger.

Degree: Docteur es, Mathématiques, 2017, Université Paris X – Nanterre

Le but principal de ce manuscrit est celui de présenter une nouvelle méthode d'interpolation entre des probabilités inspirée du problème de Schrödinger, problème de minimisation… (more)

Subjects/Keywords: Transport optimal; Géométrie métrique; Inégalités fonctionnelles; Problème de Schrödinger; Interpolations entropiques; Courbure de Ricci bornée; Optimal Transport; Schrödinger problem; Metric geometry; Functional inequalities; Entropic interpolations; Ricci lower bounds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tamanini, L. (2017). Analysis and Geometry of RCD spaces via the Schrödinger problem : Analyse et géométrie des espaces RCD par le biais du problème de Schrödinger. (Doctoral Dissertation). Université Paris X – Nanterre. Retrieved from http://www.theses.fr/2017PA100082

Chicago Manual of Style (16th Edition):

Tamanini, Luca. “Analysis and Geometry of RCD spaces via the Schrödinger problem : Analyse et géométrie des espaces RCD par le biais du problème de Schrödinger.” 2017. Doctoral Dissertation, Université Paris X – Nanterre. Accessed October 14, 2019. http://www.theses.fr/2017PA100082.

MLA Handbook (7th Edition):

Tamanini, Luca. “Analysis and Geometry of RCD spaces via the Schrödinger problem : Analyse et géométrie des espaces RCD par le biais du problème de Schrödinger.” 2017. Web. 14 Oct 2019.

Vancouver:

Tamanini L. Analysis and Geometry of RCD spaces via the Schrödinger problem : Analyse et géométrie des espaces RCD par le biais du problème de Schrödinger. [Internet] [Doctoral dissertation]. Université Paris X – Nanterre; 2017. [cited 2019 Oct 14]. Available from: http://www.theses.fr/2017PA100082.

Council of Science Editors:

Tamanini L. Analysis and Geometry of RCD spaces via the Schrödinger problem : Analyse et géométrie des espaces RCD par le biais du problème de Schrödinger. [Doctoral Dissertation]. Université Paris X – Nanterre; 2017. Available from: http://www.theses.fr/2017PA100082

8. Estep, Dewey. Prime End Boundaries of Domains in Metric Spaces and the Dirichlet Problem.

Degree: PhD, Arts and Sciences: Mathematical Sciences, 2015, University of Cincinnati

 Let O be a domain in a metric measure space X of bounded geometry. In this thesis we define and investigate the prime end boundary… (more)

Subjects/Keywords: Mathematics; Perron method; Prime End; Metric Measure Space; DIrichlet Problem

…domains in Rn . It is also possible to pose such a problem for more general metric measure… …LIST OF FIGURES Figure 1.1 The slit disk under the metric boundary… …the difference between the metric and Mazurkiewicz distances… …classical Dirichlet problem on a domain Ω is to find a function u of appropriate regularity such… …x28;|∇u|p−2 ∇u). The (more interesting) weak version of the Dirichlet problem… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Estep, D. (2015). Prime End Boundaries of Domains in Metric Spaces and the Dirichlet Problem. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439295199

Chicago Manual of Style (16th Edition):

Estep, Dewey. “Prime End Boundaries of Domains in Metric Spaces and the Dirichlet Problem.” 2015. Doctoral Dissertation, University of Cincinnati. Accessed October 14, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439295199.

MLA Handbook (7th Edition):

Estep, Dewey. “Prime End Boundaries of Domains in Metric Spaces and the Dirichlet Problem.” 2015. Web. 14 Oct 2019.

Vancouver:

Estep D. Prime End Boundaries of Domains in Metric Spaces and the Dirichlet Problem. [Internet] [Doctoral dissertation]. University of Cincinnati; 2015. [cited 2019 Oct 14]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439295199.

Council of Science Editors:

Estep D. Prime End Boundaries of Domains in Metric Spaces and the Dirichlet Problem. [Doctoral Dissertation]. University of Cincinnati; 2015. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439295199


Indian Institute of Science

9. Ram Mohan, Devang S. An Introduction to Minimal Surfaces.

Degree: 2014, Indian Institute of Science

 In the first chapter of this report, our aim is to introduce harmonic maps between Riemann surfaces using the Energy integral of a map. Once… (more)

Subjects/Keywords: Minimal Surfaces; Riemann Surfaces; Harmonic Maps; Plateau's Problem; Riemannian Metric; Hilbert Space; Sobolev Space; Energy of a Map; Weingarten Map; Catenoid; Helicoid; Enneper Surface; Hurwitz's Automorphism Theorem; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ram Mohan, D. S. (2014). An Introduction to Minimal Surfaces. (Thesis). Indian Institute of Science. Retrieved from http://hdl.handle.net/2005/2890

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ram Mohan, Devang S. “An Introduction to Minimal Surfaces.” 2014. Thesis, Indian Institute of Science. Accessed October 14, 2019. http://hdl.handle.net/2005/2890.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ram Mohan, Devang S. “An Introduction to Minimal Surfaces.” 2014. Web. 14 Oct 2019.

Vancouver:

Ram Mohan DS. An Introduction to Minimal Surfaces. [Internet] [Thesis]. Indian Institute of Science; 2014. [cited 2019 Oct 14]. Available from: http://hdl.handle.net/2005/2890.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ram Mohan DS. An Introduction to Minimal Surfaces. [Thesis]. Indian Institute of Science; 2014. Available from: http://hdl.handle.net/2005/2890

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Notre Dame

10. Gang Li. Constant Q-Curvature Metrics Near the Hyperbolic Metric</h1>.

Degree: PhD, Mathematics, 2013, University of Notre Dame

  Let (M, g) be a Poincaré-Einstein manifold with a smooth defining function. We prove that there are infinitely many asymptotically hyperbolic metrics with constant… (more)

Subjects/Keywords: Fredholm property; perturbation problem; inverse function theorem; edge operator; asymptotically hyperbolic manifolds; Fourth order semilinear elliptic equations; constant $Q$-curvature metric; degenerate operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, G. (2013). Constant Q-Curvature Metrics Near the Hyperbolic Metric</h1>. (Doctoral Dissertation). University of Notre Dame. Retrieved from https://curate.nd.edu/show/rx913n22j2t

Chicago Manual of Style (16th Edition):

Li, Gang. “Constant Q-Curvature Metrics Near the Hyperbolic Metric</h1>.” 2013. Doctoral Dissertation, University of Notre Dame. Accessed October 14, 2019. https://curate.nd.edu/show/rx913n22j2t.

MLA Handbook (7th Edition):

Li, Gang. “Constant Q-Curvature Metrics Near the Hyperbolic Metric</h1>.” 2013. Web. 14 Oct 2019.

Vancouver:

Li G. Constant Q-Curvature Metrics Near the Hyperbolic Metric</h1>. [Internet] [Doctoral dissertation]. University of Notre Dame; 2013. [cited 2019 Oct 14]. Available from: https://curate.nd.edu/show/rx913n22j2t.

Council of Science Editors:

Li G. Constant Q-Curvature Metrics Near the Hyperbolic Metric</h1>. [Doctoral Dissertation]. University of Notre Dame; 2013. Available from: https://curate.nd.edu/show/rx913n22j2t


Australian National University

11. Bandara, Lashi. Geometry and the Kato square root problem .

Degree: 2013, Australian National University

 The primary focus of this thesis is to consider Kato square root problems for various divergence-form operators on manifolds. This is the study of perturbations… (more)

Subjects/Keywords: Kato square root problem; quadratic estimates; elliptic operator; Lipschitz estimates; essentially self-adjoint; vector bundle; measure metric space; bounded measurable coefficients; Hodge-Dirac operator

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bandara, L. (2013). Geometry and the Kato square root problem . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/10690

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bandara, Lashi. “Geometry and the Kato square root problem .” 2013. Thesis, Australian National University. Accessed October 14, 2019. http://hdl.handle.net/1885/10690.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bandara, Lashi. “Geometry and the Kato square root problem .” 2013. Web. 14 Oct 2019.

Vancouver:

Bandara L. Geometry and the Kato square root problem . [Internet] [Thesis]. Australian National University; 2013. [cited 2019 Oct 14]. Available from: http://hdl.handle.net/1885/10690.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bandara L. Geometry and the Kato square root problem . [Thesis]. Australian National University; 2013. Available from: http://hdl.handle.net/1885/10690

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Australian National University

12. Cui, Jing. Optimising Flexibility of Temporal Problems with Uncertainty .

Degree: 2017, Australian National University

 Temporal networks have been applied in many autonomous systems. In real situations, we cannot ignore the uncertain factors when using those autonomous systems. Achieving robust… (more)

Subjects/Keywords: Artificial Intelligence; Planning and Scheduling; Temporal Problems; Optimisation; Optimization; Dynamic Controllability; Controllable Conditional Temporal Problem with Uncertainty; Discrete Variable; Dynamic Strategy; Temporal Uncertainty; Robustness Metric

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cui, J. (2017). Optimising Flexibility of Temporal Problems with Uncertainty . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/146346

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cui, Jing. “Optimising Flexibility of Temporal Problems with Uncertainty .” 2017. Thesis, Australian National University. Accessed October 14, 2019. http://hdl.handle.net/1885/146346.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cui, Jing. “Optimising Flexibility of Temporal Problems with Uncertainty .” 2017. Web. 14 Oct 2019.

Vancouver:

Cui J. Optimising Flexibility of Temporal Problems with Uncertainty . [Internet] [Thesis]. Australian National University; 2017. [cited 2019 Oct 14]. Available from: http://hdl.handle.net/1885/146346.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cui J. Optimising Flexibility of Temporal Problems with Uncertainty . [Thesis]. Australian National University; 2017. Available from: http://hdl.handle.net/1885/146346

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade do Rio Grande do Sul

13. Ramos, Álvaro Krüger. Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifolds.

Degree: 2015, Universidade do Rio Grande do Sul

Provamos resultados sobre a geometria de hipersuperfícies em diferentes espaços ambiente. Primeiro, definimos uma aplicação de Gauss generalizada para uma hipersuperfície Mn-1 c/ Nn, onde… (more)

Subjects/Keywords: Superfícies mínimas; Minimal surfaces; Constant mean curvature; Aplicação normal de Gauss; Variedade hiperbolica; Gauss map; Symmetric spaces; Homogeneous manifolds; Metric Lie groups; Semidirect products; Quasilinear elliptic operator; Hyperbolic manifold; Calabi-Yau problem; Injectivity radius function; Nite topology surfaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ramos, . K. (2015). Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifolds. (Thesis). Universidade do Rio Grande do Sul. Retrieved from http://hdl.handle.net/10183/118222

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ramos, Álvaro Krüger. “Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifolds.” 2015. Thesis, Universidade do Rio Grande do Sul. Accessed October 14, 2019. http://hdl.handle.net/10183/118222.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ramos, Álvaro Krüger. “Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifolds.” 2015. Web. 14 Oct 2019.

Vancouver:

Ramos K. Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifolds. [Internet] [Thesis]. Universidade do Rio Grande do Sul; 2015. [cited 2019 Oct 14]. Available from: http://hdl.handle.net/10183/118222.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ramos K. Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifolds. [Thesis]. Universidade do Rio Grande do Sul; 2015. Available from: http://hdl.handle.net/10183/118222

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

14. Hajej, Ahmed. Homogénéisation stochastique de quelques problèmes de propagations d'interfaces : Stochastic homogenization of some front propagation problems.

Degree: Docteur es, Mathématiques appliquées, 2016, Paris Sciences et Lettres

Dans ce travail, on étudie l'homogénéisation de quelques problèmes de propagations de fronts dans des milieux stationnaires et ergodiques. Dans la première partie, on étudie… (more)

Subjects/Keywords: Homogénéisation stochastique; Equations de Hamilton-Jacobi; Propagations de fronts; Contrôle optimal; Problème métrique; Approximation numérique; Stochastic homogenization; Hamilton-Jacobi equations; Front propagation; Optimal control; Metric problem; Numerical approximation; Viscosity solutions; 515.7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hajej, A. (2016). Homogénéisation stochastique de quelques problèmes de propagations d'interfaces : Stochastic homogenization of some front propagation problems. (Doctoral Dissertation). Paris Sciences et Lettres. Retrieved from http://www.theses.fr/2016PSLED048

Chicago Manual of Style (16th Edition):

Hajej, Ahmed. “Homogénéisation stochastique de quelques problèmes de propagations d'interfaces : Stochastic homogenization of some front propagation problems.” 2016. Doctoral Dissertation, Paris Sciences et Lettres. Accessed October 14, 2019. http://www.theses.fr/2016PSLED048.

MLA Handbook (7th Edition):

Hajej, Ahmed. “Homogénéisation stochastique de quelques problèmes de propagations d'interfaces : Stochastic homogenization of some front propagation problems.” 2016. Web. 14 Oct 2019.

Vancouver:

Hajej A. Homogénéisation stochastique de quelques problèmes de propagations d'interfaces : Stochastic homogenization of some front propagation problems. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres; 2016. [cited 2019 Oct 14]. Available from: http://www.theses.fr/2016PSLED048.

Council of Science Editors:

Hajej A. Homogénéisation stochastique de quelques problèmes de propagations d'interfaces : Stochastic homogenization of some front propagation problems. [Doctoral Dissertation]. Paris Sciences et Lettres; 2016. Available from: http://www.theses.fr/2016PSLED048


Pontifical Catholic University of Rio de Janeiro

15. CID CARVALHO DE SOUZA. [en] THE STEINER PROBLEM IN RECTILINEAR METRIC: PROPERTIES, NEW HEURISTICS AND COMPUTATIONAL STUDY.

Degree: 2007, Pontifical Catholic University of Rio de Janeiro

[pt] Nesta tese faz-se uma extensa revisão bibliográfica sobre o problema de Steiner na métrica retilínea, destacando-se a aplicação do mesmo no projeto de VLSI.… (more)

Subjects/Keywords: [pt] HEURISTICA; [en] HEURISTICS; [pt] METRICA RETILINEA; [en] RECTILINEAR METRIC; [pt] PROBLEMA DE STEINER; [en] STEINER PROBLEM

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

SOUZA, C. C. D. (2007). [en] THE STEINER PROBLEM IN RECTILINEAR METRIC: PROPERTIES, NEW HEURISTICS AND COMPUTATIONAL STUDY. (Thesis). Pontifical Catholic University of Rio de Janeiro. Retrieved from http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10236

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

SOUZA, CID CARVALHO DE. “[en] THE STEINER PROBLEM IN RECTILINEAR METRIC: PROPERTIES, NEW HEURISTICS AND COMPUTATIONAL STUDY.” 2007. Thesis, Pontifical Catholic University of Rio de Janeiro. Accessed October 14, 2019. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10236.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

SOUZA, CID CARVALHO DE. “[en] THE STEINER PROBLEM IN RECTILINEAR METRIC: PROPERTIES, NEW HEURISTICS AND COMPUTATIONAL STUDY.” 2007. Web. 14 Oct 2019.

Vancouver:

SOUZA CCD. [en] THE STEINER PROBLEM IN RECTILINEAR METRIC: PROPERTIES, NEW HEURISTICS AND COMPUTATIONAL STUDY. [Internet] [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2007. [cited 2019 Oct 14]. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10236.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

SOUZA CCD. [en] THE STEINER PROBLEM IN RECTILINEAR METRIC: PROPERTIES, NEW HEURISTICS AND COMPUTATIONAL STUDY. [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2007. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10236

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Toronto

16. Huang, Zhen. Automatically Identifying Configuration Files.

Degree: 2009, University of Toronto

Systems can become misconfigured for a variety of reasons such as operator errors or buggy patches. When a misconfiguration is discovered, usually the first order… (more)

Subjects/Keywords: configuration problem; configuration file; identify configuration file; similarity metric; troubleshooting system failure; versioning file system; misconfiguration; system recovery; operator errors; 0984

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, Z. (2009). Automatically Identifying Configuration Files. (Masters Thesis). University of Toronto. Retrieved from http://hdl.handle.net/1807/18324

Chicago Manual of Style (16th Edition):

Huang, Zhen. “Automatically Identifying Configuration Files.” 2009. Masters Thesis, University of Toronto. Accessed October 14, 2019. http://hdl.handle.net/1807/18324.

MLA Handbook (7th Edition):

Huang, Zhen. “Automatically Identifying Configuration Files.” 2009. Web. 14 Oct 2019.

Vancouver:

Huang Z. Automatically Identifying Configuration Files. [Internet] [Masters thesis]. University of Toronto; 2009. [cited 2019 Oct 14]. Available from: http://hdl.handle.net/1807/18324.

Council of Science Editors:

Huang Z. Automatically Identifying Configuration Files. [Masters Thesis]. University of Toronto; 2009. Available from: http://hdl.handle.net/1807/18324


University of Waikato

17. Kibriya, Ashraf Masood. Fast Algorithms for Nearest Neighbour Search .

Degree: 2007, University of Waikato

 The nearest neighbour problem is of practical significance in a number of fields. Often we are interested in finding an object near to a given… (more)

Subjects/Keywords: Nearest Neighbour; Nearest Neighbor; Nearest Neighbour search; Nearest Neighbor search; best-match; closest-match; closest point; post office problem; kd-trees; KDTrees; Ball Trees; Metric Trees; Cover Trees

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kibriya, A. M. (2007). Fast Algorithms for Nearest Neighbour Search . (Masters Thesis). University of Waikato. Retrieved from http://hdl.handle.net/10289/2463

Chicago Manual of Style (16th Edition):

Kibriya, Ashraf Masood. “Fast Algorithms for Nearest Neighbour Search .” 2007. Masters Thesis, University of Waikato. Accessed October 14, 2019. http://hdl.handle.net/10289/2463.

MLA Handbook (7th Edition):

Kibriya, Ashraf Masood. “Fast Algorithms for Nearest Neighbour Search .” 2007. Web. 14 Oct 2019.

Vancouver:

Kibriya AM. Fast Algorithms for Nearest Neighbour Search . [Internet] [Masters thesis]. University of Waikato; 2007. [cited 2019 Oct 14]. Available from: http://hdl.handle.net/10289/2463.

Council of Science Editors:

Kibriya AM. Fast Algorithms for Nearest Neighbour Search . [Masters Thesis]. University of Waikato; 2007. Available from: http://hdl.handle.net/10289/2463

18. Yershov, Dmytro. Fast numerical algorithms for optimal robot motion planning.

Degree: PhD, 0112, 2014, University of Illinois – Urbana-Champaign

 Optimization of high-level autonomous tasks requires solving the optimal motion planning problem for a mobile robot. For example, to reach the desired destination on time,… (more)

Subjects/Keywords: Optimal Motion Planning; Hamilton-Jacobi-Bellman; Numerical methods; Fast Marching Method; Simplicial Discretization; Simplicial Dijkstra Algorithm; Simplicial A* Algorithm; Simplicial Label Correcting Algorithm; Simplicial Value Iteration Algorithm; Simplicial Policy Iteration Algorithm; Mobile Robots; Robotics; Control; Optimal Control; Feedback Control; Obstacles; Shortest Path Problem; Weighted Region Problem; Differential Constraints; Nonholonomic Constraints; Stochastic Control; Stochastic Shortest Path Problem; Nearby Deterministic System; Turing Decidability; Turing Semidecidability; Sampling Metric Spaces; Resolution Completeness

problem in robotics. Computer scientists have been researching this problem actively since the… …optimal planning problem, on the other hand, is closer in spirit to differential geometry… …differential geometry, a similar problem of finding geodesics on Riemann manifolds is considered… …the optimal motion planning problem, solutions to this problem are available for simple… …problem and several numerical algorithms to solve the resulting discrete system. Finally, we… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yershov, D. (2014). Fast numerical algorithms for optimal robot motion planning. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/46659

Chicago Manual of Style (16th Edition):

Yershov, Dmytro. “Fast numerical algorithms for optimal robot motion planning.” 2014. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 14, 2019. http://hdl.handle.net/2142/46659.

MLA Handbook (7th Edition):

Yershov, Dmytro. “Fast numerical algorithms for optimal robot motion planning.” 2014. Web. 14 Oct 2019.

Vancouver:

Yershov D. Fast numerical algorithms for optimal robot motion planning. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2014. [cited 2019 Oct 14]. Available from: http://hdl.handle.net/2142/46659.

Council of Science Editors:

Yershov D. Fast numerical algorithms for optimal robot motion planning. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2014. Available from: http://hdl.handle.net/2142/46659

.