Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(Mesoscopic traffic simulator). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Texas – Austin

1. Chen, Amber. Subnetwork analysis : methodology and application.

Degree: PhD, Civil Engineering, 2018, University of Texas – Austin

The focus of this dissertation is to create robust tools that enable efficient and comprehensive subnetwork analysis for Dynamic Traffic Assignment (DTA) and a microscopic simulation setting. A DTA subnetwork can potentially replace a large urban transportation network that experiences a change in only a small fraction of the whole network. However, DTA mainly uses Cell Transmission Model (CTM), which lacks many details provided through microscopic traffic simulation. Also, there is very little research done on the balance between the computational time and the subnetwork size. Computational time increases when using a larger subnetwork, but the simulated result is more similar to that of the entire network. Conversely, the computational time decreases when using a smaller subnetwork, but the simulated result might not replicated the entire network. Currently, extracting a subnetwork is a manual and time-consuming process, requiring an entire coded urban network in ArcGIS. Therefore, to overcome these shortcomings this study automated the process of extracting a subnetwork. Moreover, to further the transition between long-term and short-term traffic analysis, the study integrated a DTA simulator and a microscopic traffic simulator so that together they can assign traffic and provide detailed traffic result. This study also defined an appropriate sub-arterial size for the microscopic simulator, which is not the same as the size of the DTA subnetwork. Furthermore, this study analyzed several factors which significantly influence computational time, and developed optimization models to find the balance between the computational time and error resulting from sub-area size. Ultimately, this study developed two programs that can automatically extract a subnetwork from a regional DTA network, and automatically develop an identical subnetwork in a microscopic simulator from this DTA network of an appropriate size. The methodologies this study built promote the efficient analysis of traffic conditions and facilitate the implementation of advanced models that were previously limiting in terms of the amount of time required to compute results; also, the automatic tools this study developed will contribute to the depth and the breadth of dynamic transportation systems analysis. Advisors/Committee Members: Machemehl, Randy B. (advisor), Zhang, Zhanming (committee member), Boyles, Stephen (committee member), Leite, Fernanda (committee member), Zhang, Ming (committee member).

Subjects/Keywords: Dynamic traffic assignment; Subnetwork; Mesoscopic traffic simulator; Microscopic simulator; Simulation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, A. (2018). Subnetwork analysis : methodology and application. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/63477

Chicago Manual of Style (16th Edition):

Chen, Amber. “Subnetwork analysis : methodology and application.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed March 07, 2021. http://hdl.handle.net/2152/63477.

MLA Handbook (7th Edition):

Chen, Amber. “Subnetwork analysis : methodology and application.” 2018. Web. 07 Mar 2021.

Vancouver:

Chen A. Subnetwork analysis : methodology and application. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2152/63477.

Council of Science Editors:

Chen A. Subnetwork analysis : methodology and application. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/63477

.