Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Matrix factorizations). Showing records 1 – 9 of 9 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Colorado

1. Heavner, Nathan. Building Rank-Revealing Factorizations with Randomization.

Degree: PhD, 2019, University of Colorado

  This thesis describes a set of randomized algorithms for computing rank revealing factorizations of matrices. These algorithms are designed specifically to minimize the amount… (more)

Subjects/Keywords: linear algebra; matrix factorizations; randomization; rank-revealing factorizations; Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Heavner, N. (2019). Building Rank-Revealing Factorizations with Randomization. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/appm_gradetds/155

Chicago Manual of Style (16th Edition):

Heavner, Nathan. “Building Rank-Revealing Factorizations with Randomization.” 2019. Doctoral Dissertation, University of Colorado. Accessed April 13, 2021. https://scholar.colorado.edu/appm_gradetds/155.

MLA Handbook (7th Edition):

Heavner, Nathan. “Building Rank-Revealing Factorizations with Randomization.” 2019. Web. 13 Apr 2021.

Vancouver:

Heavner N. Building Rank-Revealing Factorizations with Randomization. [Internet] [Doctoral dissertation]. University of Colorado; 2019. [cited 2021 Apr 13]. Available from: https://scholar.colorado.edu/appm_gradetds/155.

Council of Science Editors:

Heavner N. Building Rank-Revealing Factorizations with Randomization. [Doctoral Dissertation]. University of Colorado; 2019. Available from: https://scholar.colorado.edu/appm_gradetds/155


University of Saskatchewan

2. Vlahu, Izabela 1986-. The Orthogonal Band Decomposition of the Finite Dirichlet Matrix and its Applications.

Degree: 2018, University of Saskatchewan

 In my work I establish and extend the theory of finite D-matrices for the purposes of signal processing applications in the finite, digital setting. Finite… (more)

Subjects/Keywords: Finite Dirichlet Matrix; Non-trivial factorizations; resolutions of identity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vlahu, I. 1. (2018). The Orthogonal Band Decomposition of the Finite Dirichlet Matrix and its Applications. (Thesis). University of Saskatchewan. Retrieved from http://hdl.handle.net/10388/8523

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vlahu, Izabela 1986-. “The Orthogonal Band Decomposition of the Finite Dirichlet Matrix and its Applications.” 2018. Thesis, University of Saskatchewan. Accessed April 13, 2021. http://hdl.handle.net/10388/8523.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vlahu, Izabela 1986-. “The Orthogonal Band Decomposition of the Finite Dirichlet Matrix and its Applications.” 2018. Web. 13 Apr 2021.

Vancouver:

Vlahu I1. The Orthogonal Band Decomposition of the Finite Dirichlet Matrix and its Applications. [Internet] [Thesis]. University of Saskatchewan; 2018. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/10388/8523.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vlahu I1. The Orthogonal Band Decomposition of the Finite Dirichlet Matrix and its Applications. [Thesis]. University of Saskatchewan; 2018. Available from: http://hdl.handle.net/10388/8523

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Urbana-Champaign

3. Mastroeni, Matthew N. Betti numbers of Koszul algebras and codimension two matrix factorizations.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

 This thesis consists of two projects on the structure of free resolutions in commutative algebra. After developing some necessary background, we prove a structure theorem… (more)

Subjects/Keywords: Koszul algebras; almost complete intersections; Betti numbers; free resolutions; matrix factorizations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mastroeni, M. N. (2018). Betti numbers of Koszul algebras and codimension two matrix factorizations. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101658

Chicago Manual of Style (16th Edition):

Mastroeni, Matthew N. “Betti numbers of Koszul algebras and codimension two matrix factorizations.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed April 13, 2021. http://hdl.handle.net/2142/101658.

MLA Handbook (7th Edition):

Mastroeni, Matthew N. “Betti numbers of Koszul algebras and codimension two matrix factorizations.” 2018. Web. 13 Apr 2021.

Vancouver:

Mastroeni MN. Betti numbers of Koszul algebras and codimension two matrix factorizations. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2142/101658.

Council of Science Editors:

Mastroeni MN. Betti numbers of Koszul algebras and codimension two matrix factorizations. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101658


University of Texas – Austin

4. Wong, Michael Andrew. Dimer models and Hochschild cohomology.

Degree: PhD, Mathematics, 2018, University of Texas – Austin

 Dimer models have appeared in the context of noncommutative crepant resolutions and homological mirror symmetry for punctured Riemann surfaces. For a zigzag consistent dimer embedded… (more)

Subjects/Keywords: Dimer models; Matrix factorizations; Hochschild cohomology; Mirror symmetry; Noncommutative geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wong, M. A. (2018). Dimer models and Hochschild cohomology. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/68467

Chicago Manual of Style (16th Edition):

Wong, Michael Andrew. “Dimer models and Hochschild cohomology.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed April 13, 2021. http://hdl.handle.net/2152/68467.

MLA Handbook (7th Edition):

Wong, Michael Andrew. “Dimer models and Hochschild cohomology.” 2018. Web. 13 Apr 2021.

Vancouver:

Wong MA. Dimer models and Hochschild cohomology. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2152/68467.

Council of Science Editors:

Wong MA. Dimer models and Hochschild cohomology. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/68467


Texas A&M University

5. Escobedo, Adolfo Raphael. Foundational Factorization Algorithms for the Efficient Roundoff-Error-Free Solution of Optimization Problems.

Degree: PhD, Industrial Engineering, 2016, Texas A&M University

 LU and Cholesky factorizations play a central role in solving linear and mixed-integer programs. In many documented cases, the round-off errors accrued during the construction… (more)

Subjects/Keywords: Exact mathematical programming; exact algorithms; matrix factorizations; roundoff errors; solving linear systems; factorization update algorithms.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Escobedo, A. R. (2016). Foundational Factorization Algorithms for the Efficient Roundoff-Error-Free Solution of Optimization Problems. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/157772

Chicago Manual of Style (16th Edition):

Escobedo, Adolfo Raphael. “Foundational Factorization Algorithms for the Efficient Roundoff-Error-Free Solution of Optimization Problems.” 2016. Doctoral Dissertation, Texas A&M University. Accessed April 13, 2021. http://hdl.handle.net/1969.1/157772.

MLA Handbook (7th Edition):

Escobedo, Adolfo Raphael. “Foundational Factorization Algorithms for the Efficient Roundoff-Error-Free Solution of Optimization Problems.” 2016. Web. 13 Apr 2021.

Vancouver:

Escobedo AR. Foundational Factorization Algorithms for the Efficient Roundoff-Error-Free Solution of Optimization Problems. [Internet] [Doctoral dissertation]. Texas A&M University; 2016. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/1969.1/157772.

Council of Science Editors:

Escobedo AR. Foundational Factorization Algorithms for the Efficient Roundoff-Error-Free Solution of Optimization Problems. [Doctoral Dissertation]. Texas A&M University; 2016. Available from: http://hdl.handle.net/1969.1/157772

6. Platt, David. Chern Character for Global Matrix Factorizations.

Degree: PhD, Department of Mathematics, 2013, University of Oregon

 We give a formula for the Chern character on the DG category of global matrix factorizations on a smooth scheme X with superpotential w∈ Γ(\OX).… (more)

Subjects/Keywords: Chern Character; Matrix Factorizations; Noncommutative Geometry

Factorizations . . . . . . . . . . . . . . . . . . . . . . . 28 III. HOMOTOPY THEORY OF MATRIX… …Homotopy Theory of Matrix Factorizations . . . . . . . . . . . 49 IV. HOCHSCHILD HOMOLOGY… …version of matrix factorizations (taken from [PV1]). Section III contains… …contains results on the homotopy theory of matrix factorizations. Much of the work therein is… …between modules over matrix factorizations on one hand and quasi-coherent curved modules (… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Platt, D. (2013). Chern Character for Global Matrix Factorizations. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/13244

Chicago Manual of Style (16th Edition):

Platt, David. “Chern Character for Global Matrix Factorizations.” 2013. Doctoral Dissertation, University of Oregon. Accessed April 13, 2021. http://hdl.handle.net/1794/13244.

MLA Handbook (7th Edition):

Platt, David. “Chern Character for Global Matrix Factorizations.” 2013. Web. 13 Apr 2021.

Vancouver:

Platt D. Chern Character for Global Matrix Factorizations. [Internet] [Doctoral dissertation]. University of Oregon; 2013. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/1794/13244.

Council of Science Editors:

Platt D. Chern Character for Global Matrix Factorizations. [Doctoral Dissertation]. University of Oregon; 2013. Available from: http://hdl.handle.net/1794/13244


University of Toronto

7. Hovinen, Bradford. Matrix Factorizations of the Classical Discriminant.

Degree: 2009, University of Toronto

The classical discriminant Dn of degree n polynomials detects whether a given univariate polynomial f has a repeated root. It is itself a polynomial in… (more)

Subjects/Keywords: commutative algebra; algebraic geometry; discriminants; singularities; matrix factorizations; homological algebra; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hovinen, B. (2009). Matrix Factorizations of the Classical Discriminant. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/17466

Chicago Manual of Style (16th Edition):

Hovinen, Bradford. “Matrix Factorizations of the Classical Discriminant.” 2009. Doctoral Dissertation, University of Toronto. Accessed April 13, 2021. http://hdl.handle.net/1807/17466.

MLA Handbook (7th Edition):

Hovinen, Bradford. “Matrix Factorizations of the Classical Discriminant.” 2009. Web. 13 Apr 2021.

Vancouver:

Hovinen B. Matrix Factorizations of the Classical Discriminant. [Internet] [Doctoral dissertation]. University of Toronto; 2009. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/1807/17466.

Council of Science Editors:

Hovinen B. Matrix Factorizations of the Classical Discriminant. [Doctoral Dissertation]. University of Toronto; 2009. Available from: http://hdl.handle.net/1807/17466

8. Pippi, Massimo. Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles.

Degree: Docteur es, Mathématiques et Applications, 2020, Université Toulouse III – Paul Sabatier

Le but de cette thèse est d'étudier les dg-catégories de singularités Sing(X, s), associées à des couples (X, s), où X est un schéma et… (more)

Subjects/Keywords: Géométrie algébrique dérivée; Géométrie non-commutative; Cycles évanescents; Dg-catégories des singularités; Factorisations matricielles; Réalisations motivique et l-adique des dg-catégories; Derived algebraic geometry; Non-commutative geometry; Vanishing cycles; Dg categories of singularitie; Matrix factorizations; Motivic and`-adic realizationsof dg categories

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pippi, M. (2020). Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2020TOU30049

Chicago Manual of Style (16th Edition):

Pippi, Massimo. “Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles.” 2020. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed April 13, 2021. http://www.theses.fr/2020TOU30049.

MLA Handbook (7th Edition):

Pippi, Massimo. “Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles.” 2020. Web. 13 Apr 2021.

Vancouver:

Pippi M. Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2020. [cited 2021 Apr 13]. Available from: http://www.theses.fr/2020TOU30049.

Council of Science Editors:

Pippi M. Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2020. Available from: http://www.theses.fr/2020TOU30049

9. Jia, Yulu. Algorithm-Based Fault Tolerance for Two-Sided Dense Matrix Factorizations.

Degree: 2015, University of Tennessee – Knoxville

 The mean time between failure (MTBF) of large supercomputers is decreasing, and future exascale computers are expected to have a MTBF of around 30 minutes.… (more)

Subjects/Keywords: ABFT; fault tolerance; dense linear algebra; two-sided matrix factorizations; Hessenberg; checksum; Numerical Analysis and Scientific Computing

…explore methods to provide fault resilience for two-sided dense matrix factorizations, namely… …dense matrix. The common characteristics of these three factorizations are that their… …version for soft error resilience of the two-side matrix factorizations for CPU-GPU hybrid… …errors in two-sided dense matrix factorizations: hard errors and soft errors. We define hard… …checkpointing for the panel factorization result. In the two-sided matrix factorizations, the… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jia, Y. (2015). Algorithm-Based Fault Tolerance for Two-Sided Dense Matrix Factorizations. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/3588

Chicago Manual of Style (16th Edition):

Jia, Yulu. “Algorithm-Based Fault Tolerance for Two-Sided Dense Matrix Factorizations.” 2015. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed April 13, 2021. https://trace.tennessee.edu/utk_graddiss/3588.

MLA Handbook (7th Edition):

Jia, Yulu. “Algorithm-Based Fault Tolerance for Two-Sided Dense Matrix Factorizations.” 2015. Web. 13 Apr 2021.

Vancouver:

Jia Y. Algorithm-Based Fault Tolerance for Two-Sided Dense Matrix Factorizations. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2015. [cited 2021 Apr 13]. Available from: https://trace.tennessee.edu/utk_graddiss/3588.

Council of Science Editors:

Jia Y. Algorithm-Based Fault Tolerance for Two-Sided Dense Matrix Factorizations. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2015. Available from: https://trace.tennessee.edu/utk_graddiss/3588

.