Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Matrix Algebras)`

.
Showing records 1 – 14 of
14 total matches.

▼ Search Limiters

University of Georgia

1.
Matthews, Graham Yakov.
Computing generators and relations for *matrix* * algebras*.

Degree: 2014, University of Georgia

URL: http://hdl.handle.net/10724/21900

► We describe algorithms for computing a presentation for a *matrix* algebra over a finite field, and for computing the basic algebra associated to such a…
(more)

Subjects/Keywords: Matrix Algebras; Finite Dimensional Algebras; Basic Algebras; Generators and Relations; Morita Theory; Modular Representation Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Matthews, G. Y. (2014). Computing generators and relations for matrix algebras. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/21900

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Matthews, Graham Yakov. “Computing generators and relations for matrix algebras.” 2014. Thesis, University of Georgia. Accessed October 19, 2020. http://hdl.handle.net/10724/21900.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Matthews, Graham Yakov. “Computing generators and relations for matrix algebras.” 2014. Web. 19 Oct 2020.

Vancouver:

Matthews GY. Computing generators and relations for matrix algebras. [Internet] [Thesis]. University of Georgia; 2014. [cited 2020 Oct 19]. Available from: http://hdl.handle.net/10724/21900.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Matthews GY. Computing generators and relations for matrix algebras. [Thesis]. University of Georgia; 2014. Available from: http://hdl.handle.net/10724/21900

Not specified: Masters Thesis or Doctoral Dissertation

University of Victoria

2.
Cecil, Anthony John.
Lie isomorphisms of triangular and block-triangular *matrix* *algebras* over commutative rings.

Degree: Department of Mathematics and Statistics, 2016, University of Victoria

URL: http://hdl.handle.net/1828/7471

► For many *matrix* *algebras*, every associative automorphism is inner. We discuss results by Đoković that a non-associative Lie automorphism φ of a triangular *matrix* algebra…
(more)

Subjects/Keywords: Mathematics; Linear Algebra; Matrix Algebras; Ring Theory; Lie Isomorphisms; Triangular Algebras; Block-Triangular Algebras

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cecil, A. J. (2016). Lie isomorphisms of triangular and block-triangular matrix algebras over commutative rings. (Masters Thesis). University of Victoria. Retrieved from http://hdl.handle.net/1828/7471

Chicago Manual of Style (16^{th} Edition):

Cecil, Anthony John. “Lie isomorphisms of triangular and block-triangular matrix algebras over commutative rings.” 2016. Masters Thesis, University of Victoria. Accessed October 19, 2020. http://hdl.handle.net/1828/7471.

MLA Handbook (7^{th} Edition):

Cecil, Anthony John. “Lie isomorphisms of triangular and block-triangular matrix algebras over commutative rings.” 2016. Web. 19 Oct 2020.

Vancouver:

Cecil AJ. Lie isomorphisms of triangular and block-triangular matrix algebras over commutative rings. [Internet] [Masters thesis]. University of Victoria; 2016. [cited 2020 Oct 19]. Available from: http://hdl.handle.net/1828/7471.

Council of Science Editors:

Cecil AJ. Lie isomorphisms of triangular and block-triangular matrix algebras over commutative rings. [Masters Thesis]. University of Victoria; 2016. Available from: http://hdl.handle.net/1828/7471

Stellenbosch University

3.
Sehoana, Mahlare Gerald.
On commutativity and lie nilpoten y in *matrix* * algebras*.

Degree: MSc, 2015, Stellenbosch University

URL: http://hdl.handle.net/10019.1/98118

►

ENGLISH ABSTRACT : In this thesis we first discuss the proof by Mirzakhani [9] of Schur's Theorem which gives the maximum number of linearly independent… (more)

Subjects/Keywords: Matrix algebras; Matrices; Lie algebras; Schur's theorem; Cayley–Hamilton theorem; Commutativity (mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sehoana, M. G. (2015). On commutativity and lie nilpoten y in matrix algebras. (Masters Thesis). Stellenbosch University. Retrieved from http://hdl.handle.net/10019.1/98118

Chicago Manual of Style (16^{th} Edition):

Sehoana, Mahlare Gerald. “On commutativity and lie nilpoten y in matrix algebras.” 2015. Masters Thesis, Stellenbosch University. Accessed October 19, 2020. http://hdl.handle.net/10019.1/98118.

MLA Handbook (7^{th} Edition):

Sehoana, Mahlare Gerald. “On commutativity and lie nilpoten y in matrix algebras.” 2015. Web. 19 Oct 2020.

Vancouver:

Sehoana MG. On commutativity and lie nilpoten y in matrix algebras. [Internet] [Masters thesis]. Stellenbosch University; 2015. [cited 2020 Oct 19]. Available from: http://hdl.handle.net/10019.1/98118.

Council of Science Editors:

Sehoana MG. On commutativity and lie nilpoten y in matrix algebras. [Masters Thesis]. Stellenbosch University; 2015. Available from: http://hdl.handle.net/10019.1/98118

University of Illinois – Urbana-Champaign

4.
Mastroeni, Matthew N.
Betti numbers of Koszul *algebras* and codimension two *matrix* factorizations.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/101658

► This thesis consists of two projects on the structure of free resolutions in commutative algebra. After developing some necessary background, we prove a structure theorem…
(more)

Subjects/Keywords: Koszul algebras; almost complete intersections; Betti numbers; free resolutions; matrix factorizations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mastroeni, M. N. (2018). Betti numbers of Koszul algebras and codimension two matrix factorizations. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101658

Chicago Manual of Style (16^{th} Edition):

Mastroeni, Matthew N. “Betti numbers of Koszul algebras and codimension two matrix factorizations.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 19, 2020. http://hdl.handle.net/2142/101658.

MLA Handbook (7^{th} Edition):

Mastroeni, Matthew N. “Betti numbers of Koszul algebras and codimension two matrix factorizations.” 2018. Web. 19 Oct 2020.

Vancouver:

Mastroeni MN. Betti numbers of Koszul algebras and codimension two matrix factorizations. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Oct 19]. Available from: http://hdl.handle.net/2142/101658.

Council of Science Editors:

Mastroeni MN. Betti numbers of Koszul algebras and codimension two matrix factorizations. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101658

University of Michigan

5.
Kennedy, Christopher B.
An exploration of deep *matrix* *algebras*.

Degree: PhD, Pure Sciences, 2004, University of Michigan

URL: http://hdl.handle.net/2027.42/124453

► The associative deep *matrix* algebra EX,<blkbd>K</blkbd></fen> was introduced and studied for X infinite in the unpublished paper Deep *Matrix* *Algebras* and their Frankenstein Actions .…
(more)

Subjects/Keywords: Cardinalities; Deep; Exploration; Lie Algebras; Matrix Algebras

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kennedy, C. B. (2004). An exploration of deep matrix algebras. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/124453

Chicago Manual of Style (16^{th} Edition):

Kennedy, Christopher B. “An exploration of deep matrix algebras.” 2004. Doctoral Dissertation, University of Michigan. Accessed October 19, 2020. http://hdl.handle.net/2027.42/124453.

MLA Handbook (7^{th} Edition):

Kennedy, Christopher B. “An exploration of deep matrix algebras.” 2004. Web. 19 Oct 2020.

Vancouver:

Kennedy CB. An exploration of deep matrix algebras. [Internet] [Doctoral dissertation]. University of Michigan; 2004. [cited 2020 Oct 19]. Available from: http://hdl.handle.net/2027.42/124453.

Council of Science Editors:

Kennedy CB. An exploration of deep matrix algebras. [Doctoral Dissertation]. University of Michigan; 2004. Available from: http://hdl.handle.net/2027.42/124453

University of South Florida

6. Meng, Jinghan. Bi-Integrable and Tri-Integrable Couplings and Their Hamiltonian Structures.

Degree: 2012, University of South Florida

URL: https://scholarcommons.usf.edu/etd/4371

► An investigation into structures of bi-integrable and tri-integrable couplings is undertaken. Our study is based on semi-direct sums of *matrix* Lie *algebras*. By introducing new…
(more)

Subjects/Keywords: Conserved quantity; Hamiltonian structure; Integrable coupling; Matrix loop algebras; Soliton hierarchy; Symmetry; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Meng, J. (2012). Bi-Integrable and Tri-Integrable Couplings and Their Hamiltonian Structures. (Thesis). University of South Florida. Retrieved from https://scholarcommons.usf.edu/etd/4371

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Meng, Jinghan. “Bi-Integrable and Tri-Integrable Couplings and Their Hamiltonian Structures.” 2012. Thesis, University of South Florida. Accessed October 19, 2020. https://scholarcommons.usf.edu/etd/4371.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Meng, Jinghan. “Bi-Integrable and Tri-Integrable Couplings and Their Hamiltonian Structures.” 2012. Web. 19 Oct 2020.

Vancouver:

Meng J. Bi-Integrable and Tri-Integrable Couplings and Their Hamiltonian Structures. [Internet] [Thesis]. University of South Florida; 2012. [cited 2020 Oct 19]. Available from: https://scholarcommons.usf.edu/etd/4371.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Meng J. Bi-Integrable and Tri-Integrable Couplings and Their Hamiltonian Structures. [Thesis]. University of South Florida; 2012. Available from: https://scholarcommons.usf.edu/etd/4371

Not specified: Masters Thesis or Doctoral Dissertation

Universidade de Brasília

7. Evander Pereira de Rezende. Identidades polinomiais graduadas de algumas àlgebras matriciais.

Degree: 2010, Universidade de Brasília

URL: http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=6879

►

Let K be an associative and commutative ring with 1 and let A be an associative Kalgebra with or without 1. We say that the… (more)

Subjects/Keywords: identidades polinomiais; pi-àlgebras, propriedade da base finita; propriedade de specht; àlgebras matriciais; specht property; Algebras graduadas; pi-algebras; matrix álgebras; ALGEBRA; Graded álgebras; polynomial identities; finite basis Property

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rezende, E. P. d. (2010). Identidades polinomiais graduadas de algumas àlgebras matriciais. (Thesis). Universidade de Brasília. Retrieved from http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=6879

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Rezende, Evander Pereira de. “Identidades polinomiais graduadas de algumas àlgebras matriciais.” 2010. Thesis, Universidade de Brasília. Accessed October 19, 2020. http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=6879.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Rezende, Evander Pereira de. “Identidades polinomiais graduadas de algumas àlgebras matriciais.” 2010. Web. 19 Oct 2020.

Vancouver:

Rezende EPd. Identidades polinomiais graduadas de algumas àlgebras matriciais. [Internet] [Thesis]. Universidade de Brasília; 2010. [cited 2020 Oct 19]. Available from: http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=6879.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rezende EPd. Identidades polinomiais graduadas de algumas àlgebras matriciais. [Thesis]. Universidade de Brasília; 2010. Available from: http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=6879

Not specified: Masters Thesis or Doctoral Dissertation

Freie Universität Berlin

8. Kohl, Florian. Gitterpolytope – Anwendungen und Eigenschaften.

Degree: 2018, Freie Universität Berlin

URL: http://dx.doi.org/10.17169/refubium-254

► This dissertation is about applications and properties of lattice polytopes. In the second chapter, we briefly review the necessary background material. In Chapter 3, we…
(more)

Subjects/Keywords: lattice polytopes; Ehrhart theory; graph colorings; level algebras; transfer-matrix method; 500 Naturwissenschaften und Mathematik::510 Mathematik::516 Geometrie

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kohl, F. (2018). Gitterpolytope – Anwendungen und Eigenschaften. (Thesis). Freie Universität Berlin. Retrieved from http://dx.doi.org/10.17169/refubium-254

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kohl, Florian. “Gitterpolytope – Anwendungen und Eigenschaften.” 2018. Thesis, Freie Universität Berlin. Accessed October 19, 2020. http://dx.doi.org/10.17169/refubium-254.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kohl, Florian. “Gitterpolytope – Anwendungen und Eigenschaften.” 2018. Web. 19 Oct 2020.

Vancouver:

Kohl F. Gitterpolytope – Anwendungen und Eigenschaften. [Internet] [Thesis]. Freie Universität Berlin; 2018. [cited 2020 Oct 19]. Available from: http://dx.doi.org/10.17169/refubium-254.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kohl F. Gitterpolytope – Anwendungen und Eigenschaften. [Thesis]. Freie Universität Berlin; 2018. Available from: http://dx.doi.org/10.17169/refubium-254

Not specified: Masters Thesis or Doctoral Dissertation

University of Lethbridge

9.
University of Lethbridge. Faculty of Arts and Science.
On diagonally structured *matrix* computation
.

Degree: 2019, University of Lethbridge

URL: http://hdl.handle.net/10133/5649

► In this thesis, we have proposed efficient implementations of linear algebra kernels such as *matrix*-vector and *matrix*-matrix multiplications by formulating arithmetic calculations in terms of…
(more)

Subjects/Keywords: dense matrices; diagonal storage; linear algebra kernals; matrix-matrix multiplications; matrix-vector multiplications; orientation-neutral computation; Algebras, Linear – Data processing; Matrices – Data processing; Parallel processing (Electronic computers); Memory management (Computer science); Dissertations, Academic

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Science, U. o. L. F. o. A. a. (2019). On diagonally structured matrix computation . (Thesis). University of Lethbridge. Retrieved from http://hdl.handle.net/10133/5649

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Science, University of Lethbridge. Faculty of Arts and. “On diagonally structured matrix computation .” 2019. Thesis, University of Lethbridge. Accessed October 19, 2020. http://hdl.handle.net/10133/5649.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Science, University of Lethbridge. Faculty of Arts and. “On diagonally structured matrix computation .” 2019. Web. 19 Oct 2020.

Vancouver:

Science UoLFoAa. On diagonally structured matrix computation . [Internet] [Thesis]. University of Lethbridge; 2019. [cited 2020 Oct 19]. Available from: http://hdl.handle.net/10133/5649.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Science UoLFoAa. On diagonally structured matrix computation . [Thesis]. University of Lethbridge; 2019. Available from: http://hdl.handle.net/10133/5649

Not specified: Masters Thesis or Doctoral Dissertation

Universidade Estadual de Campinas

10.
Reis, Júlio César dos, 1979-.
Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for *matrix* algebra.

Degree: 2012, Universidade Estadual de Campinas

URL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363

► Abstract: In this PhD thesis we give bases of the graded polynomial identities of...Note: The complete abstract is available with the full electronic document Advisors/Committee…
(more)

Subjects/Keywords: PI-álgebras; Identidade polinomial; Aneís graduados; Matrizes (Matemática); Corpos finitos (Álgebra); PI-algebras; Polynomial identity; Graded rings; Matrix algebra; Finite fields (Algebra)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Reis, Júlio César dos, 1. (2012). Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Reis, Júlio César dos, 1979-. “Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra.” 2012. Thesis, Universidade Estadual de Campinas. Accessed October 19, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Reis, Júlio César dos, 1979-. “Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra.” 2012. Web. 19 Oct 2020.

Vancouver:

Reis, Júlio César dos 1. Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra. [Internet] [Thesis]. Universidade Estadual de Campinas; 2012. [cited 2020 Oct 19]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Reis, Júlio César dos 1. Graduações e identidades graduadas para álgebras de matrizes: Gradings and graded identities for matrix algebra. [Thesis]. Universidade Estadual de Campinas; 2012. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306363

Not specified: Masters Thesis or Doctoral Dissertation

11.
Mendelson, Samuel Stephen.
*Matrix**Algebras*: Equivalent Ring Relations and Special Presentations
.

Degree: 2017, George Mason University

URL: http://hdl.handle.net/1920/11246

► Recognizing when a ring is a *matrix* ring is of significant importance in the study of algebra. A well-known result in noncommutative ring theory states…
(more)

Subjects/Keywords: Mathematics; Diamond Lemma; Free Algebras; Matrix Recognition; Matrix Relations; Noncommutative Algebra

…Chapter 1: Introduction
1.1
History and Motivation
The importance of *matrix* rings and… …*algebras* has been known and studied for a long time.
For examples of their importance and study… …see [?] and [?]. However, recognizing a *matrix*
ring or algebra is not… …recognizing *matrix* rings as stated in [?]. We begin with a definition.
Definition 1.1.1… …n set of *matrix* units if the elements satisfy the relations
n
X
eii = 1 and eij ekm…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mendelson, S. S. (2017). Matrix Algebras: Equivalent Ring Relations and Special Presentations . (Thesis). George Mason University. Retrieved from http://hdl.handle.net/1920/11246

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mendelson, Samuel Stephen. “Matrix Algebras: Equivalent Ring Relations and Special Presentations .” 2017. Thesis, George Mason University. Accessed October 19, 2020. http://hdl.handle.net/1920/11246.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mendelson, Samuel Stephen. “Matrix Algebras: Equivalent Ring Relations and Special Presentations .” 2017. Web. 19 Oct 2020.

Vancouver:

Mendelson SS. Matrix Algebras: Equivalent Ring Relations and Special Presentations . [Internet] [Thesis]. George Mason University; 2017. [cited 2020 Oct 19]. Available from: http://hdl.handle.net/1920/11246.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mendelson SS. Matrix Algebras: Equivalent Ring Relations and Special Presentations . [Thesis]. George Mason University; 2017. Available from: http://hdl.handle.net/1920/11246

Not specified: Masters Thesis or Doctoral Dissertation

12.
Dor On, Adam.
Techniques in operator *algebras*: classification, dilation and non-commutative boundary theory.

Degree: 2017, University of Waterloo

URL: http://hdl.handle.net/10012/12131

► In this thesis we bring together several techniques in the theory of non-self-adjoint operator *algebras* and operator systems. We begin with classification of non-self-adjoint and…
(more)

Subjects/Keywords: Tensor algebras; C*-envelope; Dilation; Cuntz-Krieger algebras; Free products; Weighted partial systems; Matrix convex sets; Operator systems; Completely positive interpolation; Markov operators; Isomorphism problems

…from a finite
irreducible stochastic *matrix* P . We compare these two *algebras* arising from an… …unital *algebras* . . . . . . . . . . . . . . .
12
Subproduct systems and their operator… …*algebras* . . . . . . . . . . . . . . .
15
2.2.1
C*-correspondences… …2.2.3
Operator *algebras* arising from subproduct systems . . . . . . . . .
21
Topological… …2.3.4
Extension theory . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
*Matrix*…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dor On, A. (2017). Techniques in operator algebras: classification, dilation and non-commutative boundary theory. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/12131

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Dor On, Adam. “Techniques in operator algebras: classification, dilation and non-commutative boundary theory.” 2017. Thesis, University of Waterloo. Accessed October 19, 2020. http://hdl.handle.net/10012/12131.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Dor On, Adam. “Techniques in operator algebras: classification, dilation and non-commutative boundary theory.” 2017. Web. 19 Oct 2020.

Vancouver:

Dor On A. Techniques in operator algebras: classification, dilation and non-commutative boundary theory. [Internet] [Thesis]. University of Waterloo; 2017. [cited 2020 Oct 19]. Available from: http://hdl.handle.net/10012/12131.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dor On A. Techniques in operator algebras: classification, dilation and non-commutative boundary theory. [Thesis]. University of Waterloo; 2017. Available from: http://hdl.handle.net/10012/12131

Not specified: Masters Thesis or Doctoral Dissertation

University of Florida

13. Özgüler, Ar�if Bülent, 1954-. Skew-primeness in the regulator problem with internal stability.

Degree: 1982, University of Florida

URL: https://ufdc.ufl.edu/AA00032869

Subjects/Keywords: Algebra; Graduates; Linear systems; Mathematical procedures; Matrices; Matrix equations; Ordered pairs; Polynomials; Sensors; Solvability; Algebras, Linear ( fast ); Automatic control ( fast ); Control theory ( fast )

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Özgüler, Ar�if Bülent, 1. (1982). Skew-primeness in the regulator problem with internal stability. (Thesis). University of Florida. Retrieved from https://ufdc.ufl.edu/AA00032869

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Özgüler, Ar�if Bülent, 1954-. “Skew-primeness in the regulator problem with internal stability.” 1982. Thesis, University of Florida. Accessed October 19, 2020. https://ufdc.ufl.edu/AA00032869.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Özgüler, Ar�if Bülent, 1954-. “Skew-primeness in the regulator problem with internal stability.” 1982. Web. 19 Oct 2020.

Vancouver:

Özgüler, Ar�if Bülent 1. Skew-primeness in the regulator problem with internal stability. [Internet] [Thesis]. University of Florida; 1982. [cited 2020 Oct 19]. Available from: https://ufdc.ufl.edu/AA00032869.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Özgüler, Ar�if Bülent 1. Skew-primeness in the regulator problem with internal stability. [Thesis]. University of Florida; 1982. Available from: https://ufdc.ufl.edu/AA00032869

Not specified: Masters Thesis or Doctoral Dissertation

14. Hong, Guixiang. Quelques problèmes en analyse harmonique non commutative : Some problems on noncommutative harmonique analysis.

Degree: Docteur es, Mathématiques et applications, 2012, Besançon

URL: http://www.theses.fr/2012BESA2017

Quelques problèmes en analyse harmonique non commutative

Some problems on noncommutative harmonique analysis

Subjects/Keywords: Algèbre de von Neumann; Espaces Lp non commutatifs; Martingales non commutatives; Inégalité de John-Nirenberg; Décomposition atomique; Espaces de Hardy et BMO à valeurs matricielles; Ondelettes; Opérateurs de Calderon-Zygmund; Noyaux à valeurs matricielless; Shift de Haar; Transformée de martingale; Paraproduits; Von Neuman algebras; Noncommutative Lp-spaces; Non commutative martingales; John-Nirenberg inequality; Atomic decomposition; Matrix-valued Hary spaces and BMO; Wavelets; Calderon-Zygmund operators; Matrix-valued kernels; Haar shift; Martingales transforms; Paraproducts; 42B30; 42B35; 42C40; 44A12; 44A99; 46L52; 46B70; 46M35; 60G42; 60G46; 46L53

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hong, G. (2012). Quelques problèmes en analyse harmonique non commutative : Some problems on noncommutative harmonique analysis. (Doctoral Dissertation). Besançon. Retrieved from http://www.theses.fr/2012BESA2017

Chicago Manual of Style (16^{th} Edition):

Hong, Guixiang. “Quelques problèmes en analyse harmonique non commutative : Some problems on noncommutative harmonique analysis.” 2012. Doctoral Dissertation, Besançon. Accessed October 19, 2020. http://www.theses.fr/2012BESA2017.

MLA Handbook (7^{th} Edition):

Hong, Guixiang. “Quelques problèmes en analyse harmonique non commutative : Some problems on noncommutative harmonique analysis.” 2012. Web. 19 Oct 2020.

Vancouver:

Hong G. Quelques problèmes en analyse harmonique non commutative : Some problems on noncommutative harmonique analysis. [Internet] [Doctoral dissertation]. Besançon; 2012. [cited 2020 Oct 19]. Available from: http://www.theses.fr/2012BESA2017.

Council of Science Editors:

Hong G. Quelques problèmes en analyse harmonique non commutative : Some problems on noncommutative harmonique analysis. [Doctoral Dissertation]. Besançon; 2012. Available from: http://www.theses.fr/2012BESA2017