Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Matrices). Showing records 1 – 30 of 1605 total matches.

[1] [2] [3] [4] [5] … [54]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Languages

Country

▼ Search Limiters

1. Bernard-Cardascia, Pierre. La dialogique des matrices : interaction et analyses des processus dynamiques sans histoire : The Dialogics of Matrices : interaction and analysis of dynamic processes without history.

Degree: Docteur es, Philosophie (métaphysique, épistémologie, esthétique), 2016, Lille 3

Le théorème de Deligne-Gödel met en évidence des correspondances entre les mathématiques et la métalogique, jusqu'alors considérées comme impossibles, aussi il réinterroge statut particulier de… (more)

Subjects/Keywords: Matrices; Métalogique; Matrices; Metalogic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bernard-Cardascia, P. (2016). La dialogique des matrices : interaction et analyses des processus dynamiques sans histoire : The Dialogics of Matrices : interaction and analysis of dynamic processes without history. (Doctoral Dissertation). Lille 3. Retrieved from http://www.theses.fr/2016LIL30061

Chicago Manual of Style (16th Edition):

Bernard-Cardascia, Pierre. “La dialogique des matrices : interaction et analyses des processus dynamiques sans histoire : The Dialogics of Matrices : interaction and analysis of dynamic processes without history.” 2016. Doctoral Dissertation, Lille 3. Accessed August 24, 2019. http://www.theses.fr/2016LIL30061.

MLA Handbook (7th Edition):

Bernard-Cardascia, Pierre. “La dialogique des matrices : interaction et analyses des processus dynamiques sans histoire : The Dialogics of Matrices : interaction and analysis of dynamic processes without history.” 2016. Web. 24 Aug 2019.

Vancouver:

Bernard-Cardascia P. La dialogique des matrices : interaction et analyses des processus dynamiques sans histoire : The Dialogics of Matrices : interaction and analysis of dynamic processes without history. [Internet] [Doctoral dissertation]. Lille 3; 2016. [cited 2019 Aug 24]. Available from: http://www.theses.fr/2016LIL30061.

Council of Science Editors:

Bernard-Cardascia P. La dialogique des matrices : interaction et analyses des processus dynamiques sans histoire : The Dialogics of Matrices : interaction and analysis of dynamic processes without history. [Doctoral Dissertation]. Lille 3; 2016. Available from: http://www.theses.fr/2016LIL30061


California State Polytechnic University – Pomona

2. Kchech, Christine. Approximation of the Epsilon Pseudospectra of Toeplitz operators.

Degree: MS, Mathematics, 2015, California State Polytechnic University – Pomona

 This paper investigates the relationship between the spectrum of a Toeplitz operator and the spectra of its approximating Toeplitz matrices. The main tool in this… (more)

Subjects/Keywords: Toeplitz matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kchech, C. (2015). Approximation of the Epsilon Pseudospectra of Toeplitz operators. (Masters Thesis). California State Polytechnic University – Pomona. Retrieved from http://hdl.handle.net/10211.3/160925

Chicago Manual of Style (16th Edition):

Kchech, Christine. “Approximation of the Epsilon Pseudospectra of Toeplitz operators.” 2015. Masters Thesis, California State Polytechnic University – Pomona. Accessed August 24, 2019. http://hdl.handle.net/10211.3/160925.

MLA Handbook (7th Edition):

Kchech, Christine. “Approximation of the Epsilon Pseudospectra of Toeplitz operators.” 2015. Web. 24 Aug 2019.

Vancouver:

Kchech C. Approximation of the Epsilon Pseudospectra of Toeplitz operators. [Internet] [Masters thesis]. California State Polytechnic University – Pomona; 2015. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/10211.3/160925.

Council of Science Editors:

Kchech C. Approximation of the Epsilon Pseudospectra of Toeplitz operators. [Masters Thesis]. California State Polytechnic University – Pomona; 2015. Available from: http://hdl.handle.net/10211.3/160925


Georgia Tech

3. Allen, Max Lester. The condition of matrices.

Degree: MS, Applied Mathematics, 1965, Georgia Tech

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Allen, M. L. (1965). The condition of matrices. (Masters Thesis). Georgia Tech. Retrieved from http://hdl.handle.net/1853/29191

Chicago Manual of Style (16th Edition):

Allen, Max Lester. “The condition of matrices.” 1965. Masters Thesis, Georgia Tech. Accessed August 24, 2019. http://hdl.handle.net/1853/29191.

MLA Handbook (7th Edition):

Allen, Max Lester. “The condition of matrices.” 1965. Web. 24 Aug 2019.

Vancouver:

Allen ML. The condition of matrices. [Internet] [Masters thesis]. Georgia Tech; 1965. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1853/29191.

Council of Science Editors:

Allen ML. The condition of matrices. [Masters Thesis]. Georgia Tech; 1965. Available from: http://hdl.handle.net/1853/29191


University of Hong Kong

4. 文偉業; Man, Wai-yip. Some properties of C-numerical ranges and C-numerical radii.

Degree: M. Phil., 1992, University of Hong Kong

published_or_final_version

Mathematics

Master

Master of Philosophy

Subjects/Keywords: Matrices.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

文偉業; Man, W. (1992). Some properties of C-numerical ranges and C-numerical radii. (Masters Thesis). University of Hong Kong. Retrieved from Man, W. [文偉業]. (1992). Some properties of C-numerical ranges and C-numerical radii. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3121049 ; http://dx.doi.org/10.5353/th_b3121049 ; http://hdl.handle.net/10722/32508

Chicago Manual of Style (16th Edition):

文偉業; Man, Wai-yip. “Some properties of C-numerical ranges and C-numerical radii.” 1992. Masters Thesis, University of Hong Kong. Accessed August 24, 2019. Man, W. [文偉業]. (1992). Some properties of C-numerical ranges and C-numerical radii. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3121049 ; http://dx.doi.org/10.5353/th_b3121049 ; http://hdl.handle.net/10722/32508.

MLA Handbook (7th Edition):

文偉業; Man, Wai-yip. “Some properties of C-numerical ranges and C-numerical radii.” 1992. Web. 24 Aug 2019.

Vancouver:

文偉業; Man W. Some properties of C-numerical ranges and C-numerical radii. [Internet] [Masters thesis]. University of Hong Kong; 1992. [cited 2019 Aug 24]. Available from: Man, W. [文偉業]. (1992). Some properties of C-numerical ranges and C-numerical radii. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3121049 ; http://dx.doi.org/10.5353/th_b3121049 ; http://hdl.handle.net/10722/32508.

Council of Science Editors:

文偉業; Man W. Some properties of C-numerical ranges and C-numerical radii. [Masters Thesis]. University of Hong Kong; 1992. Available from: Man, W. [文偉業]. (1992). Some properties of C-numerical ranges and C-numerical radii. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3121049 ; http://dx.doi.org/10.5353/th_b3121049 ; http://hdl.handle.net/10722/32508


University of Hong Kong

5. Cheung, Wai-shun. Some geometrical aspects of and inclusion relations for generalized numerical ranges.

Degree: M. Phil., 1996, University of Hong Kong

published_or_final_version

Mathematics

Master

Master of Philosophy

Subjects/Keywords: Matrices.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cheung, W. (1996). Some geometrical aspects of and inclusion relations for generalized numerical ranges. (Masters Thesis). University of Hong Kong. Retrieved from Cheung, W. [張偉信]. (1996). Some geometrical aspects of and inclusion relations for generalized numerical ranges. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3121298 ; http://dx.doi.org/10.5353/th_b3121298 ; http://hdl.handle.net/10722/32670

Chicago Manual of Style (16th Edition):

Cheung, Wai-shun. “Some geometrical aspects of and inclusion relations for generalized numerical ranges.” 1996. Masters Thesis, University of Hong Kong. Accessed August 24, 2019. Cheung, W. [張偉信]. (1996). Some geometrical aspects of and inclusion relations for generalized numerical ranges. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3121298 ; http://dx.doi.org/10.5353/th_b3121298 ; http://hdl.handle.net/10722/32670.

MLA Handbook (7th Edition):

Cheung, Wai-shun. “Some geometrical aspects of and inclusion relations for generalized numerical ranges.” 1996. Web. 24 Aug 2019.

Vancouver:

Cheung W. Some geometrical aspects of and inclusion relations for generalized numerical ranges. [Internet] [Masters thesis]. University of Hong Kong; 1996. [cited 2019 Aug 24]. Available from: Cheung, W. [張偉信]. (1996). Some geometrical aspects of and inclusion relations for generalized numerical ranges. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3121298 ; http://dx.doi.org/10.5353/th_b3121298 ; http://hdl.handle.net/10722/32670.

Council of Science Editors:

Cheung W. Some geometrical aspects of and inclusion relations for generalized numerical ranges. [Masters Thesis]. University of Hong Kong; 1996. Available from: Cheung, W. [張偉信]. (1996). Some geometrical aspects of and inclusion relations for generalized numerical ranges. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3121298 ; http://dx.doi.org/10.5353/th_b3121298 ; http://hdl.handle.net/10722/32670


University of Hong Kong

6. 吳鎮宇; Ng, Chun-yu. On the matrix equation Am + dI + [lambda] J.

Degree: M. Phil., 2001, University of Hong Kong

published_or_final_version

Mathematics

Master

Master of Philosophy

Subjects/Keywords: Matrices.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

吳鎮宇; Ng, C. (2001). On the matrix equation Am + dI + [lambda] J. (Masters Thesis). University of Hong Kong. Retrieved from Ng, C. [吳鎮宇]. (2001). On the matrix equation Am + dI + [lambda] J. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3122656 ; http://dx.doi.org/10.5353/th_b3122656 ; http://hdl.handle.net/10722/33338

Chicago Manual of Style (16th Edition):

吳鎮宇; Ng, Chun-yu. “On the matrix equation Am + dI + [lambda] J.” 2001. Masters Thesis, University of Hong Kong. Accessed August 24, 2019. Ng, C. [吳鎮宇]. (2001). On the matrix equation Am + dI + [lambda] J. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3122656 ; http://dx.doi.org/10.5353/th_b3122656 ; http://hdl.handle.net/10722/33338.

MLA Handbook (7th Edition):

吳鎮宇; Ng, Chun-yu. “On the matrix equation Am + dI + [lambda] J.” 2001. Web. 24 Aug 2019.

Vancouver:

吳鎮宇; Ng C. On the matrix equation Am + dI + [lambda] J. [Internet] [Masters thesis]. University of Hong Kong; 2001. [cited 2019 Aug 24]. Available from: Ng, C. [吳鎮宇]. (2001). On the matrix equation Am + dI + [lambda] J. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3122656 ; http://dx.doi.org/10.5353/th_b3122656 ; http://hdl.handle.net/10722/33338.

Council of Science Editors:

吳鎮宇; Ng C. On the matrix equation Am + dI + [lambda] J. [Masters Thesis]. University of Hong Kong; 2001. Available from: Ng, C. [吳鎮宇]. (2001). On the matrix equation Am + dI + [lambda] J. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3122656 ; http://dx.doi.org/10.5353/th_b3122656 ; http://hdl.handle.net/10722/33338


University of Hong Kong

7. 張智健; Cheung, Gilbert. On star-centers of generalized numerical ranges.

Degree: M. Phil., 2000, University of Hong Kong

published_or_final_version

Mathematics

Master

Master of Philosophy

Subjects/Keywords: Matrices.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

張智健; Cheung, G. (2000). On star-centers of generalized numerical ranges. (Masters Thesis). University of Hong Kong. Retrieved from Cheung, G. [張智健]. (2000). On star-centers of generalized numerical ranges. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3122232 ; http://dx.doi.org/10.5353/th_b3122232 ; http://hdl.handle.net/10722/33407

Chicago Manual of Style (16th Edition):

張智健; Cheung, Gilbert. “On star-centers of generalized numerical ranges.” 2000. Masters Thesis, University of Hong Kong. Accessed August 24, 2019. Cheung, G. [張智健]. (2000). On star-centers of generalized numerical ranges. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3122232 ; http://dx.doi.org/10.5353/th_b3122232 ; http://hdl.handle.net/10722/33407.

MLA Handbook (7th Edition):

張智健; Cheung, Gilbert. “On star-centers of generalized numerical ranges.” 2000. Web. 24 Aug 2019.

Vancouver:

張智健; Cheung G. On star-centers of generalized numerical ranges. [Internet] [Masters thesis]. University of Hong Kong; 2000. [cited 2019 Aug 24]. Available from: Cheung, G. [張智健]. (2000). On star-centers of generalized numerical ranges. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3122232 ; http://dx.doi.org/10.5353/th_b3122232 ; http://hdl.handle.net/10722/33407.

Council of Science Editors:

張智健; Cheung G. On star-centers of generalized numerical ranges. [Masters Thesis]. University of Hong Kong; 2000. Available from: Cheung, G. [張智健]. (2000). On star-centers of generalized numerical ranges. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3122232 ; http://dx.doi.org/10.5353/th_b3122232 ; http://hdl.handle.net/10722/33407


University of Hong Kong

8. Lau, Pan-shun. Some geometrical aspects of linear images of matrix orbits.

Degree: PhD, 2016, University of Hong Kong

published_or_final_version

Mathematics

Doctoral

Doctor of Philosophy

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lau, P. (2016). Some geometrical aspects of linear images of matrix orbits. (Doctoral Dissertation). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/235920

Chicago Manual of Style (16th Edition):

Lau, Pan-shun. “Some geometrical aspects of linear images of matrix orbits.” 2016. Doctoral Dissertation, University of Hong Kong. Accessed August 24, 2019. http://hdl.handle.net/10722/235920.

MLA Handbook (7th Edition):

Lau, Pan-shun. “Some geometrical aspects of linear images of matrix orbits.” 2016. Web. 24 Aug 2019.

Vancouver:

Lau P. Some geometrical aspects of linear images of matrix orbits. [Internet] [Doctoral dissertation]. University of Hong Kong; 2016. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/10722/235920.

Council of Science Editors:

Lau P. Some geometrical aspects of linear images of matrix orbits. [Doctoral Dissertation]. University of Hong Kong; 2016. Available from: http://hdl.handle.net/10722/235920


University of Hong Kong

9. 施泉根.; Sze, Chuen-kan. S-normality and polygonal s-numerical ranges.

Degree: M. Phil., 1997, University of Hong Kong

published_or_final_version

abstract

toc

Mathematics

Master

Master of Philosophy

Subjects/Keywords: Matrices.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

施泉根.; Sze, C. (1997). S-normality and polygonal s-numerical ranges. (Masters Thesis). University of Hong Kong. Retrieved from Sze, C. [施泉根]. (1997). S-normality and polygonal s-numerical ranges. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b2981563 ; http://dx.doi.org/10.5353/th_b2981563 ; http://hdl.handle.net/10722/32038

Chicago Manual of Style (16th Edition):

施泉根.; Sze, Chuen-kan. “S-normality and polygonal s-numerical ranges.” 1997. Masters Thesis, University of Hong Kong. Accessed August 24, 2019. Sze, C. [施泉根]. (1997). S-normality and polygonal s-numerical ranges. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b2981563 ; http://dx.doi.org/10.5353/th_b2981563 ; http://hdl.handle.net/10722/32038.

MLA Handbook (7th Edition):

施泉根.; Sze, Chuen-kan. “S-normality and polygonal s-numerical ranges.” 1997. Web. 24 Aug 2019.

Vancouver:

施泉根.; Sze C. S-normality and polygonal s-numerical ranges. [Internet] [Masters thesis]. University of Hong Kong; 1997. [cited 2019 Aug 24]. Available from: Sze, C. [施泉根]. (1997). S-normality and polygonal s-numerical ranges. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b2981563 ; http://dx.doi.org/10.5353/th_b2981563 ; http://hdl.handle.net/10722/32038.

Council of Science Editors:

施泉根.; Sze C. S-normality and polygonal s-numerical ranges. [Masters Thesis]. University of Hong Kong; 1997. Available from: Sze, C. [施泉根]. (1997). S-normality and polygonal s-numerical ranges. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b2981563 ; http://dx.doi.org/10.5353/th_b2981563 ; http://hdl.handle.net/10722/32038


Montana Tech

10. McPeek, Leonard Joseph. Ring and its complete matrix ring.

Degree: MA, 1968, Montana Tech

Subjects/Keywords: Matrices.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McPeek, L. J. (1968). Ring and its complete matrix ring. (Masters Thesis). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/8233

Chicago Manual of Style (16th Edition):

McPeek, Leonard Joseph. “Ring and its complete matrix ring.” 1968. Masters Thesis, Montana Tech. Accessed August 24, 2019. https://scholarworks.umt.edu/etd/8233.

MLA Handbook (7th Edition):

McPeek, Leonard Joseph. “Ring and its complete matrix ring.” 1968. Web. 24 Aug 2019.

Vancouver:

McPeek LJ. Ring and its complete matrix ring. [Internet] [Masters thesis]. Montana Tech; 1968. [cited 2019 Aug 24]. Available from: https://scholarworks.umt.edu/etd/8233.

Council of Science Editors:

McPeek LJ. Ring and its complete matrix ring. [Masters Thesis]. Montana Tech; 1968. Available from: https://scholarworks.umt.edu/etd/8233


Montana Tech

11. Ogden, Harvey Craig. Iterative methods of matrix inversion.

Degree: MA, 1969, Montana Tech

Subjects/Keywords: Matrices.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ogden, H. C. (1969). Iterative methods of matrix inversion. (Masters Thesis). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/8234

Chicago Manual of Style (16th Edition):

Ogden, Harvey Craig. “Iterative methods of matrix inversion.” 1969. Masters Thesis, Montana Tech. Accessed August 24, 2019. https://scholarworks.umt.edu/etd/8234.

MLA Handbook (7th Edition):

Ogden, Harvey Craig. “Iterative methods of matrix inversion.” 1969. Web. 24 Aug 2019.

Vancouver:

Ogden HC. Iterative methods of matrix inversion. [Internet] [Masters thesis]. Montana Tech; 1969. [cited 2019 Aug 24]. Available from: https://scholarworks.umt.edu/etd/8234.

Council of Science Editors:

Ogden HC. Iterative methods of matrix inversion. [Masters Thesis]. Montana Tech; 1969. Available from: https://scholarworks.umt.edu/etd/8234


McGill University

12. Lam, Lily Yuet Ming. On the singular values of real matrices.

Degree: MS, School of Computer Science, 1977, McGill University

Subjects/Keywords: Matrices.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lam, L. Y. M. (1977). On the singular values of real matrices. (Masters Thesis). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile54211.pdf

Chicago Manual of Style (16th Edition):

Lam, Lily Yuet Ming. “On the singular values of real matrices.” 1977. Masters Thesis, McGill University. Accessed August 24, 2019. http://digitool.library.mcgill.ca/thesisfile54211.pdf.

MLA Handbook (7th Edition):

Lam, Lily Yuet Ming. “On the singular values of real matrices.” 1977. Web. 24 Aug 2019.

Vancouver:

Lam LYM. On the singular values of real matrices. [Internet] [Masters thesis]. McGill University; 1977. [cited 2019 Aug 24]. Available from: http://digitool.library.mcgill.ca/thesisfile54211.pdf.

Council of Science Editors:

Lam LYM. On the singular values of real matrices. [Masters Thesis]. McGill University; 1977. Available from: http://digitool.library.mcgill.ca/thesisfile54211.pdf


Oregon State University

13. Goslin, Dennis Irl. The mathematical structure of rectangular arrangements.

Degree: MS, Mathematics, 1965, Oregon State University

 The author studies the class of rectangular arrangements in terms of two binary relations on the objects of the arrangement. He shows how a univalent… (more)

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Goslin, D. I. (1965). The mathematical structure of rectangular arrangements. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/47848

Chicago Manual of Style (16th Edition):

Goslin, Dennis Irl. “The mathematical structure of rectangular arrangements.” 1965. Masters Thesis, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/47848.

MLA Handbook (7th Edition):

Goslin, Dennis Irl. “The mathematical structure of rectangular arrangements.” 1965. Web. 24 Aug 2019.

Vancouver:

Goslin DI. The mathematical structure of rectangular arrangements. [Internet] [Masters thesis]. Oregon State University; 1965. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/47848.

Council of Science Editors:

Goslin DI. The mathematical structure of rectangular arrangements. [Masters Thesis]. Oregon State University; 1965. Available from: http://hdl.handle.net/1957/47848


Oregon State University

14. Furcha, John Arthur. A study of symmetric matrices and quadratic forms over fields of characteristic two.

Degree: MA, Mathematics, 1965, Oregon State University

 This thesis has four main results. First we find a reduction form for symmetric matrices over fields of characteristic two. This result parallels the diagonalization… (more)

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Furcha, J. A. (1965). A study of symmetric matrices and quadratic forms over fields of characteristic two. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/47866

Chicago Manual of Style (16th Edition):

Furcha, John Arthur. “A study of symmetric matrices and quadratic forms over fields of characteristic two.” 1965. Masters Thesis, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/47866.

MLA Handbook (7th Edition):

Furcha, John Arthur. “A study of symmetric matrices and quadratic forms over fields of characteristic two.” 1965. Web. 24 Aug 2019.

Vancouver:

Furcha JA. A study of symmetric matrices and quadratic forms over fields of characteristic two. [Internet] [Masters thesis]. Oregon State University; 1965. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/47866.

Council of Science Editors:

Furcha JA. A study of symmetric matrices and quadratic forms over fields of characteristic two. [Masters Thesis]. Oregon State University; 1965. Available from: http://hdl.handle.net/1957/47866


Oregon State University

15. Hill, Richard David. Generalization of the Ostrowski-Schneider main inertia theorem.

Degree: MA, Mathematics, 1964, Oregon State University

 As indicated by the title, this thesis generalizes the Main Inertia Theorem of Ostrowski and Schneider [8]. The first three results concern the formation of… (more)

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hill, R. D. (1964). Generalization of the Ostrowski-Schneider main inertia theorem. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/48086

Chicago Manual of Style (16th Edition):

Hill, Richard David. “Generalization of the Ostrowski-Schneider main inertia theorem.” 1964. Masters Thesis, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/48086.

MLA Handbook (7th Edition):

Hill, Richard David. “Generalization of the Ostrowski-Schneider main inertia theorem.” 1964. Web. 24 Aug 2019.

Vancouver:

Hill RD. Generalization of the Ostrowski-Schneider main inertia theorem. [Internet] [Masters thesis]. Oregon State University; 1964. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/48086.

Council of Science Editors:

Hill RD. Generalization of the Ostrowski-Schneider main inertia theorem. [Masters Thesis]. Oregon State University; 1964. Available from: http://hdl.handle.net/1957/48086


Oregon State University

16. Biegun, Barry Dow. Equivalence relations on matrices.

Degree: MS, Mathematics, 1965, Oregon State University

Row equivalence, equivalence, and similarity of matrices are studied; some problems concerning an extension of these relations to infinite matrices are discussed. Advisors/Committee Members: Arnold, B. H. (advisor).

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Biegun, B. D. (1965). Equivalence relations on matrices. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/48133

Chicago Manual of Style (16th Edition):

Biegun, Barry Dow. “Equivalence relations on matrices.” 1965. Masters Thesis, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/48133.

MLA Handbook (7th Edition):

Biegun, Barry Dow. “Equivalence relations on matrices.” 1965. Web. 24 Aug 2019.

Vancouver:

Biegun BD. Equivalence relations on matrices. [Internet] [Masters thesis]. Oregon State University; 1965. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/48133.

Council of Science Editors:

Biegun BD. Equivalence relations on matrices. [Masters Thesis]. Oregon State University; 1965. Available from: http://hdl.handle.net/1957/48133


Oregon State University

17. Bonsu, Osei Kwabena. Forming dimensionless products by using an algorithm developed from matrix theory.

Degree: MS, Mechanical Engineering, 1960, Oregon State University

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bonsu, O. K. (1960). Forming dimensionless products by using an algorithm developed from matrix theory. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/50373

Chicago Manual of Style (16th Edition):

Bonsu, Osei Kwabena. “Forming dimensionless products by using an algorithm developed from matrix theory.” 1960. Masters Thesis, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/50373.

MLA Handbook (7th Edition):

Bonsu, Osei Kwabena. “Forming dimensionless products by using an algorithm developed from matrix theory.” 1960. Web. 24 Aug 2019.

Vancouver:

Bonsu OK. Forming dimensionless products by using an algorithm developed from matrix theory. [Internet] [Masters thesis]. Oregon State University; 1960. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/50373.

Council of Science Editors:

Bonsu OK. Forming dimensionless products by using an algorithm developed from matrix theory. [Masters Thesis]. Oregon State University; 1960. Available from: http://hdl.handle.net/1957/50373


Oregon State University

18. Akers, David Warren. First order differential corrections in the eigenvalue problem.

Degree: MS, Mathematics, 1969, Oregon State University

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Akers, D. W. (1969). First order differential corrections in the eigenvalue problem. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/46438

Chicago Manual of Style (16th Edition):

Akers, David Warren. “First order differential corrections in the eigenvalue problem.” 1969. Masters Thesis, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/46438.

MLA Handbook (7th Edition):

Akers, David Warren. “First order differential corrections in the eigenvalue problem.” 1969. Web. 24 Aug 2019.

Vancouver:

Akers DW. First order differential corrections in the eigenvalue problem. [Internet] [Masters thesis]. Oregon State University; 1969. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/46438.

Council of Science Editors:

Akers DW. First order differential corrections in the eigenvalue problem. [Masters Thesis]. Oregon State University; 1969. Available from: http://hdl.handle.net/1957/46438


Oregon State University

19. Lindberg, Charles Gordon. A cone associated with the Lyapunov mapping.

Degree: MS, Mathematics, 1967, Oregon State University

 In this paper we investigate the Lyapunov mapping P  – > AP + PA * where A is a positive stable matrix and P is… (more)

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lindberg, C. G. (1967). A cone associated with the Lyapunov mapping. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/47155

Chicago Manual of Style (16th Edition):

Lindberg, Charles Gordon. “A cone associated with the Lyapunov mapping.” 1967. Masters Thesis, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/47155.

MLA Handbook (7th Edition):

Lindberg, Charles Gordon. “A cone associated with the Lyapunov mapping.” 1967. Web. 24 Aug 2019.

Vancouver:

Lindberg CG. A cone associated with the Lyapunov mapping. [Internet] [Masters thesis]. Oregon State University; 1967. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/47155.

Council of Science Editors:

Lindberg CG. A cone associated with the Lyapunov mapping. [Masters Thesis]. Oregon State University; 1967. Available from: http://hdl.handle.net/1957/47155


Oregon State University

20. Green, Beryl Manfield. Characterizations of matrices for which certain determinantal equalities hold.

Degree: PhD, Mathematics, 1969, Oregon State University

See pdf Advisors/Committee Members: Carlson, David H. (advisor).

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Green, B. M. (1969). Characterizations of matrices for which certain determinantal equalities hold. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17128

Chicago Manual of Style (16th Edition):

Green, Beryl Manfield. “Characterizations of matrices for which certain determinantal equalities hold.” 1969. Doctoral Dissertation, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/17128.

MLA Handbook (7th Edition):

Green, Beryl Manfield. “Characterizations of matrices for which certain determinantal equalities hold.” 1969. Web. 24 Aug 2019.

Vancouver:

Green BM. Characterizations of matrices for which certain determinantal equalities hold. [Internet] [Doctoral dissertation]. Oregon State University; 1969. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/17128.

Council of Science Editors:

Green BM. Characterizations of matrices for which certain determinantal equalities hold. [Doctoral Dissertation]. Oregon State University; 1969. Available from: http://hdl.handle.net/1957/17128


Oregon State University

21. Vander Beek, John Wayne. Isoconjunctivity of hermitian matrices.

Degree: PhD, Mathematics, 1978, Oregon State University

 In this thesis we define two nxn matrices T and S to be isoconjunctive if there exists an nxn nonsingular hermitian matrix H such that… (more)

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vander Beek, J. W. (1978). Isoconjunctivity of hermitian matrices. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17114

Chicago Manual of Style (16th Edition):

Vander Beek, John Wayne. “Isoconjunctivity of hermitian matrices.” 1978. Doctoral Dissertation, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/17114.

MLA Handbook (7th Edition):

Vander Beek, John Wayne. “Isoconjunctivity of hermitian matrices.” 1978. Web. 24 Aug 2019.

Vancouver:

Vander Beek JW. Isoconjunctivity of hermitian matrices. [Internet] [Doctoral dissertation]. Oregon State University; 1978. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/17114.

Council of Science Editors:

Vander Beek JW. Isoconjunctivity of hermitian matrices. [Doctoral Dissertation]. Oregon State University; 1978. Available from: http://hdl.handle.net/1957/17114


Oregon State University

22. Hill, Richard David. Generalized inertia theory for complex matrices.

Degree: PhD, Mathematics, 1968, Oregon State University

See PDF Advisors/Committee Members: Carlson, David (advisor).

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hill, R. D. (1968). Generalized inertia theory for complex matrices. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17192

Chicago Manual of Style (16th Edition):

Hill, Richard David. “Generalized inertia theory for complex matrices.” 1968. Doctoral Dissertation, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/17192.

MLA Handbook (7th Edition):

Hill, Richard David. “Generalized inertia theory for complex matrices.” 1968. Web. 24 Aug 2019.

Vancouver:

Hill RD. Generalized inertia theory for complex matrices. [Internet] [Doctoral dissertation]. Oregon State University; 1968. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/17192.

Council of Science Editors:

Hill RD. Generalized inertia theory for complex matrices. [Doctoral Dissertation]. Oregon State University; 1968. Available from: http://hdl.handle.net/1957/17192


Oregon State University

23. Hook, Donald George. Effects of conjunctivity on the inertia of complex matrices.

Degree: PhD, Mathematics, 1973, Oregon State University

See pdf. Advisors/Committee Members: Ballantine, C. S. (advisor).

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hook, D. G. (1973). Effects of conjunctivity on the inertia of complex matrices. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17546

Chicago Manual of Style (16th Edition):

Hook, Donald George. “Effects of conjunctivity on the inertia of complex matrices.” 1973. Doctoral Dissertation, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/17546.

MLA Handbook (7th Edition):

Hook, Donald George. “Effects of conjunctivity on the inertia of complex matrices.” 1973. Web. 24 Aug 2019.

Vancouver:

Hook DG. Effects of conjunctivity on the inertia of complex matrices. [Internet] [Doctoral dissertation]. Oregon State University; 1973. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/17546.

Council of Science Editors:

Hook DG. Effects of conjunctivity on the inertia of complex matrices. [Doctoral Dissertation]. Oregon State University; 1973. Available from: http://hdl.handle.net/1957/17546


Oregon State University

24. Upatisringa, Visutdhi. The relation between complex matrices obtained by composing similarity and conjunctivity.

Degree: PhD, Mathematics, 1975, Oregon State University

See pdf. Advisors/Committee Members: Ballantine, C. S. (advisor).

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Upatisringa, V. (1975). The relation between complex matrices obtained by composing similarity and conjunctivity. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17555

Chicago Manual of Style (16th Edition):

Upatisringa, Visutdhi. “The relation between complex matrices obtained by composing similarity and conjunctivity.” 1975. Doctoral Dissertation, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/17555.

MLA Handbook (7th Edition):

Upatisringa, Visutdhi. “The relation between complex matrices obtained by composing similarity and conjunctivity.” 1975. Web. 24 Aug 2019.

Vancouver:

Upatisringa V. The relation between complex matrices obtained by composing similarity and conjunctivity. [Internet] [Doctoral dissertation]. Oregon State University; 1975. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/17555.

Council of Science Editors:

Upatisringa V. The relation between complex matrices obtained by composing similarity and conjunctivity. [Doctoral Dissertation]. Oregon State University; 1975. Available from: http://hdl.handle.net/1957/17555


Oregon State University

25. Ng, Dina Ng. An effective criterion for congruence of real symmetric matrix pairs.

Degree: PhD, Mathematics, 1973, Oregon State University

See pdf. Advisors/Committee Members: Ballantine, Charles S. (advisor).

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ng, D. N. (1973). An effective criterion for congruence of real symmetric matrix pairs. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17550

Chicago Manual of Style (16th Edition):

Ng, Dina Ng. “An effective criterion for congruence of real symmetric matrix pairs.” 1973. Doctoral Dissertation, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/17550.

MLA Handbook (7th Edition):

Ng, Dina Ng. “An effective criterion for congruence of real symmetric matrix pairs.” 1973. Web. 24 Aug 2019.

Vancouver:

Ng DN. An effective criterion for congruence of real symmetric matrix pairs. [Internet] [Doctoral dissertation]. Oregon State University; 1973. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/17550.

Council of Science Editors:

Ng DN. An effective criterion for congruence of real symmetric matrix pairs. [Doctoral Dissertation]. Oregon State University; 1973. Available from: http://hdl.handle.net/1957/17550


Oregon State University

26. Yip, Elizabeth Lingfoon. Matrices conjunctive with their adjoints.

Degree: PhD, Mathematics, 1973, Oregon State University

 This paper studies necessary and sufficient conditions for a matrix to be conjunctive with its adjoint. The problem is solved completely in the usual complex… (more)

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yip, E. L. (1973). Matrices conjunctive with their adjoints. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17548

Chicago Manual of Style (16th Edition):

Yip, Elizabeth Lingfoon. “Matrices conjunctive with their adjoints.” 1973. Doctoral Dissertation, Oregon State University. Accessed August 24, 2019. http://hdl.handle.net/1957/17548.

MLA Handbook (7th Edition):

Yip, Elizabeth Lingfoon. “Matrices conjunctive with their adjoints.” 1973. Web. 24 Aug 2019.

Vancouver:

Yip EL. Matrices conjunctive with their adjoints. [Internet] [Doctoral dissertation]. Oregon State University; 1973. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/1957/17548.

Council of Science Editors:

Yip EL. Matrices conjunctive with their adjoints. [Doctoral Dissertation]. Oregon State University; 1973. Available from: http://hdl.handle.net/1957/17548

27. Mériaux, Céline. Imagerie du système nerveux central par spectrométrie de masse MALDI : Imaging of central nervous system by MALDI mass spectrometry.

Degree: Docteur es, Recherche clinique, Innovation technologique, Santé publique, 2011, Université Lille I – Sciences et Technologies

Ces dernières années, l’imagerie par spectrométrie de masse MALDI s’est révélée être un outil puissant pour la recherche de biomarqueurs puisqu’elle permet d’effectuer l’analyse d’un… (more)

Subjects/Keywords: Matrices ioniques

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mériaux, C. (2011). Imagerie du système nerveux central par spectrométrie de masse MALDI : Imaging of central nervous system by MALDI mass spectrometry. (Doctoral Dissertation). Université Lille I – Sciences et Technologies. Retrieved from http://www.theses.fr/2011LIL10059

Chicago Manual of Style (16th Edition):

Mériaux, Céline. “Imagerie du système nerveux central par spectrométrie de masse MALDI : Imaging of central nervous system by MALDI mass spectrometry.” 2011. Doctoral Dissertation, Université Lille I – Sciences et Technologies. Accessed August 24, 2019. http://www.theses.fr/2011LIL10059.

MLA Handbook (7th Edition):

Mériaux, Céline. “Imagerie du système nerveux central par spectrométrie de masse MALDI : Imaging of central nervous system by MALDI mass spectrometry.” 2011. Web. 24 Aug 2019.

Vancouver:

Mériaux C. Imagerie du système nerveux central par spectrométrie de masse MALDI : Imaging of central nervous system by MALDI mass spectrometry. [Internet] [Doctoral dissertation]. Université Lille I – Sciences et Technologies; 2011. [cited 2019 Aug 24]. Available from: http://www.theses.fr/2011LIL10059.

Council of Science Editors:

Mériaux C. Imagerie du système nerveux central par spectrométrie de masse MALDI : Imaging of central nervous system by MALDI mass spectrometry. [Doctoral Dissertation]. Université Lille I – Sciences et Technologies; 2011. Available from: http://www.theses.fr/2011LIL10059


University of British Columbia

28. Ang , Siow-Leong. Generalized matrix inverses and the generalized Gauss-Markoff theorem .

Degree: 1971, University of British Columbia

 In this thesis we present the generalization of the Moore-Penrose pseudo-inverse in the sense that it satisfies the following conditions. Let x be an m… (more)

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ang , S. (1971). Generalized matrix inverses and the generalized Gauss-Markoff theorem . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/33672

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ang , Siow-Leong. “Generalized matrix inverses and the generalized Gauss-Markoff theorem .” 1971. Thesis, University of British Columbia. Accessed August 24, 2019. http://hdl.handle.net/2429/33672.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ang , Siow-Leong. “Generalized matrix inverses and the generalized Gauss-Markoff theorem .” 1971. Web. 24 Aug 2019.

Vancouver:

Ang S. Generalized matrix inverses and the generalized Gauss-Markoff theorem . [Internet] [Thesis]. University of British Columbia; 1971. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/2429/33672.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ang S. Generalized matrix inverses and the generalized Gauss-Markoff theorem . [Thesis]. University of British Columbia; 1971. Available from: http://hdl.handle.net/2429/33672

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of British Columbia

29. Wang, Edward Tzu-Hsia. Some combinatorial properties of the diagonal sums of doubly stochastic matrices .

Degree: 1971, University of British Columbia

 Let Ωn denote the convex polyhedron of all nxn d.s. (doubly stochastic) matrices. The main purpose of this thesis is to study some combinatorial properties… (more)

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, E. T. (1971). Some combinatorial properties of the diagonal sums of doubly stochastic matrices . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/34043

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wang, Edward Tzu-Hsia. “Some combinatorial properties of the diagonal sums of doubly stochastic matrices .” 1971. Thesis, University of British Columbia. Accessed August 24, 2019. http://hdl.handle.net/2429/34043.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wang, Edward Tzu-Hsia. “Some combinatorial properties of the diagonal sums of doubly stochastic matrices .” 1971. Web. 24 Aug 2019.

Vancouver:

Wang ET. Some combinatorial properties of the diagonal sums of doubly stochastic matrices . [Internet] [Thesis]. University of British Columbia; 1971. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/2429/34043.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang ET. Some combinatorial properties of the diagonal sums of doubly stochastic matrices . [Thesis]. University of British Columbia; 1971. Available from: http://hdl.handle.net/2429/34043

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of British Columbia

30. Kapoor, Jagmohan. Matrices which, under row permutations, give specified values of certain matrix functions .

Degree: 1970, University of British Columbia

 Let Sn denote the set of n x n permutation matrices; let T denote the set of transpositions in Sn; let C denote the set… (more)

Subjects/Keywords: Matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kapoor, J. (1970). Matrices which, under row permutations, give specified values of certain matrix functions . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/34721

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kapoor, Jagmohan. “Matrices which, under row permutations, give specified values of certain matrix functions .” 1970. Thesis, University of British Columbia. Accessed August 24, 2019. http://hdl.handle.net/2429/34721.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kapoor, Jagmohan. “Matrices which, under row permutations, give specified values of certain matrix functions .” 1970. Web. 24 Aug 2019.

Vancouver:

Kapoor J. Matrices which, under row permutations, give specified values of certain matrix functions . [Internet] [Thesis]. University of British Columbia; 1970. [cited 2019 Aug 24]. Available from: http://hdl.handle.net/2429/34721.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kapoor J. Matrices which, under row permutations, give specified values of certain matrix functions . [Thesis]. University of British Columbia; 1970. Available from: http://hdl.handle.net/2429/34721

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3] [4] [5] … [54]

.