Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Mathematics Oscillatory AND asymptotic behavior)`

.
Showing records 1 – 15 of
15 total matches.

▼ Search Limiters

1.
Mehar Banu, S.
* Oscillatory* and

Degree: Mathematics, 2014, Periyar University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/20062

►

The research presented in the thesis deals with the problem of newlineoscillatory and *asymptotic* *behavior* of nonlinear difference newlineequations. Chapter 2 deals with the study…
(more)

Subjects/Keywords: Mathematics Oscillatory and asymptotic behavior

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mehar Banu, S. (2014). Oscillatory and asymptotic behavior of nonlinear difference equations;. (Thesis). Periyar University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/20062

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mehar Banu, S. “Oscillatory and asymptotic behavior of nonlinear difference equations;.” 2014. Thesis, Periyar University. Accessed October 22, 2019. http://shodhganga.inflibnet.ac.in/handle/10603/20062.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mehar Banu, S. “Oscillatory and asymptotic behavior of nonlinear difference equations;.” 2014. Web. 22 Oct 2019.

Vancouver:

Mehar Banu S. Oscillatory and asymptotic behavior of nonlinear difference equations;. [Internet] [Thesis]. Periyar University; 2014. [cited 2019 Oct 22]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/20062.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mehar Banu S. Oscillatory and asymptotic behavior of nonlinear difference equations;. [Thesis]. Periyar University; 2014. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/20062

Not specified: Masters Thesis or Doctoral Dissertation

2.
Arcokiasamy, I.M.
* Oscillatory* and

Degree: Mathematics, 2014, Periyar University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/20059

►

quotIn this thesis the author considered various types of fourth order difference newlineequations and established conditions for the oscillation of all solutions newlineand *asymptotic* *behavior*…
(more)

Subjects/Keywords: Mathematics Oscillatory and asymptotic

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Arcokiasamy, I. M. (2014). Oscillatory and asymptotic behavior of fourth order difference equations;. (Thesis). Periyar University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/20059

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Arcokiasamy, I M. “Oscillatory and asymptotic behavior of fourth order difference equations;.” 2014. Thesis, Periyar University. Accessed October 22, 2019. http://shodhganga.inflibnet.ac.in/handle/10603/20059.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Arcokiasamy, I M. “Oscillatory and asymptotic behavior of fourth order difference equations;.” 2014. Web. 22 Oct 2019.

Vancouver:

Arcokiasamy IM. Oscillatory and asymptotic behavior of fourth order difference equations;. [Internet] [Thesis]. Periyar University; 2014. [cited 2019 Oct 22]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/20059.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Arcokiasamy IM. Oscillatory and asymptotic behavior of fourth order difference equations;. [Thesis]. Periyar University; 2014. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/20059

Not specified: Masters Thesis or Doctoral Dissertation

3.
Vasanthi, R.P.
* Oscillatory* and

Degree: Mathematics, 2014, Periyar University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/20066

►

This thesis studies the *Oscillatory* properties of solutions of the following newlineneutral type difference equations: newline1. Unstable type neutral difference equation with nonlinear neutral newlineterm.…
(more)

Subjects/Keywords: Mathematics Oscillatory and asymptotic equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vasanthi, R. P. (2014). Oscillatory and asymptotic behaviour of neutral type difference equations;. (Thesis). Periyar University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/20066

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Vasanthi, R P. “Oscillatory and asymptotic behaviour of neutral type difference equations;.” 2014. Thesis, Periyar University. Accessed October 22, 2019. http://shodhganga.inflibnet.ac.in/handle/10603/20066.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Vasanthi, R P. “Oscillatory and asymptotic behaviour of neutral type difference equations;.” 2014. Web. 22 Oct 2019.

Vancouver:

Vasanthi RP. Oscillatory and asymptotic behaviour of neutral type difference equations;. [Internet] [Thesis]. Periyar University; 2014. [cited 2019 Oct 22]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/20066.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vasanthi RP. Oscillatory and asymptotic behaviour of neutral type difference equations;. [Thesis]. Periyar University; 2014. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/20066

Not specified: Masters Thesis or Doctoral Dissertation

4.
Balasubramanian V.
Studies on *oscillatory* and *asymptotic* *behavior* of second
order neutral type difference equations;.

Degree: Mathematics, 2015, Periyar University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/51187

Subjects/Keywords: Asymptotic Behavior; Difference Equations; Second Order Neutral Type; Studies on Oscillatory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

V, B. (2015). Studies on oscillatory and asymptotic behavior of second order neutral type difference equations;. (Thesis). Periyar University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/51187

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

V, Balasubramanian. “Studies on oscillatory and asymptotic behavior of second order neutral type difference equations;.” 2015. Thesis, Periyar University. Accessed October 22, 2019. http://shodhganga.inflibnet.ac.in/handle/10603/51187.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

V, Balasubramanian. “Studies on oscillatory and asymptotic behavior of second order neutral type difference equations;.” 2015. Web. 22 Oct 2019.

Vancouver:

V B. Studies on oscillatory and asymptotic behavior of second order neutral type difference equations;. [Internet] [Thesis]. Periyar University; 2015. [cited 2019 Oct 22]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/51187.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

V B. Studies on oscillatory and asymptotic behavior of second order neutral type difference equations;. [Thesis]. Periyar University; 2015. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/51187

Not specified: Masters Thesis or Doctoral Dissertation

University of Illinois – Urbana-Champaign

5.
Carey-De La Torre, Olivia.
Elastic stiffening in PVA-Borax studied with experimental medium amplitude *oscillatory* shear.

Degree: MS, Mechanical Engineering, 2017, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/99288

► In this thesis, we seek to understand the mechanisms of strain-stiffening and shear-thickening often observed in transient or associative polymer hydrogels; specifically, Poly(vinyl) alcohol (PVA)…
(more)

Subjects/Keywords: Stiffening; Asymptotic nonlinearity; Medium amplitude oscillatory shear (MAOS)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Carey-De La Torre, O. (2017). Elastic stiffening in PVA-Borax studied with experimental medium amplitude oscillatory shear. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/99288

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Carey-De La Torre, Olivia. “Elastic stiffening in PVA-Borax studied with experimental medium amplitude oscillatory shear.” 2017. Thesis, University of Illinois – Urbana-Champaign. Accessed October 22, 2019. http://hdl.handle.net/2142/99288.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Carey-De La Torre, Olivia. “Elastic stiffening in PVA-Borax studied with experimental medium amplitude oscillatory shear.” 2017. Web. 22 Oct 2019.

Vancouver:

Carey-De La Torre O. Elastic stiffening in PVA-Borax studied with experimental medium amplitude oscillatory shear. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2017. [cited 2019 Oct 22]. Available from: http://hdl.handle.net/2142/99288.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Carey-De La Torre O. Elastic stiffening in PVA-Borax studied with experimental medium amplitude oscillatory shear. [Thesis]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/99288

Not specified: Masters Thesis or Doctoral Dissertation

6. Χατζαράκης, Γεώργιος. Ταλάντωση και σύγκλιση λύσεων εξισώσεων διαφορών.

Degree: 2011, University of Ioannina; Πανεπιστήμιο Ιωαννίνων

URL: http://hdl.handle.net/10442/hedi/25267

►

The topics which are studied in the present Ph.D. Thesis include the *oscillatory* *behavior* of the solutions of a linear difference equation with deviated argument…
(more)

Subjects/Keywords: Γραμμικές εξισώσεις διαφορών με μεταβλητή υστέρηση; Γραμμικές εξισώσεις διαφορών με μεταβλητή προώθηση; Εξισώσεις διαφορών ουδέτερου τύπου; Ταλαντούμενες λύσεις; Μη-ταλαντούμενες λύσεις; Ασυμπτωτικός χαρακτήρας των λύσεων; Κριτήρια ταλάντωσης; Κριτήρια σύγκλισης; Linear difference equations with general delay argument; Linear difference equations with general advanced argument; Neutral type difference equations; Oscillatory solutions; Nonoscillatory solutions; Asymptotic behaviour of solutions; Oscillatory solutions; Convergence criteria

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Χατζαράκης, . . (2011). Ταλάντωση και σύγκλιση λύσεων εξισώσεων διαφορών. (Thesis). University of Ioannina; Πανεπιστήμιο Ιωαννίνων. Retrieved from http://hdl.handle.net/10442/hedi/25267

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Χατζαράκης, Γεώργιος. “Ταλάντωση και σύγκλιση λύσεων εξισώσεων διαφορών.” 2011. Thesis, University of Ioannina; Πανεπιστήμιο Ιωαννίνων. Accessed October 22, 2019. http://hdl.handle.net/10442/hedi/25267.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Χατζαράκης, Γεώργιος. “Ταλάντωση και σύγκλιση λύσεων εξισώσεων διαφορών.” 2011. Web. 22 Oct 2019.

Vancouver:

Χατζαράκης . Ταλάντωση και σύγκλιση λύσεων εξισώσεων διαφορών. [Internet] [Thesis]. University of Ioannina; Πανεπιστήμιο Ιωαννίνων; 2011. [cited 2019 Oct 22]. Available from: http://hdl.handle.net/10442/hedi/25267.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Χατζαράκης . Ταλάντωση και σύγκλιση λύσεων εξισώσεων διαφορών. [Thesis]. University of Ioannina; Πανεπιστήμιο Ιωαννίνων; 2011. Available from: http://hdl.handle.net/10442/hedi/25267

Not specified: Masters Thesis or Doctoral Dissertation

7.
Gilula, Maxim.
A Real Analytic Approach to Estimating *Oscillatory* Integrals.

Degree: 2016, University of Pennsylvania

URL: https://repository.upenn.edu/edissertations/1737

► We develop an *asymptotic* expansion for *oscillatory* integrals with real analytic phases. We assume the phases satisfy a nondegeneracy condition originally considered by Varchenko, which…
(more)

Subjects/Keywords: Asymptotic expansion; Convenient; Lojasciewicz's theorem; Oscillatory integrals; Real analytic; Varchenko's condition; Mathematics

…Philip T. Gressman
We develop an *asymptotic* expansion for *oscillatory* integrals with real… …*asymptotic* expansion for scalar *oscillatory* integrals with analytic, smooth, and C k phases.
Namely… …algebraic geometry in [19] to obtain *asymptotic* *behavior* for C ∞ phases having an… …how the geometry of the Newton polyhedron affects
the *asymptotic* *behavior* of I(λ)… …ABSTRACT
A REAL ANALYTIC APPROACH TO ESTIMATING *OSCILLATORY*
INTEGRALS
Maxim Gilula…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gilula, M. (2016). A Real Analytic Approach to Estimating Oscillatory Integrals. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/1737

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Gilula, Maxim. “A Real Analytic Approach to Estimating Oscillatory Integrals.” 2016. Thesis, University of Pennsylvania. Accessed October 22, 2019. https://repository.upenn.edu/edissertations/1737.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Gilula, Maxim. “A Real Analytic Approach to Estimating Oscillatory Integrals.” 2016. Web. 22 Oct 2019.

Vancouver:

Gilula M. A Real Analytic Approach to Estimating Oscillatory Integrals. [Internet] [Thesis]. University of Pennsylvania; 2016. [cited 2019 Oct 22]. Available from: https://repository.upenn.edu/edissertations/1737.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gilula M. A Real Analytic Approach to Estimating Oscillatory Integrals. [Thesis]. University of Pennsylvania; 2016. Available from: https://repository.upenn.edu/edissertations/1737

Not specified: Masters Thesis or Doctoral Dissertation

Université Paris-Sud – Paris XI

8. Conteville, Laurie. Analyse de la stabilité des réseaux d'oscillateurs non linéaires, applications aux populations neuronales : Stability analysis of non-linear network scillator, neuronal population application.

Degree: Docteur es, Physique (Automatique), 2013, Université Paris-Sud – Paris XI

URL: http://www.theses.fr/2013PA112236

►

Il est bien connu que la synchronisation de l’activité oscillatoire dans les réseaux de neurones joue un rôle important dans le fonctionnement du cerveau et… (more)

Subjects/Keywords: Synchronisation; Stabilité asymptotique de systèmes linéaires; Stabilité asymptotique de systèmes non-linéaires; Stabilité pratique de réseaux non-linéaires; Semi-passivité; Réduction de modèle; Modèle de Kuramoto; Couplage diffusif; Couplage complet (all-to-all); Cycle limite; Comportement neuronal oscillatoire; Modèle de Hindmarsh-Rose; Synchronization; Asymptotic stability of linear systems; Asymptotic stability of non-linear systems; Practical stability network of non-linear units; Semi-passivity; Model reduction; Kuramoto model; Diffusive coupling; All-to-all coupling; Limit cycle; Neural oscillatory behavior; Hindmarsh-Rose neural model

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Conteville, L. (2013). Analyse de la stabilité des réseaux d'oscillateurs non linéaires, applications aux populations neuronales : Stability analysis of non-linear network scillator, neuronal population application. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2013PA112236

Chicago Manual of Style (16^{th} Edition):

Conteville, Laurie. “Analyse de la stabilité des réseaux d'oscillateurs non linéaires, applications aux populations neuronales : Stability analysis of non-linear network scillator, neuronal population application.” 2013. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed October 22, 2019. http://www.theses.fr/2013PA112236.

MLA Handbook (7^{th} Edition):

Conteville, Laurie. “Analyse de la stabilité des réseaux d'oscillateurs non linéaires, applications aux populations neuronales : Stability analysis of non-linear network scillator, neuronal population application.” 2013. Web. 22 Oct 2019.

Vancouver:

Conteville L. Analyse de la stabilité des réseaux d'oscillateurs non linéaires, applications aux populations neuronales : Stability analysis of non-linear network scillator, neuronal population application. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2013. [cited 2019 Oct 22]. Available from: http://www.theses.fr/2013PA112236.

Council of Science Editors:

Conteville L. Analyse de la stabilité des réseaux d'oscillateurs non linéaires, applications aux populations neuronales : Stability analysis of non-linear network scillator, neuronal population application. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2013. Available from: http://www.theses.fr/2013PA112236

University of Cambridge

9.
Khanamiryan, Marianna.
Numerical methods for systems of highly *oscillatory* ordinary differential equations.

Degree: PhD, 2010, University of Cambridge

URL: https://www.repository.cam.ac.uk/handle/1810/226323 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541760

► This thesis presents methods for efficient numerical approximation of linear and non-linear systems of highly *oscillatory* ordinary differential equations. Phenomena of high oscillation is considered…
(more)

Subjects/Keywords: 519; Numerical analysis of differential equations; Highly oscillatory ordinary differential equations; Asymptotic methods; Filon quadrature rules; Levin method; Lie groups methods

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Khanamiryan, M. (2010). Numerical methods for systems of highly oscillatory ordinary differential equations. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/226323 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541760

Chicago Manual of Style (16^{th} Edition):

Khanamiryan, Marianna. “Numerical methods for systems of highly oscillatory ordinary differential equations.” 2010. Doctoral Dissertation, University of Cambridge. Accessed October 22, 2019. https://www.repository.cam.ac.uk/handle/1810/226323 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541760.

MLA Handbook (7^{th} Edition):

Khanamiryan, Marianna. “Numerical methods for systems of highly oscillatory ordinary differential equations.” 2010. Web. 22 Oct 2019.

Vancouver:

Khanamiryan M. Numerical methods for systems of highly oscillatory ordinary differential equations. [Internet] [Doctoral dissertation]. University of Cambridge; 2010. [cited 2019 Oct 22]. Available from: https://www.repository.cam.ac.uk/handle/1810/226323 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541760.

Council of Science Editors:

Khanamiryan M. Numerical methods for systems of highly oscillatory ordinary differential equations. [Doctoral Dissertation]. University of Cambridge; 2010. Available from: https://www.repository.cam.ac.uk/handle/1810/226323 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541760

University of Cambridge

10.
Khanamiryan, Marianna.
Numerical methods for systems of highly *oscillatory* ordinary differential equations
.

Degree: 2010, University of Cambridge

URL: http://www.damtp.cam.ac.uk/user/na/people/Marianna/; http://www.dspace.cam.ac.uk/handle/1810/226323

► This thesis presents methods for efficient numerical approximation of linear and non-linear systems of highly *oscillatory* ordinary differential equations. Phenomena of high oscillation is considered…
(more)

Subjects/Keywords: Numerical analysis of differential equations; Highly oscillatory ordinary differential equations; Asymptotic methods; Filon quadrature rules; Levin method; Lie groups methods

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Khanamiryan, M. (2010). Numerical methods for systems of highly oscillatory ordinary differential equations . (Thesis). University of Cambridge. Retrieved from http://www.damtp.cam.ac.uk/user/na/people/Marianna/; http://www.dspace.cam.ac.uk/handle/1810/226323

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Khanamiryan, Marianna. “Numerical methods for systems of highly oscillatory ordinary differential equations .” 2010. Thesis, University of Cambridge. Accessed October 22, 2019. http://www.damtp.cam.ac.uk/user/na/people/Marianna/; http://www.dspace.cam.ac.uk/handle/1810/226323.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Khanamiryan, Marianna. “Numerical methods for systems of highly oscillatory ordinary differential equations .” 2010. Web. 22 Oct 2019.

Vancouver:

Khanamiryan M. Numerical methods for systems of highly oscillatory ordinary differential equations . [Internet] [Thesis]. University of Cambridge; 2010. [cited 2019 Oct 22]. Available from: http://www.damtp.cam.ac.uk/user/na/people/Marianna/; http://www.dspace.cam.ac.uk/handle/1810/226323.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Khanamiryan M. Numerical methods for systems of highly oscillatory ordinary differential equations . [Thesis]. University of Cambridge; 2010. Available from: http://www.damtp.cam.ac.uk/user/na/people/Marianna/; http://www.dspace.cam.ac.uk/handle/1810/226323

Not specified: Masters Thesis or Doctoral Dissertation

Baylor University

11.
[No author].
Conventional and *asymptotic* stabilities of decomposed compact methods for solving highly *oscillatory* wave problems.

Degree: 2018, Baylor University

URL: http://hdl.handle.net/2104/10429

► This dissertation explores the numerical stabilities of decomposed compact finite difference methods for solving Helmholtz partial differential equation problems with large wave numbers. It is…
(more)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

author], [. (2018). Conventional and asymptotic stabilities of decomposed compact methods for solving highly oscillatory wave problems. (Thesis). Baylor University. Retrieved from http://hdl.handle.net/2104/10429

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

author], [No. “Conventional and asymptotic stabilities of decomposed compact methods for solving highly oscillatory wave problems. ” 2018. Thesis, Baylor University. Accessed October 22, 2019. http://hdl.handle.net/2104/10429.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

author], [No. “Conventional and asymptotic stabilities of decomposed compact methods for solving highly oscillatory wave problems. ” 2018. Web. 22 Oct 2019.

Vancouver:

author] [. Conventional and asymptotic stabilities of decomposed compact methods for solving highly oscillatory wave problems. [Internet] [Thesis]. Baylor University; 2018. [cited 2019 Oct 22]. Available from: http://hdl.handle.net/2104/10429.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

author] [. Conventional and asymptotic stabilities of decomposed compact methods for solving highly oscillatory wave problems. [Thesis]. Baylor University; 2018. Available from: http://hdl.handle.net/2104/10429

Not specified: Masters Thesis or Doctoral Dissertation

University of Western Ontario

12.
Trivedi, Jeet.
A Survey Of Numerical Quadrature Methods For Highly *Oscillatory* Integrals.

Degree: 2019, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/6182

► In this thesis, we examine the main types of numerical quadrature methods for a special subclass of one-dimensional highly *oscillatory* integrals. Along with a presentation…
(more)

Subjects/Keywords: Highly Oscillatory Quadrature; Numerical Quadrature; Levin Type Methods; Filon Integration; Asymptotic Methods; Moment Free integration; Numerical Analysis and Computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Trivedi, J. (2019). A Survey Of Numerical Quadrature Methods For Highly Oscillatory Integrals. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/6182

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Trivedi, Jeet. “A Survey Of Numerical Quadrature Methods For Highly Oscillatory Integrals.” 2019. Thesis, University of Western Ontario. Accessed October 22, 2019. https://ir.lib.uwo.ca/etd/6182.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Trivedi, Jeet. “A Survey Of Numerical Quadrature Methods For Highly Oscillatory Integrals.” 2019. Web. 22 Oct 2019.

Vancouver:

Trivedi J. A Survey Of Numerical Quadrature Methods For Highly Oscillatory Integrals. [Internet] [Thesis]. University of Western Ontario; 2019. [cited 2019 Oct 22]. Available from: https://ir.lib.uwo.ca/etd/6182.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Trivedi J. A Survey Of Numerical Quadrature Methods For Highly Oscillatory Integrals. [Thesis]. University of Western Ontario; 2019. Available from: https://ir.lib.uwo.ca/etd/6182

Not specified: Masters Thesis or Doctoral Dissertation

University of New South Wales

13.
McGilChrist, Clyde Arnold.
* Asymptotic* and

Degree: Science. Mathematics, 1962, University of New South Wales

URL: http://handle.unsw.edu.au/1959.4/64009 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:61345/SOURCE01?view=true

Subjects/Keywords: Regression Statistics, Oscillatory; Regression Statistics, Asymptotic; Thesis Digitisation Program

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

McGilChrist, C. A. (1962). Asymptotic and oscillatory regression. (Masters Thesis). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/64009 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:61345/SOURCE01?view=true

Chicago Manual of Style (16^{th} Edition):

McGilChrist, Clyde Arnold. “Asymptotic and oscillatory regression.” 1962. Masters Thesis, University of New South Wales. Accessed October 22, 2019. http://handle.unsw.edu.au/1959.4/64009 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:61345/SOURCE01?view=true.

MLA Handbook (7^{th} Edition):

McGilChrist, Clyde Arnold. “Asymptotic and oscillatory regression.” 1962. Web. 22 Oct 2019.

Vancouver:

McGilChrist CA. Asymptotic and oscillatory regression. [Internet] [Masters thesis]. University of New South Wales; 1962. [cited 2019 Oct 22]. Available from: http://handle.unsw.edu.au/1959.4/64009 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:61345/SOURCE01?view=true.

Council of Science Editors:

McGilChrist CA. Asymptotic and oscillatory regression. [Masters Thesis]. University of New South Wales; 1962. Available from: http://handle.unsw.edu.au/1959.4/64009 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:61345/SOURCE01?view=true

University of Cambridge

14. Fernandez, Arran. Analysis in fractional calculus and asymptotics related to zeta functions.

Degree: PhD, 2018, University of Cambridge

URL: https://www.repository.cam.ac.uk/handle/1810/284390 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763663

► This thesis presents results in two apparently disparate mathematical fields which can both be examined – and even united – by means of pure analysis.…
(more)

Subjects/Keywords: fractional calculus; fractional derivatives; fractional integrals; fractional differential equations; zeta functions; asymptotic expansions; oscillatory integrals; analytic number theory; riemann zeta function; hurwitz zeta function

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fernandez, A. (2018). Analysis in fractional calculus and asymptotics related to zeta functions. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/284390 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763663

Chicago Manual of Style (16^{th} Edition):

Fernandez, Arran. “Analysis in fractional calculus and asymptotics related to zeta functions.” 2018. Doctoral Dissertation, University of Cambridge. Accessed October 22, 2019. https://www.repository.cam.ac.uk/handle/1810/284390 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763663.

MLA Handbook (7^{th} Edition):

Fernandez, Arran. “Analysis in fractional calculus and asymptotics related to zeta functions.” 2018. Web. 22 Oct 2019.

Vancouver:

Fernandez A. Analysis in fractional calculus and asymptotics related to zeta functions. [Internet] [Doctoral dissertation]. University of Cambridge; 2018. [cited 2019 Oct 22]. Available from: https://www.repository.cam.ac.uk/handle/1810/284390 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763663.

Council of Science Editors:

Fernandez A. Analysis in fractional calculus and asymptotics related to zeta functions. [Doctoral Dissertation]. University of Cambridge; 2018. Available from: https://www.repository.cam.ac.uk/handle/1810/284390 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763663

15.
Blackwell, Brendan.
Thixotropic-viscoelastic rheological fingerprints in large amplitude *oscillatory* shear.

Degree: MS, 0133, 2013, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/45342

► In this work we demonstrate the use of large-amplitude *oscillatory* shear (LAOS) as a tool to characterize the *behavior* of constitutive models that exhibit both…
(more)

Subjects/Keywords: thixotropy; thixotropic; viscoelastic; viscoelasticity; constitutive model; large amplitude oscillatory shear (LAOS); nonlinear rheology; asymptotic nonlinearities; intrinsic LAOS

…Figure 8). The *asymptotic* nonlinear *behavior* (analytical solutions, Eqs. (31… …thixotropic timescales
than step tests because a short timescale *oscillatory* input is easier to… …fingerprints of *asymptotic* nonlinearities to
compare the responses of these model variations to the… …Maxwell
element represents viscoelastic *behavior* that could arise from various material classes… …controlled *oscillatory* input, thus we also must account for
two input parameters (the…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Blackwell, B. (2013). Thixotropic-viscoelastic rheological fingerprints in large amplitude oscillatory shear. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/45342

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Blackwell, Brendan. “Thixotropic-viscoelastic rheological fingerprints in large amplitude oscillatory shear.” 2013. Thesis, University of Illinois – Urbana-Champaign. Accessed October 22, 2019. http://hdl.handle.net/2142/45342.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Blackwell, Brendan. “Thixotropic-viscoelastic rheological fingerprints in large amplitude oscillatory shear.” 2013. Web. 22 Oct 2019.

Vancouver:

Blackwell B. Thixotropic-viscoelastic rheological fingerprints in large amplitude oscillatory shear. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2013. [cited 2019 Oct 22]. Available from: http://hdl.handle.net/2142/45342.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Blackwell B. Thixotropic-viscoelastic rheological fingerprints in large amplitude oscillatory shear. [Thesis]. University of Illinois – Urbana-Champaign; 2013. Available from: http://hdl.handle.net/2142/45342

Not specified: Masters Thesis or Doctoral Dissertation