Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Markov random fields). Showing records 1 – 30 of 94 total matches.

[1] [2] [3] [4]

Search Limiters

Last 2 Years | English Only

Degrees

Country

▼ Search Limiters


Michigan State University

1. Kinateder, Kimberly Kay Johannes. Strong Markov properties for Markov random fields.

Degree: PhD, Department of Statistics and Probability, 1990, Michigan State University

Subjects/Keywords: Markov random fields; Markov processes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kinateder, K. K. J. (1990). Strong Markov properties for Markov random fields. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:22785

Chicago Manual of Style (16th Edition):

Kinateder, Kimberly Kay Johannes. “Strong Markov properties for Markov random fields.” 1990. Doctoral Dissertation, Michigan State University. Accessed July 15, 2019. http://etd.lib.msu.edu/islandora/object/etd:22785.

MLA Handbook (7th Edition):

Kinateder, Kimberly Kay Johannes. “Strong Markov properties for Markov random fields.” 1990. Web. 15 Jul 2019.

Vancouver:

Kinateder KKJ. Strong Markov properties for Markov random fields. [Internet] [Doctoral dissertation]. Michigan State University; 1990. [cited 2019 Jul 15]. Available from: http://etd.lib.msu.edu/islandora/object/etd:22785.

Council of Science Editors:

Kinateder KKJ. Strong Markov properties for Markov random fields. [Doctoral Dissertation]. Michigan State University; 1990. Available from: http://etd.lib.msu.edu/islandora/object/etd:22785

2. Besbes, Ahmed. Image segmentation using MRFs and statistical shape modeling : Segmentation d'images avec des champs de Markov et modélisation statistique de formes.

Degree: Docteur es, Mathématiques appliquées, 2010, Châtenay-Malabry, Ecole centrale de Paris

Nous présentons dans cette thèse un nouveau modèle statistique de forme et l'utilisons pour la segmentation d'images avec a priori. Ce modèle est représenté par… (more)

Subjects/Keywords: Modélisation de formes; Segmentation; Champs de Markov; Shape Modeling; Segmentation; Markov Random Fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Besbes, A. (2010). Image segmentation using MRFs and statistical shape modeling : Segmentation d'images avec des champs de Markov et modélisation statistique de formes. (Doctoral Dissertation). Châtenay-Malabry, Ecole centrale de Paris. Retrieved from http://www.theses.fr/2010ECAP0024

Chicago Manual of Style (16th Edition):

Besbes, Ahmed. “Image segmentation using MRFs and statistical shape modeling : Segmentation d'images avec des champs de Markov et modélisation statistique de formes.” 2010. Doctoral Dissertation, Châtenay-Malabry, Ecole centrale de Paris. Accessed July 15, 2019. http://www.theses.fr/2010ECAP0024.

MLA Handbook (7th Edition):

Besbes, Ahmed. “Image segmentation using MRFs and statistical shape modeling : Segmentation d'images avec des champs de Markov et modélisation statistique de formes.” 2010. Web. 15 Jul 2019.

Vancouver:

Besbes A. Image segmentation using MRFs and statistical shape modeling : Segmentation d'images avec des champs de Markov et modélisation statistique de formes. [Internet] [Doctoral dissertation]. Châtenay-Malabry, Ecole centrale de Paris; 2010. [cited 2019 Jul 15]. Available from: http://www.theses.fr/2010ECAP0024.

Council of Science Editors:

Besbes A. Image segmentation using MRFs and statistical shape modeling : Segmentation d'images avec des champs de Markov et modélisation statistique de formes. [Doctoral Dissertation]. Châtenay-Malabry, Ecole centrale de Paris; 2010. Available from: http://www.theses.fr/2010ECAP0024

3. Parisot, Sarah. Understanding, Modeling and Detecting Brain Tumors : Graphical Models and Concurrent Segmentation/Registration methods : Compréhension, modélisation et détection de tumeurs cérébrales : modèles graphiques et méthodes de recalage/segmentation simultanés.

Degree: Docteur es, Mathématiques appliquées, 2013, Châtenay-Malabry, Ecole centrale de Paris

L'objectif principal de cette thèse est la modélisation, compréhension et segmentation automatique de tumeurs diffuses et infiltrantes appelées Gliomes Diffus de Bas Grade. Deux approches… (more)

Subjects/Keywords: Champs de Markov Aléatoires; Recalage; Atlas du cerveau; Markov Random Fields; Registration; Brain atlas

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Parisot, S. (2013). Understanding, Modeling and Detecting Brain Tumors : Graphical Models and Concurrent Segmentation/Registration methods : Compréhension, modélisation et détection de tumeurs cérébrales : modèles graphiques et méthodes de recalage/segmentation simultanés. (Doctoral Dissertation). Châtenay-Malabry, Ecole centrale de Paris. Retrieved from http://www.theses.fr/2013ECAP0064

Chicago Manual of Style (16th Edition):

Parisot, Sarah. “Understanding, Modeling and Detecting Brain Tumors : Graphical Models and Concurrent Segmentation/Registration methods : Compréhension, modélisation et détection de tumeurs cérébrales : modèles graphiques et méthodes de recalage/segmentation simultanés.” 2013. Doctoral Dissertation, Châtenay-Malabry, Ecole centrale de Paris. Accessed July 15, 2019. http://www.theses.fr/2013ECAP0064.

MLA Handbook (7th Edition):

Parisot, Sarah. “Understanding, Modeling and Detecting Brain Tumors : Graphical Models and Concurrent Segmentation/Registration methods : Compréhension, modélisation et détection de tumeurs cérébrales : modèles graphiques et méthodes de recalage/segmentation simultanés.” 2013. Web. 15 Jul 2019.

Vancouver:

Parisot S. Understanding, Modeling and Detecting Brain Tumors : Graphical Models and Concurrent Segmentation/Registration methods : Compréhension, modélisation et détection de tumeurs cérébrales : modèles graphiques et méthodes de recalage/segmentation simultanés. [Internet] [Doctoral dissertation]. Châtenay-Malabry, Ecole centrale de Paris; 2013. [cited 2019 Jul 15]. Available from: http://www.theses.fr/2013ECAP0064.

Council of Science Editors:

Parisot S. Understanding, Modeling and Detecting Brain Tumors : Graphical Models and Concurrent Segmentation/Registration methods : Compréhension, modélisation et détection de tumeurs cérébrales : modèles graphiques et méthodes de recalage/segmentation simultanés. [Doctoral Dissertation]. Châtenay-Malabry, Ecole centrale de Paris; 2013. Available from: http://www.theses.fr/2013ECAP0064


UCLA

4. Xie, Jianwen. Learning Inhomogeneous FRAME Models for Object Patterns.

Degree: Statistics, 2014, UCLA

 This research investigates an inhomogeneous version of the FRAME (Filters, Random field, And Maximum Entropy) model and apply it to modeling object patterns. The inhomogeneous… (more)

Subjects/Keywords: Statistics; Computer science; Generative models; Markov random fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xie, J. (2014). Learning Inhomogeneous FRAME Models for Object Patterns. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/4367r57k

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Xie, Jianwen. “Learning Inhomogeneous FRAME Models for Object Patterns.” 2014. Thesis, UCLA. Accessed July 15, 2019. http://www.escholarship.org/uc/item/4367r57k.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Xie, Jianwen. “Learning Inhomogeneous FRAME Models for Object Patterns.” 2014. Web. 15 Jul 2019.

Vancouver:

Xie J. Learning Inhomogeneous FRAME Models for Object Patterns. [Internet] [Thesis]. UCLA; 2014. [cited 2019 Jul 15]. Available from: http://www.escholarship.org/uc/item/4367r57k.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Xie J. Learning Inhomogeneous FRAME Models for Object Patterns. [Thesis]. UCLA; 2014. Available from: http://www.escholarship.org/uc/item/4367r57k

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Southern California

5. Natarajan, Pradeep. Robust representation and recognition of actions in video.

Degree: PhD, Computer Science, 2009, University of Southern California

 Recognizing actions from video and other sensory data is important for a number of applications such as surveillance and human-computer interaction. While the potential applications… (more)

Subjects/Keywords: computer vision; action recognition; hidden Markov models; conditional random fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Natarajan, P. (2009). Robust representation and recognition of actions in video. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/562446/rec/5615

Chicago Manual of Style (16th Edition):

Natarajan, Pradeep. “Robust representation and recognition of actions in video.” 2009. Doctoral Dissertation, University of Southern California. Accessed July 15, 2019. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/562446/rec/5615.

MLA Handbook (7th Edition):

Natarajan, Pradeep. “Robust representation and recognition of actions in video.” 2009. Web. 15 Jul 2019.

Vancouver:

Natarajan P. Robust representation and recognition of actions in video. [Internet] [Doctoral dissertation]. University of Southern California; 2009. [cited 2019 Jul 15]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/562446/rec/5615.

Council of Science Editors:

Natarajan P. Robust representation and recognition of actions in video. [Doctoral Dissertation]. University of Southern California; 2009. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/562446/rec/5615


University of Adelaide

6. Suwanwimolkul, Suwichaya. Adaptive Markov Random Fields for Structured Compressive Sensing.

Degree: 2018, University of Adelaide

 Compressive sensing (CS) has underpinned recent developments in data compression and signal acquisition systems. The goal of CS is to recover a high dimensional sparse… (more)

Subjects/Keywords: Compressive sensing; Markov random fields; structured sparsity model

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Suwanwimolkul, S. (2018). Adaptive Markov Random Fields for Structured Compressive Sensing. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/117806

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Suwanwimolkul, Suwichaya. “Adaptive Markov Random Fields for Structured Compressive Sensing.” 2018. Thesis, University of Adelaide. Accessed July 15, 2019. http://hdl.handle.net/2440/117806.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Suwanwimolkul, Suwichaya. “Adaptive Markov Random Fields for Structured Compressive Sensing.” 2018. Web. 15 Jul 2019.

Vancouver:

Suwanwimolkul S. Adaptive Markov Random Fields for Structured Compressive Sensing. [Internet] [Thesis]. University of Adelaide; 2018. [cited 2019 Jul 15]. Available from: http://hdl.handle.net/2440/117806.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Suwanwimolkul S. Adaptive Markov Random Fields for Structured Compressive Sensing. [Thesis]. University of Adelaide; 2018. Available from: http://hdl.handle.net/2440/117806

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Virginia Tech

7. Chaabene, Walid. Scalable Structure Learning of Graphical Models.

Degree: MS, Computer Science, 2017, Virginia Tech

 Hypothesis-free learning is increasingly popular given the large amounts of data becoming available. Structure learning, a hypothesis-free approach, of graphical models is a field of… (more)

Subjects/Keywords: L1-based Structure Learning; Linear Dynamical Systems; Markov Random Fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chaabene, W. (2017). Scalable Structure Learning of Graphical Models. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/86263

Chicago Manual of Style (16th Edition):

Chaabene, Walid. “Scalable Structure Learning of Graphical Models.” 2017. Masters Thesis, Virginia Tech. Accessed July 15, 2019. http://hdl.handle.net/10919/86263.

MLA Handbook (7th Edition):

Chaabene, Walid. “Scalable Structure Learning of Graphical Models.” 2017. Web. 15 Jul 2019.

Vancouver:

Chaabene W. Scalable Structure Learning of Graphical Models. [Internet] [Masters thesis]. Virginia Tech; 2017. [cited 2019 Jul 15]. Available from: http://hdl.handle.net/10919/86263.

Council of Science Editors:

Chaabene W. Scalable Structure Learning of Graphical Models. [Masters Thesis]. Virginia Tech; 2017. Available from: http://hdl.handle.net/10919/86263


Cornell University

8. Fix, Alexander Jobe. GRAPH CUTS, SUM-OF-SUBMODULAR FLOW, AND LINEAR PROGRAMMING: EFFECTIVE INFERENCE IN HIGHER-ORDER MARKOV RANDOM FIELDS .

Degree: 2017, Cornell University

 Optimization algorithms have a long history of success in computer vision, providing effective algorithms for tasks as varied as segmentation, stereo estimation, image denoising and… (more)

Subjects/Keywords: Graphical Models; Markov Random Fields; Optimization; Computer science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fix, A. J. (2017). GRAPH CUTS, SUM-OF-SUBMODULAR FLOW, AND LINEAR PROGRAMMING: EFFECTIVE INFERENCE IN HIGHER-ORDER MARKOV RANDOM FIELDS . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/51592

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Fix, Alexander Jobe. “GRAPH CUTS, SUM-OF-SUBMODULAR FLOW, AND LINEAR PROGRAMMING: EFFECTIVE INFERENCE IN HIGHER-ORDER MARKOV RANDOM FIELDS .” 2017. Thesis, Cornell University. Accessed July 15, 2019. http://hdl.handle.net/1813/51592.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Fix, Alexander Jobe. “GRAPH CUTS, SUM-OF-SUBMODULAR FLOW, AND LINEAR PROGRAMMING: EFFECTIVE INFERENCE IN HIGHER-ORDER MARKOV RANDOM FIELDS .” 2017. Web. 15 Jul 2019.

Vancouver:

Fix AJ. GRAPH CUTS, SUM-OF-SUBMODULAR FLOW, AND LINEAR PROGRAMMING: EFFECTIVE INFERENCE IN HIGHER-ORDER MARKOV RANDOM FIELDS . [Internet] [Thesis]. Cornell University; 2017. [cited 2019 Jul 15]. Available from: http://hdl.handle.net/1813/51592.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fix AJ. GRAPH CUTS, SUM-OF-SUBMODULAR FLOW, AND LINEAR PROGRAMMING: EFFECTIVE INFERENCE IN HIGHER-ORDER MARKOV RANDOM FIELDS . [Thesis]. Cornell University; 2017. Available from: http://hdl.handle.net/1813/51592

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

9. Nadabar, Sateesha Gopalakrishna. Markov random field contextual models in computer vision.

Degree: PhD, Department of Computer Science, 1992, Michigan State University

Subjects/Keywords: Computer vision; Markov random fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nadabar, S. G. (1992). Markov random field contextual models in computer vision. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:21893

Chicago Manual of Style (16th Edition):

Nadabar, Sateesha Gopalakrishna. “Markov random field contextual models in computer vision.” 1992. Doctoral Dissertation, Michigan State University. Accessed July 15, 2019. http://etd.lib.msu.edu/islandora/object/etd:21893.

MLA Handbook (7th Edition):

Nadabar, Sateesha Gopalakrishna. “Markov random field contextual models in computer vision.” 1992. Web. 15 Jul 2019.

Vancouver:

Nadabar SG. Markov random field contextual models in computer vision. [Internet] [Doctoral dissertation]. Michigan State University; 1992. [cited 2019 Jul 15]. Available from: http://etd.lib.msu.edu/islandora/object/etd:21893.

Council of Science Editors:

Nadabar SG. Markov random field contextual models in computer vision. [Doctoral Dissertation]. Michigan State University; 1992. Available from: http://etd.lib.msu.edu/islandora/object/etd:21893


University of Texas – Austin

10. Yang, Eunho. High-dimensional statistics : model specification and elementary estimators.

Degree: Computer Sciences, 2014, University of Texas – Austin

 Modern statistics typically deals with complex data, in particular where the ambient dimension of the problem p may be of the same order as, or… (more)

Subjects/Keywords: High-dimensional statistics; Markov random fields; Graphical models; Closed-form estimators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, E. (2014). High-dimensional statistics : model specification and elementary estimators. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/28058

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yang, Eunho. “High-dimensional statistics : model specification and elementary estimators.” 2014. Thesis, University of Texas – Austin. Accessed July 15, 2019. http://hdl.handle.net/2152/28058.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yang, Eunho. “High-dimensional statistics : model specification and elementary estimators.” 2014. Web. 15 Jul 2019.

Vancouver:

Yang E. High-dimensional statistics : model specification and elementary estimators. [Internet] [Thesis]. University of Texas – Austin; 2014. [cited 2019 Jul 15]. Available from: http://hdl.handle.net/2152/28058.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yang E. High-dimensional statistics : model specification and elementary estimators. [Thesis]. University of Texas – Austin; 2014. Available from: http://hdl.handle.net/2152/28058

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of New Mexico

11. Zhang, Jun. Markov random field modeling of the spatial distribution of proteins on cell membranes.

Degree: Department of Computer Science, 2010, University of New Mexico

 Cell membranes display a range of receptors that bind ligands and activate signaling pathways. Signaling is characterized by dramatic changes in membrane molecular topography, including… (more)

Subjects/Keywords: Cell membrane; Spatial distribution; Markov random fields; Parameter estimation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, J. (2010). Markov random field modeling of the spatial distribution of proteins on cell membranes. (Doctoral Dissertation). University of New Mexico. Retrieved from http://hdl.handle.net/1928/10918

Chicago Manual of Style (16th Edition):

Zhang, Jun. “Markov random field modeling of the spatial distribution of proteins on cell membranes.” 2010. Doctoral Dissertation, University of New Mexico. Accessed July 15, 2019. http://hdl.handle.net/1928/10918.

MLA Handbook (7th Edition):

Zhang, Jun. “Markov random field modeling of the spatial distribution of proteins on cell membranes.” 2010. Web. 15 Jul 2019.

Vancouver:

Zhang J. Markov random field modeling of the spatial distribution of proteins on cell membranes. [Internet] [Doctoral dissertation]. University of New Mexico; 2010. [cited 2019 Jul 15]. Available from: http://hdl.handle.net/1928/10918.

Council of Science Editors:

Zhang J. Markov random field modeling of the spatial distribution of proteins on cell membranes. [Doctoral Dissertation]. University of New Mexico; 2010. Available from: http://hdl.handle.net/1928/10918


Brigham Young University

12. Olsen, Jessica Lyn. An Applied Investigation of Gaussian Markov Random Fields.

Degree: MS, 2012, Brigham Young University

 Recently, Bayesian methods have become the essence of modern statistics, specifically, the ability to incorporate hierarchical models. In particular, correlated data, such as the data… (more)

Subjects/Keywords: Gaussian Markov Random Fields; Spatial; Correlated Data; Statistics and Probability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Olsen, J. L. (2012). An Applied Investigation of Gaussian Markov Random Fields. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4272&context=etd

Chicago Manual of Style (16th Edition):

Olsen, Jessica Lyn. “An Applied Investigation of Gaussian Markov Random Fields.” 2012. Masters Thesis, Brigham Young University. Accessed July 15, 2019. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4272&context=etd.

MLA Handbook (7th Edition):

Olsen, Jessica Lyn. “An Applied Investigation of Gaussian Markov Random Fields.” 2012. Web. 15 Jul 2019.

Vancouver:

Olsen JL. An Applied Investigation of Gaussian Markov Random Fields. [Internet] [Masters thesis]. Brigham Young University; 2012. [cited 2019 Jul 15]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4272&context=etd.

Council of Science Editors:

Olsen JL. An Applied Investigation of Gaussian Markov Random Fields. [Masters Thesis]. Brigham Young University; 2012. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4272&context=etd


University of Hong Kong

13. Zhou, Hao. An efficient algorithm for face sketch synthesis using Markov weight fields and cascade decomposition method.

Degree: M. Phil., 2012, University of Hong Kong

Great progress has been made in face sketch synthesis in recent years. State-of-the-art methods commonly apply a Markov Random Fields (MRF) model to select local… (more)

Subjects/Keywords: Markov random fields.; Human face recognition (Computer science) - Mathematical models.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhou, H. (2012). An efficient algorithm for face sketch synthesis using Markov weight fields and cascade decomposition method. (Masters Thesis). University of Hong Kong. Retrieved from Zhou, H. [周浩]. (2012). An efficient algorithm for face sketch synthesis using Markov weight fields and cascade decomposition method. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4961805 ; http://dx.doi.org/10.5353/th_b4961805 ; http://hdl.handle.net/10722/180984

Chicago Manual of Style (16th Edition):

Zhou, Hao. “An efficient algorithm for face sketch synthesis using Markov weight fields and cascade decomposition method.” 2012. Masters Thesis, University of Hong Kong. Accessed July 15, 2019. Zhou, H. [周浩]. (2012). An efficient algorithm for face sketch synthesis using Markov weight fields and cascade decomposition method. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4961805 ; http://dx.doi.org/10.5353/th_b4961805 ; http://hdl.handle.net/10722/180984.

MLA Handbook (7th Edition):

Zhou, Hao. “An efficient algorithm for face sketch synthesis using Markov weight fields and cascade decomposition method.” 2012. Web. 15 Jul 2019.

Vancouver:

Zhou H. An efficient algorithm for face sketch synthesis using Markov weight fields and cascade decomposition method. [Internet] [Masters thesis]. University of Hong Kong; 2012. [cited 2019 Jul 15]. Available from: Zhou, H. [周浩]. (2012). An efficient algorithm for face sketch synthesis using Markov weight fields and cascade decomposition method. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4961805 ; http://dx.doi.org/10.5353/th_b4961805 ; http://hdl.handle.net/10722/180984.

Council of Science Editors:

Zhou H. An efficient algorithm for face sketch synthesis using Markov weight fields and cascade decomposition method. [Masters Thesis]. University of Hong Kong; 2012. Available from: Zhou, H. [周浩]. (2012). An efficient algorithm for face sketch synthesis using Markov weight fields and cascade decomposition method. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4961805 ; http://dx.doi.org/10.5353/th_b4961805 ; http://hdl.handle.net/10722/180984


University of Lund

14. Bolin, David. Models and Methods for Random Fields in Spatial Statistics with Computational Efficiency from Markov Properties.

Degree: 2012, University of Lund

 The focus of this work is on the development of new random field models and methods suitable for the analysis of large environmental data sets.… (more)

Subjects/Keywords: Sannolikhetsteori och statistik; random fields; Gaussian Markov random fields; Matérn covariances; stochastic partial differential equations; Computational efficiency

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bolin, D. (2012). Models and Methods for Random Fields in Spatial Statistics with Computational Efficiency from Markov Properties. (Doctoral Dissertation). University of Lund. Retrieved from http://lup.lub.lu.se/record/2539400 ; http://portal.research.lu.se/ws/files/4123914/2539412.pdf

Chicago Manual of Style (16th Edition):

Bolin, David. “Models and Methods for Random Fields in Spatial Statistics with Computational Efficiency from Markov Properties.” 2012. Doctoral Dissertation, University of Lund. Accessed July 15, 2019. http://lup.lub.lu.se/record/2539400 ; http://portal.research.lu.se/ws/files/4123914/2539412.pdf.

MLA Handbook (7th Edition):

Bolin, David. “Models and Methods for Random Fields in Spatial Statistics with Computational Efficiency from Markov Properties.” 2012. Web. 15 Jul 2019.

Vancouver:

Bolin D. Models and Methods for Random Fields in Spatial Statistics with Computational Efficiency from Markov Properties. [Internet] [Doctoral dissertation]. University of Lund; 2012. [cited 2019 Jul 15]. Available from: http://lup.lub.lu.se/record/2539400 ; http://portal.research.lu.se/ws/files/4123914/2539412.pdf.

Council of Science Editors:

Bolin D. Models and Methods for Random Fields in Spatial Statistics with Computational Efficiency from Markov Properties. [Doctoral Dissertation]. University of Lund; 2012. Available from: http://lup.lub.lu.se/record/2539400 ; http://portal.research.lu.se/ws/files/4123914/2539412.pdf


University of Illinois – Urbana-Champaign

15. Le, Tung. Probabilistic inference via sum-product algorithms on binary pairwise Gibbs random fields with applications to multiple fault diagnosis.

Degree: PhD, 1200, 2011, University of Illinois – Urbana-Champaign

 In this dissertation, we consider probabilistic inference problems on binary pairwise Gibbs random fields (BPW-GRFs), which belong to a class of Markov random fields with… (more)

Subjects/Keywords: Probabilistic inference; marginal problems; marginal bounds; graphical models; Markov random fields; Gibbs random fields; binary pairwise Gibbs random fields; belief propagation; sum-product algorithms; fault diagnosis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Le, T. (2011). Probabilistic inference via sum-product algorithms on binary pairwise Gibbs random fields with applications to multiple fault diagnosis. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/18543

Chicago Manual of Style (16th Edition):

Le, Tung. “Probabilistic inference via sum-product algorithms on binary pairwise Gibbs random fields with applications to multiple fault diagnosis.” 2011. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 15, 2019. http://hdl.handle.net/2142/18543.

MLA Handbook (7th Edition):

Le, Tung. “Probabilistic inference via sum-product algorithms on binary pairwise Gibbs random fields with applications to multiple fault diagnosis.” 2011. Web. 15 Jul 2019.

Vancouver:

Le T. Probabilistic inference via sum-product algorithms on binary pairwise Gibbs random fields with applications to multiple fault diagnosis. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2011. [cited 2019 Jul 15]. Available from: http://hdl.handle.net/2142/18543.

Council of Science Editors:

Le T. Probabilistic inference via sum-product algorithms on binary pairwise Gibbs random fields with applications to multiple fault diagnosis. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2011. Available from: http://hdl.handle.net/2142/18543

16. Botelho, Glenda Michele. Segmentação de imagens baseada em redes complexas e superpixels: uma aplicação ao censo de aves.

Degree: PhD, Ciências de Computação e Matemática Computacional, 2014, University of São Paulo

Uma das etapas mais importantes da análise de imagens e, que conta com uma enorme quantidade de aplicações, é a segmentação. No entanto, uma boa… (more)

Subjects/Keywords: Birds census; Censo demográfico de aves; Community detection; Complex networks; Detecção de comunidades; Image segmentation; Markov Random fields; Markov Random fields; Redes complexas; Segmentação de imagens; Superpixels; Superpixels; Textura; Texture

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Botelho, G. M. (2014). Segmentação de imagens baseada em redes complexas e superpixels: uma aplicação ao censo de aves. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16032015-113613/ ;

Chicago Manual of Style (16th Edition):

Botelho, Glenda Michele. “Segmentação de imagens baseada em redes complexas e superpixels: uma aplicação ao censo de aves.” 2014. Doctoral Dissertation, University of São Paulo. Accessed July 15, 2019. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16032015-113613/ ;.

MLA Handbook (7th Edition):

Botelho, Glenda Michele. “Segmentação de imagens baseada em redes complexas e superpixels: uma aplicação ao censo de aves.” 2014. Web. 15 Jul 2019.

Vancouver:

Botelho GM. Segmentação de imagens baseada em redes complexas e superpixels: uma aplicação ao censo de aves. [Internet] [Doctoral dissertation]. University of São Paulo; 2014. [cited 2019 Jul 15]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16032015-113613/ ;.

Council of Science Editors:

Botelho GM. Segmentação de imagens baseada em redes complexas e superpixels: uma aplicação ao censo de aves. [Doctoral Dissertation]. University of São Paulo; 2014. Available from: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16032015-113613/ ;


KTH

17. Gao, Xiaoxu. Exploring declarative rule-based probabilistic frameworks for link prediction in Knowledge Graphs.

Degree: Information and Communication Technology (ICT), 2017, KTH

En kunskapsgraf lagrar information från webben i form av relationer mellan olika entiteter. En kunskapsgrafs kvalité bestäms av hur komplett den är och dess… (more)

Subjects/Keywords: Knowledge Graph; Link Prediction; Probabilistic Soft Logic; Hinge-loss Markov Random Fields; Kunskapsgraf; Länkförutsägelser; Probabilistic Soft Logic; Hinge-loss Markov Random Fields; Computer and Information Sciences; Data- och informationsvetenskap

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gao, X. (2017). Exploring declarative rule-based probabilistic frameworks for link prediction in Knowledge Graphs. (Thesis). KTH. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210650

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gao, Xiaoxu. “Exploring declarative rule-based probabilistic frameworks for link prediction in Knowledge Graphs.” 2017. Thesis, KTH. Accessed July 15, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210650.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gao, Xiaoxu. “Exploring declarative rule-based probabilistic frameworks for link prediction in Knowledge Graphs.” 2017. Web. 15 Jul 2019.

Vancouver:

Gao X. Exploring declarative rule-based probabilistic frameworks for link prediction in Knowledge Graphs. [Internet] [Thesis]. KTH; 2017. [cited 2019 Jul 15]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210650.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gao X. Exploring declarative rule-based probabilistic frameworks for link prediction in Knowledge Graphs. [Thesis]. KTH; 2017. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210650

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oulu

18. Roininen, L. (Lassi). Discretisation-invariant and computationally efficient correlation priors for Bayesian inversion.

Degree: 2015, University of Oulu

 Abstract We are interested in studying Gaussian Markov random fields as correlation priors for Bayesian inversion. We construct the correlation priors to be discretisation-invariant, which… (more)

Subjects/Keywords: Bayesian statistical inverse problems; Gaussian Markov random fields; convergence; discretisation; stochastic partial differential equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roininen, L. (. (2015). Discretisation-invariant and computationally efficient correlation priors for Bayesian inversion. (Doctoral Dissertation). University of Oulu. Retrieved from http://urn.fi/urn:isbn:9789526207544

Chicago Manual of Style (16th Edition):

Roininen, L (Lassi). “Discretisation-invariant and computationally efficient correlation priors for Bayesian inversion.” 2015. Doctoral Dissertation, University of Oulu. Accessed July 15, 2019. http://urn.fi/urn:isbn:9789526207544.

MLA Handbook (7th Edition):

Roininen, L (Lassi). “Discretisation-invariant and computationally efficient correlation priors for Bayesian inversion.” 2015. Web. 15 Jul 2019.

Vancouver:

Roininen L(. Discretisation-invariant and computationally efficient correlation priors for Bayesian inversion. [Internet] [Doctoral dissertation]. University of Oulu; 2015. [cited 2019 Jul 15]. Available from: http://urn.fi/urn:isbn:9789526207544.

Council of Science Editors:

Roininen L(. Discretisation-invariant and computationally efficient correlation priors for Bayesian inversion. [Doctoral Dissertation]. University of Oulu; 2015. Available from: http://urn.fi/urn:isbn:9789526207544


Queensland University of Technology

19. He, Hu. Joint 2D and 3D cues for image segmentation towards robotic applications.

Degree: 2014, Queensland University of Technology

 This thesis investigates the fusion of 3D visual information with 2D image cues to provide 3D semantic maps of large-scale environments in which a robot… (more)

Subjects/Keywords: Image Segmentation; Computer Vision; Robotics; Structure from Motion; Markov Random Fields; Graph Cut; Energy Minimisation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

He, H. (2014). Joint 2D and 3D cues for image segmentation towards robotic applications. (Thesis). Queensland University of Technology. Retrieved from https://eprints.qut.edu.au/71760/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

He, Hu. “Joint 2D and 3D cues for image segmentation towards robotic applications.” 2014. Thesis, Queensland University of Technology. Accessed July 15, 2019. https://eprints.qut.edu.au/71760/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

He, Hu. “Joint 2D and 3D cues for image segmentation towards robotic applications.” 2014. Web. 15 Jul 2019.

Vancouver:

He H. Joint 2D and 3D cues for image segmentation towards robotic applications. [Internet] [Thesis]. Queensland University of Technology; 2014. [cited 2019 Jul 15]. Available from: https://eprints.qut.edu.au/71760/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

He H. Joint 2D and 3D cues for image segmentation towards robotic applications. [Thesis]. Queensland University of Technology; 2014. Available from: https://eprints.qut.edu.au/71760/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

20. Zhang, Sixiang. Markov properties of measure-indexed Gaussian random fields.

Degree: PhD, Department of Statistics and Probability, 1990, Michigan State University

Subjects/Keywords: Markov processes; Gaussian processes; Random fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, S. (1990). Markov properties of measure-indexed Gaussian random fields. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:22749

Chicago Manual of Style (16th Edition):

Zhang, Sixiang. “Markov properties of measure-indexed Gaussian random fields.” 1990. Doctoral Dissertation, Michigan State University. Accessed July 15, 2019. http://etd.lib.msu.edu/islandora/object/etd:22749.

MLA Handbook (7th Edition):

Zhang, Sixiang. “Markov properties of measure-indexed Gaussian random fields.” 1990. Web. 15 Jul 2019.

Vancouver:

Zhang S. Markov properties of measure-indexed Gaussian random fields. [Internet] [Doctoral dissertation]. Michigan State University; 1990. [cited 2019 Jul 15]. Available from: http://etd.lib.msu.edu/islandora/object/etd:22749.

Council of Science Editors:

Zhang S. Markov properties of measure-indexed Gaussian random fields. [Doctoral Dissertation]. Michigan State University; 1990. Available from: http://etd.lib.msu.edu/islandora/object/etd:22749


Iowa State University

21. Clark, Nicholas John. Self-exciting spatio-temporal statistical models for count data with applications to modeling the spread of violence.

Degree: 2018, Iowa State University

 In this dissertation we provide statistical models and inferential techniques for analyzing the number of violent or criminal events as they evolve over space and… (more)

Subjects/Keywords: Dependent Counts; Hawkes Processes; Laplace Approximations; Markov Random Fields; Statistics and Probability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Clark, N. J. (2018). Self-exciting spatio-temporal statistical models for count data with applications to modeling the spread of violence. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/etd/16333

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Clark, Nicholas John. “Self-exciting spatio-temporal statistical models for count data with applications to modeling the spread of violence.” 2018. Thesis, Iowa State University. Accessed July 15, 2019. https://lib.dr.iastate.edu/etd/16333.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Clark, Nicholas John. “Self-exciting spatio-temporal statistical models for count data with applications to modeling the spread of violence.” 2018. Web. 15 Jul 2019.

Vancouver:

Clark NJ. Self-exciting spatio-temporal statistical models for count data with applications to modeling the spread of violence. [Internet] [Thesis]. Iowa State University; 2018. [cited 2019 Jul 15]. Available from: https://lib.dr.iastate.edu/etd/16333.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Clark NJ. Self-exciting spatio-temporal statistical models for count data with applications to modeling the spread of violence. [Thesis]. Iowa State University; 2018. Available from: https://lib.dr.iastate.edu/etd/16333

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

22. Johnson, Christopher Carroll. Greedy structure learning of Markov Random Fields.

Degree: Computer Sciences, 2011, University of Texas – Austin

 Probabilistic graphical models are used in a variety of domains to capture and represent general dependencies in joint probability distributions. In this document we examine… (more)

Subjects/Keywords: Machine learning; Graphical models; Markov Random Fields; Structure learning; Probability; Uncertainty; Greedy algorithms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Johnson, C. C. (2011). Greedy structure learning of Markov Random Fields. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2011-08-4331

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Johnson, Christopher Carroll. “Greedy structure learning of Markov Random Fields.” 2011. Thesis, University of Texas – Austin. Accessed July 15, 2019. http://hdl.handle.net/2152/ETD-UT-2011-08-4331.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Johnson, Christopher Carroll. “Greedy structure learning of Markov Random Fields.” 2011. Web. 15 Jul 2019.

Vancouver:

Johnson CC. Greedy structure learning of Markov Random Fields. [Internet] [Thesis]. University of Texas – Austin; 2011. [cited 2019 Jul 15]. Available from: http://hdl.handle.net/2152/ETD-UT-2011-08-4331.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Johnson CC. Greedy structure learning of Markov Random Fields. [Thesis]. University of Texas – Austin; 2011. Available from: http://hdl.handle.net/2152/ETD-UT-2011-08-4331

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Rice University

23. Baker, Yulia. Methods and Applications for Mixed Graphical Models.

Degree: PhD, Engineering, 2017, Rice University

 ``Multi-view Data'' is a term used to describe heterogeneous data measured on the same set of observations but collected from different sources and of potentially… (more)

Subjects/Keywords: Multi-view Data; mixed graphical models; Markov Random Fields; model selection; gene regulatory network

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Baker, Y. (2017). Methods and Applications for Mixed Graphical Models. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/105527

Chicago Manual of Style (16th Edition):

Baker, Yulia. “Methods and Applications for Mixed Graphical Models.” 2017. Doctoral Dissertation, Rice University. Accessed July 15, 2019. http://hdl.handle.net/1911/105527.

MLA Handbook (7th Edition):

Baker, Yulia. “Methods and Applications for Mixed Graphical Models.” 2017. Web. 15 Jul 2019.

Vancouver:

Baker Y. Methods and Applications for Mixed Graphical Models. [Internet] [Doctoral dissertation]. Rice University; 2017. [cited 2019 Jul 15]. Available from: http://hdl.handle.net/1911/105527.

Council of Science Editors:

Baker Y. Methods and Applications for Mixed Graphical Models. [Doctoral Dissertation]. Rice University; 2017. Available from: http://hdl.handle.net/1911/105527

24. Ziniti, Beth Louise. Computationally Efficient Specifications of Spatial Point Process Models and Spatio-Temporal Gaussian Models: Combining Remote Sensing Drivers with Geospatial Disease Case Data to Enhance Geographic Epidemiology.

Degree: PhD, 2016, University of New Hampshire

  In this dissertation, the flexibility of Bayesian hierarchical models specified using a latent Gaussian Markov Random Field (GMRF) are evaluated for use in analyzing… (more)

Subjects/Keywords: Gaussian Markov Random Fields; spatial epidemiology; spatial point processes; water quality; Statistics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ziniti, B. L. (2016). Computationally Efficient Specifications of Spatial Point Process Models and Spatio-Temporal Gaussian Models: Combining Remote Sensing Drivers with Geospatial Disease Case Data to Enhance Geographic Epidemiology. (Doctoral Dissertation). University of New Hampshire. Retrieved from https://scholars.unh.edu/dissertation/1378

Chicago Manual of Style (16th Edition):

Ziniti, Beth Louise. “Computationally Efficient Specifications of Spatial Point Process Models and Spatio-Temporal Gaussian Models: Combining Remote Sensing Drivers with Geospatial Disease Case Data to Enhance Geographic Epidemiology.” 2016. Doctoral Dissertation, University of New Hampshire. Accessed July 15, 2019. https://scholars.unh.edu/dissertation/1378.

MLA Handbook (7th Edition):

Ziniti, Beth Louise. “Computationally Efficient Specifications of Spatial Point Process Models and Spatio-Temporal Gaussian Models: Combining Remote Sensing Drivers with Geospatial Disease Case Data to Enhance Geographic Epidemiology.” 2016. Web. 15 Jul 2019.

Vancouver:

Ziniti BL. Computationally Efficient Specifications of Spatial Point Process Models and Spatio-Temporal Gaussian Models: Combining Remote Sensing Drivers with Geospatial Disease Case Data to Enhance Geographic Epidemiology. [Internet] [Doctoral dissertation]. University of New Hampshire; 2016. [cited 2019 Jul 15]. Available from: https://scholars.unh.edu/dissertation/1378.

Council of Science Editors:

Ziniti BL. Computationally Efficient Specifications of Spatial Point Process Models and Spatio-Temporal Gaussian Models: Combining Remote Sensing Drivers with Geospatial Disease Case Data to Enhance Geographic Epidemiology. [Doctoral Dissertation]. University of New Hampshire; 2016. Available from: https://scholars.unh.edu/dissertation/1378


University of Rochester

25. Papai, Tivadar (1984 - ). Exploiting constraints, sequential structure, and knowledge in Markov logic networks.

Degree: PhD, 2014, University of Rochester

 In this dissertation we propose extensions to Markov logic networks that can improve inference and learning by exploiting deterministic constraints, expert knowledge or se- quential/temporal… (more)

Subjects/Keywords: Constraint programming; Exponential families; Markov logic; Modal logic; Random fields; Sequential domains

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Papai, T. (. -. ). (2014). Exploiting constraints, sequential structure, and knowledge in Markov logic networks. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/28364

Chicago Manual of Style (16th Edition):

Papai, Tivadar (1984 - ). “Exploiting constraints, sequential structure, and knowledge in Markov logic networks.” 2014. Doctoral Dissertation, University of Rochester. Accessed July 15, 2019. http://hdl.handle.net/1802/28364.

MLA Handbook (7th Edition):

Papai, Tivadar (1984 - ). “Exploiting constraints, sequential structure, and knowledge in Markov logic networks.” 2014. Web. 15 Jul 2019.

Vancouver:

Papai T(-). Exploiting constraints, sequential structure, and knowledge in Markov logic networks. [Internet] [Doctoral dissertation]. University of Rochester; 2014. [cited 2019 Jul 15]. Available from: http://hdl.handle.net/1802/28364.

Council of Science Editors:

Papai T(-). Exploiting constraints, sequential structure, and knowledge in Markov logic networks. [Doctoral Dissertation]. University of Rochester; 2014. Available from: http://hdl.handle.net/1802/28364


University of Notre Dame

26. Jiao Wang. System and Image Modeling in Statistical Iterative Reconstruction for Multi-Slice CT</h1>.

Degree: PhD, Electrical Engineering, 2012, University of Notre Dame

  Inverse problem involves estimating parameters or data from inadequate observations. Bayesian estimation introduces regularization to provide mild assumptions on the solution and prevent overfitting… (more)

Subjects/Keywords: X-ray CT; forward model; Markov random fields; a priori density; iterative reconstruction

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, J. (2012). System and Image Modeling in Statistical Iterative Reconstruction for Multi-Slice CT</h1>. (Doctoral Dissertation). University of Notre Dame. Retrieved from https://curate.nd.edu/show/k930bv75n9g

Chicago Manual of Style (16th Edition):

Wang, Jiao. “System and Image Modeling in Statistical Iterative Reconstruction for Multi-Slice CT</h1>.” 2012. Doctoral Dissertation, University of Notre Dame. Accessed July 15, 2019. https://curate.nd.edu/show/k930bv75n9g.

MLA Handbook (7th Edition):

Wang, Jiao. “System and Image Modeling in Statistical Iterative Reconstruction for Multi-Slice CT</h1>.” 2012. Web. 15 Jul 2019.

Vancouver:

Wang J. System and Image Modeling in Statistical Iterative Reconstruction for Multi-Slice CT</h1>. [Internet] [Doctoral dissertation]. University of Notre Dame; 2012. [cited 2019 Jul 15]. Available from: https://curate.nd.edu/show/k930bv75n9g.

Council of Science Editors:

Wang J. System and Image Modeling in Statistical Iterative Reconstruction for Multi-Slice CT</h1>. [Doctoral Dissertation]. University of Notre Dame; 2012. Available from: https://curate.nd.edu/show/k930bv75n9g


University of Technology, Sydney

27. Thiyagarajan, Karthick. Robust sensor technologies combined with smart predictive analytics for hostile sewer infrastructures.

Degree: 2018, University of Technology, Sydney

 Underground sewer systems are an important national infrastructure requirement of any country. In most cities, they are old and have been exposed to significant levels… (more)

Subjects/Keywords: Sensor technologies.; Sewer Infrastructures.; Gaussian Markov Random Fields.; Non-invasive Sensing.; Predictive analytics.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Thiyagarajan, K. (2018). Robust sensor technologies combined with smart predictive analytics for hostile sewer infrastructures. (Thesis). University of Technology, Sydney. Retrieved from http://hdl.handle.net/10453/128023

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Thiyagarajan, Karthick. “Robust sensor technologies combined with smart predictive analytics for hostile sewer infrastructures.” 2018. Thesis, University of Technology, Sydney. Accessed July 15, 2019. http://hdl.handle.net/10453/128023.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Thiyagarajan, Karthick. “Robust sensor technologies combined with smart predictive analytics for hostile sewer infrastructures.” 2018. Web. 15 Jul 2019.

Vancouver:

Thiyagarajan K. Robust sensor technologies combined with smart predictive analytics for hostile sewer infrastructures. [Internet] [Thesis]. University of Technology, Sydney; 2018. [cited 2019 Jul 15]. Available from: http://hdl.handle.net/10453/128023.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Thiyagarajan K. Robust sensor technologies combined with smart predictive analytics for hostile sewer infrastructures. [Thesis]. University of Technology, Sydney; 2018. Available from: http://hdl.handle.net/10453/128023

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of British Columbia

28. Siksik, Ola. Markov random fields in visual reconstruction : a transputer-based multicomputer implementation .

Degree: 1990, University of British Columbia

Markov Random Fields (MRFs) are used in computer vision as an effective method for reconstructing a function starting from a set of noisy, or sparse… (more)

Subjects/Keywords: Markov processes; Random fields; Computer vision

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Siksik, O. (1990). Markov random fields in visual reconstruction : a transputer-based multicomputer implementation . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/28863

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Siksik, Ola. “Markov random fields in visual reconstruction : a transputer-based multicomputer implementation .” 1990. Thesis, University of British Columbia. Accessed July 15, 2019. http://hdl.handle.net/2429/28863.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Siksik, Ola. “Markov random fields in visual reconstruction : a transputer-based multicomputer implementation .” 1990. Web. 15 Jul 2019.

Vancouver:

Siksik O. Markov random fields in visual reconstruction : a transputer-based multicomputer implementation . [Internet] [Thesis]. University of British Columbia; 1990. [cited 2019 Jul 15]. Available from: http://hdl.handle.net/2429/28863.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Siksik O. Markov random fields in visual reconstruction : a transputer-based multicomputer implementation . [Thesis]. University of British Columbia; 1990. Available from: http://hdl.handle.net/2429/28863

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Victoria University of Wellington

29. Morris, Lindsay. Spatial and Temporal Modelling of Hoki Distribution using Gaussian Markov Random Fields.

Degree: 2017, Victoria University of Wellington

 In order to carry out assessment of marine stock levels, an accurate estimate of the current year's population abundance must be formulated. Standardized catch per… (more)

Subjects/Keywords: Spatial autocorrelation; Point referenced data; Gaussian Markov random fields; Bayesian hierarchical models; Gaussian; Markov; Spatial statistics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Morris, L. (2017). Spatial and Temporal Modelling of Hoki Distribution using Gaussian Markov Random Fields. (Masters Thesis). Victoria University of Wellington. Retrieved from http://hdl.handle.net/10063/6426

Chicago Manual of Style (16th Edition):

Morris, Lindsay. “Spatial and Temporal Modelling of Hoki Distribution using Gaussian Markov Random Fields.” 2017. Masters Thesis, Victoria University of Wellington. Accessed July 15, 2019. http://hdl.handle.net/10063/6426.

MLA Handbook (7th Edition):

Morris, Lindsay. “Spatial and Temporal Modelling of Hoki Distribution using Gaussian Markov Random Fields.” 2017. Web. 15 Jul 2019.

Vancouver:

Morris L. Spatial and Temporal Modelling of Hoki Distribution using Gaussian Markov Random Fields. [Internet] [Masters thesis]. Victoria University of Wellington; 2017. [cited 2019 Jul 15]. Available from: http://hdl.handle.net/10063/6426.

Council of Science Editors:

Morris L. Spatial and Temporal Modelling of Hoki Distribution using Gaussian Markov Random Fields. [Masters Thesis]. Victoria University of Wellington; 2017. Available from: http://hdl.handle.net/10063/6426

30. Wang, Chaohui. Distributed and higher-order graphical models : towards segmentation, tracking, matching and 3D model inference : Modèles graphiques distribués et d'ordre supérieur : pour la segmentation, le suivi d'objet, l'alignement et l'inférence de modèle 3D.

Degree: Docteur es, Mathématiques appliquées aux systèmes, 2011, Châtenay-Malabry, Ecole centrale de Paris

Cette thèse est dédiée au développement de méthodes à base de graphes, permettant de traiter les problèmes fondamentaux de la vision par ordinateur tels que… (more)

Subjects/Keywords: Champs de Markov Aléatoires; Suivi; Inférence de Modèles 3D; Markov Random Fields; Tracking; 3D Model Inference

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, C. (2011). Distributed and higher-order graphical models : towards segmentation, tracking, matching and 3D model inference : Modèles graphiques distribués et d'ordre supérieur : pour la segmentation, le suivi d'objet, l'alignement et l'inférence de modèle 3D. (Doctoral Dissertation). Châtenay-Malabry, Ecole centrale de Paris. Retrieved from http://www.theses.fr/2011ECAP0037

Chicago Manual of Style (16th Edition):

Wang, Chaohui. “Distributed and higher-order graphical models : towards segmentation, tracking, matching and 3D model inference : Modèles graphiques distribués et d'ordre supérieur : pour la segmentation, le suivi d'objet, l'alignement et l'inférence de modèle 3D.” 2011. Doctoral Dissertation, Châtenay-Malabry, Ecole centrale de Paris. Accessed July 15, 2019. http://www.theses.fr/2011ECAP0037.

MLA Handbook (7th Edition):

Wang, Chaohui. “Distributed and higher-order graphical models : towards segmentation, tracking, matching and 3D model inference : Modèles graphiques distribués et d'ordre supérieur : pour la segmentation, le suivi d'objet, l'alignement et l'inférence de modèle 3D.” 2011. Web. 15 Jul 2019.

Vancouver:

Wang C. Distributed and higher-order graphical models : towards segmentation, tracking, matching and 3D model inference : Modèles graphiques distribués et d'ordre supérieur : pour la segmentation, le suivi d'objet, l'alignement et l'inférence de modèle 3D. [Internet] [Doctoral dissertation]. Châtenay-Malabry, Ecole centrale de Paris; 2011. [cited 2019 Jul 15]. Available from: http://www.theses.fr/2011ECAP0037.

Council of Science Editors:

Wang C. Distributed and higher-order graphical models : towards segmentation, tracking, matching and 3D model inference : Modèles graphiques distribués et d'ordre supérieur : pour la segmentation, le suivi d'objet, l'alignement et l'inférence de modèle 3D. [Doctoral Dissertation]. Châtenay-Malabry, Ecole centrale de Paris; 2011. Available from: http://www.theses.fr/2011ECAP0037

[1] [2] [3] [4]

.