Advanced search options
You searched for subject:(Mapping class group)
.
Showing records 1 – 27 of
27 total matches.
▼ Search Limiters
Texas A&M University
1. Gustafson, Paul Prem. On the Property F Conjecture.
Degree: PhD, Mathematics, 2018, Texas A&M University
URL: http://hdl.handle.net/1969.1/173645
Subjects/Keywords: TQFT; mapping class group; twisted Dijkgraaf–Witten; Property F conjecture
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Gustafson, P. P. (2018). On the Property F Conjecture. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/173645
Chicago Manual of Style (16th Edition):
Gustafson, Paul Prem. “On the Property F Conjecture.” 2018. Doctoral Dissertation, Texas A&M University. Accessed March 08, 2021. http://hdl.handle.net/1969.1/173645.
MLA Handbook (7th Edition):
Gustafson, Paul Prem. “On the Property F Conjecture.” 2018. Web. 08 Mar 2021.
Vancouver:
Gustafson PP. On the Property F Conjecture. [Internet] [Doctoral dissertation]. Texas A&M University; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1969.1/173645.
Council of Science Editors:
Gustafson PP. On the Property F Conjecture. [Doctoral Dissertation]. Texas A&M University; 2018. Available from: http://hdl.handle.net/1969.1/173645
University of Illinois – Chicago
2. Durham, Matthew G. The Coarse Geometry of the Teichmuller Metric: A Quasiisometry Model and the Actions of Finite Groups.
Degree: 2014, University of Illinois – Chicago
URL: http://hdl.handle.net/10027/19007
Subjects/Keywords: Geometric group theory; Teichmuller space; mapping class groups; Nielsen realization
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Durham, M. G. (2014). The Coarse Geometry of the Teichmuller Metric: A Quasiisometry Model and the Actions of Finite Groups. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/19007
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Durham, Matthew G. “The Coarse Geometry of the Teichmuller Metric: A Quasiisometry Model and the Actions of Finite Groups.” 2014. Thesis, University of Illinois – Chicago. Accessed March 08, 2021. http://hdl.handle.net/10027/19007.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Durham, Matthew G. “The Coarse Geometry of the Teichmuller Metric: A Quasiisometry Model and the Actions of Finite Groups.” 2014. Web. 08 Mar 2021.
Vancouver:
Durham MG. The Coarse Geometry of the Teichmuller Metric: A Quasiisometry Model and the Actions of Finite Groups. [Internet] [Thesis]. University of Illinois – Chicago; 2014. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10027/19007.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Durham MG. The Coarse Geometry of the Teichmuller Metric: A Quasiisometry Model and the Actions of Finite Groups. [Thesis]. University of Illinois – Chicago; 2014. Available from: http://hdl.handle.net/10027/19007
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Boston College
3.
Vlamis, Nicholas George.
Identities on hyperbolic manifolds and quasiconformal
homogeneity of hyperbolic surfaces.
Degree: PhD, Mathematics, 2015, Boston College
URL: http://dlib.bc.edu/islandora/object/bc-ir:104137
Subjects/Keywords: hyperbolic manifold; identities; mapping class group; orthospectrum; quasiconformal maps
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Vlamis, N. G. (2015). Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces. (Doctoral Dissertation). Boston College. Retrieved from http://dlib.bc.edu/islandora/object/bc-ir:104137
Chicago Manual of Style (16th Edition):
Vlamis, Nicholas George. “Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces.” 2015. Doctoral Dissertation, Boston College. Accessed March 08, 2021. http://dlib.bc.edu/islandora/object/bc-ir:104137.
MLA Handbook (7th Edition):
Vlamis, Nicholas George. “Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces.” 2015. Web. 08 Mar 2021.
Vancouver:
Vlamis NG. Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces. [Internet] [Doctoral dissertation]. Boston College; 2015. [cited 2021 Mar 08]. Available from: http://dlib.bc.edu/islandora/object/bc-ir:104137.
Council of Science Editors:
Vlamis NG. Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces. [Doctoral Dissertation]. Boston College; 2015. Available from: http://dlib.bc.edu/islandora/object/bc-ir:104137
University of Oxford
4. Hume, David S. Embeddings of infinite groups into Banach spaces.
Degree: PhD, 2013, University of Oxford
URL: http://ora.ox.ac.uk/objects/uuid:e38f58ec-484c-4088-bb44-1556bc647cde
;
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581386
Subjects/Keywords: 515.732; Mathematics; group theory; metric geometry; hyperbolic; relatively hyperbolic; mapping class group
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Hume, D. S. (2013). Embeddings of infinite groups into Banach spaces. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:e38f58ec-484c-4088-bb44-1556bc647cde ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581386
Chicago Manual of Style (16th Edition):
Hume, David S. “Embeddings of infinite groups into Banach spaces.” 2013. Doctoral Dissertation, University of Oxford. Accessed March 08, 2021. http://ora.ox.ac.uk/objects/uuid:e38f58ec-484c-4088-bb44-1556bc647cde ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581386.
MLA Handbook (7th Edition):
Hume, David S. “Embeddings of infinite groups into Banach spaces.” 2013. Web. 08 Mar 2021.
Vancouver:
Hume DS. Embeddings of infinite groups into Banach spaces. [Internet] [Doctoral dissertation]. University of Oxford; 2013. [cited 2021 Mar 08]. Available from: http://ora.ox.ac.uk/objects/uuid:e38f58ec-484c-4088-bb44-1556bc647cde ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581386.
Council of Science Editors:
Hume DS. Embeddings of infinite groups into Banach spaces. [Doctoral Dissertation]. University of Oxford; 2013. Available from: http://ora.ox.ac.uk/objects/uuid:e38f58ec-484c-4088-bb44-1556bc647cde ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581386
University of Illinois – Urbana-Champaign
5. Mousley, Sarah C. Boundaries and hierarchically hyperbolic spaces.
Degree: PhD, Mathematics, 2019, University of Illinois – Urbana-Champaign
URL: http://hdl.handle.net/2142/104790
Subjects/Keywords: Teichmuller space; mapping class group; right-angled Artin group; hierarchically hyperbolic; limit set
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Mousley, S. C. (2019). Boundaries and hierarchically hyperbolic spaces. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/104790
Chicago Manual of Style (16th Edition):
Mousley, Sarah C. “Boundaries and hierarchically hyperbolic spaces.” 2019. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed March 08, 2021. http://hdl.handle.net/2142/104790.
MLA Handbook (7th Edition):
Mousley, Sarah C. “Boundaries and hierarchically hyperbolic spaces.” 2019. Web. 08 Mar 2021.
Vancouver:
Mousley SC. Boundaries and hierarchically hyperbolic spaces. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2142/104790.
Council of Science Editors:
Mousley SC. Boundaries and hierarchically hyperbolic spaces. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2019. Available from: http://hdl.handle.net/2142/104790
6. Disarlo, Valentina. Combinatorial methods in Teichmüller theory : Méthodes combinatoires en théorie de Teichmüller.
Degree: Docteur es, Mathématiques, 2013, Strasbourg; Scuola normale superiore (Pise, Italie)
URL: http://www.theses.fr/2013STRAD017
Subjects/Keywords: Mapping class group; Espaces de Teichmueller; Complexe des arcs; Mapping class groups; Teichmueller space; Arc complex; 511.6; 514.2
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Disarlo, V. (2013). Combinatorial methods in Teichmüller theory : Méthodes combinatoires en théorie de Teichmüller. (Doctoral Dissertation). Strasbourg; Scuola normale superiore (Pise, Italie). Retrieved from http://www.theses.fr/2013STRAD017
Chicago Manual of Style (16th Edition):
Disarlo, Valentina. “Combinatorial methods in Teichmüller theory : Méthodes combinatoires en théorie de Teichmüller.” 2013. Doctoral Dissertation, Strasbourg; Scuola normale superiore (Pise, Italie). Accessed March 08, 2021. http://www.theses.fr/2013STRAD017.
MLA Handbook (7th Edition):
Disarlo, Valentina. “Combinatorial methods in Teichmüller theory : Méthodes combinatoires en théorie de Teichmüller.” 2013. Web. 08 Mar 2021.
Vancouver:
Disarlo V. Combinatorial methods in Teichmüller theory : Méthodes combinatoires en théorie de Teichmüller. [Internet] [Doctoral dissertation]. Strasbourg; Scuola normale superiore (Pise, Italie); 2013. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2013STRAD017.
Council of Science Editors:
Disarlo V. Combinatorial methods in Teichmüller theory : Méthodes combinatoires en théorie de Teichmüller. [Doctoral Dissertation]. Strasbourg; Scuola normale superiore (Pise, Italie); 2013. Available from: http://www.theses.fr/2013STRAD017
Université de Grenoble
7. Korinman, Julien. Sur les représentations quantiques des groupes modulaires des surfaces : On the quantum representations of class="hilite">mapping class groups of surfaces.
Degree: Docteur es, Mathématiques, 2014, Université de Grenoble
URL: http://www.theses.fr/2014GRENM070
Subjects/Keywords: Topologie; Algèbre; TQFT; Noeuds; Topology; Algebra; TQFT; Knot; Mapping class group; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Korinman, J. (2014). Sur les représentations quantiques des groupes modulaires des surfaces : On the quantum representations of mapping class groups of surfaces. (Doctoral Dissertation). Université de Grenoble. Retrieved from http://www.theses.fr/2014GRENM070
Chicago Manual of Style (16th Edition):
Korinman, Julien. “Sur les représentations quantiques des groupes modulaires des surfaces : On the quantum representations of mapping class groups of surfaces.” 2014. Doctoral Dissertation, Université de Grenoble. Accessed March 08, 2021. http://www.theses.fr/2014GRENM070.
MLA Handbook (7th Edition):
Korinman, Julien. “Sur les représentations quantiques des groupes modulaires des surfaces : On the quantum representations of mapping class groups of surfaces.” 2014. Web. 08 Mar 2021.
Vancouver:
Korinman J. Sur les représentations quantiques des groupes modulaires des surfaces : On the quantum representations of mapping class groups of surfaces. [Internet] [Doctoral dissertation]. Université de Grenoble; 2014. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2014GRENM070.
Council of Science Editors:
Korinman J. Sur les représentations quantiques des groupes modulaires des surfaces : On the quantum representations of mapping class groups of surfaces. [Doctoral Dissertation]. Université de Grenoble; 2014. Available from: http://www.theses.fr/2014GRENM070
University of Toronto
8.
Verberne, Yvon Louise Maria.
Pseudo-Anosov Homeomorphisms Constructed using Positive Dehn Twists.
Degree: PhD, 2020, University of Toronto
URL: http://hdl.handle.net/1807/101022
Subjects/Keywords: Algebra; Geometric group theory; Geometry; Mapping class groups; Pseudo-Anosov; Topology; 0642
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Verberne, Y. L. M. (2020). Pseudo-Anosov Homeomorphisms Constructed using Positive Dehn Twists. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/101022
Chicago Manual of Style (16th Edition):
Verberne, Yvon Louise Maria. “Pseudo-Anosov Homeomorphisms Constructed using Positive Dehn Twists.” 2020. Doctoral Dissertation, University of Toronto. Accessed March 08, 2021. http://hdl.handle.net/1807/101022.
MLA Handbook (7th Edition):
Verberne, Yvon Louise Maria. “Pseudo-Anosov Homeomorphisms Constructed using Positive Dehn Twists.” 2020. Web. 08 Mar 2021.
Vancouver:
Verberne YLM. Pseudo-Anosov Homeomorphisms Constructed using Positive Dehn Twists. [Internet] [Doctoral dissertation]. University of Toronto; 2020. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1807/101022.
Council of Science Editors:
Verberne YLM. Pseudo-Anosov Homeomorphisms Constructed using Positive Dehn Twists. [Doctoral Dissertation]. University of Toronto; 2020. Available from: http://hdl.handle.net/1807/101022
9. Ackermann, Robert. On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies.
Degree: 2014, University of California – eScholarship, University of California
URL: http://www.escholarship.org/uc/item/4g92n22s
Subjects/Keywords: Mathematics; compression body; dilatation; mapping class group; Perron-Frobenius; pseudo-Anosov; symplectic
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ackermann, R. (2014). On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies. (Thesis). University of California – eScholarship, University of California. Retrieved from http://www.escholarship.org/uc/item/4g92n22s
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Ackermann, Robert. “On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies.” 2014. Thesis, University of California – eScholarship, University of California. Accessed March 08, 2021. http://www.escholarship.org/uc/item/4g92n22s.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Ackermann, Robert. “On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies.” 2014. Web. 08 Mar 2021.
Vancouver:
Ackermann R. On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies. [Internet] [Thesis]. University of California – eScholarship, University of California; 2014. [cited 2021 Mar 08]. Available from: http://www.escholarship.org/uc/item/4g92n22s.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Ackermann R. On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies. [Thesis]. University of California – eScholarship, University of California; 2014. Available from: http://www.escholarship.org/uc/item/4g92n22s
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
University of Minnesota
10. Nayak, Guruprasad. Learning with Weak Supervision for Land Cover class="hilite">Mapping Problems.
Degree: PhD, Computer Science, 2020, University of Minnesota
URL: http://hdl.handle.net/11299/213091
Subjects/Keywords: Class imbalance; Group Labels; Land cover mapping; Ordinal Labels; Semi-supervised Learning; Weak Supervision
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Nayak, G. (2020). Learning with Weak Supervision for Land Cover Mapping Problems. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/213091
Chicago Manual of Style (16th Edition):
Nayak, Guruprasad. “Learning with Weak Supervision for Land Cover Mapping Problems.” 2020. Doctoral Dissertation, University of Minnesota. Accessed March 08, 2021. http://hdl.handle.net/11299/213091.
MLA Handbook (7th Edition):
Nayak, Guruprasad. “Learning with Weak Supervision for Land Cover Mapping Problems.” 2020. Web. 08 Mar 2021.
Vancouver:
Nayak G. Learning with Weak Supervision for Land Cover Mapping Problems. [Internet] [Doctoral dissertation]. University of Minnesota; 2020. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/11299/213091.
Council of Science Editors:
Nayak G. Learning with Weak Supervision for Land Cover Mapping Problems. [Doctoral Dissertation]. University of Minnesota; 2020. Available from: http://hdl.handle.net/11299/213091
University of Maryland
11. Chuysurichay, Sompong. Positive Rational Strong Shift Equivalence and The class="hilite">Mapping Class Group of A Shift of Finite Type.
Degree: Mathematics, 2011, University of Maryland
URL: http://hdl.handle.net/1903/11674
Subjects/Keywords: Mathematics; automorphism; flow equivalence; mapping class group; shift of finite type; simplex; strong shift equivalence
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Chuysurichay, S. (2011). Positive Rational Strong Shift Equivalence and The Mapping Class Group of A Shift of Finite Type. (Thesis). University of Maryland. Retrieved from http://hdl.handle.net/1903/11674
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Chuysurichay, Sompong. “Positive Rational Strong Shift Equivalence and The Mapping Class Group of A Shift of Finite Type.” 2011. Thesis, University of Maryland. Accessed March 08, 2021. http://hdl.handle.net/1903/11674.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Chuysurichay, Sompong. “Positive Rational Strong Shift Equivalence and The Mapping Class Group of A Shift of Finite Type.” 2011. Web. 08 Mar 2021.
Vancouver:
Chuysurichay S. Positive Rational Strong Shift Equivalence and The Mapping Class Group of A Shift of Finite Type. [Internet] [Thesis]. University of Maryland; 2011. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1903/11674.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Chuysurichay S. Positive Rational Strong Shift Equivalence and The Mapping Class Group of A Shift of Finite Type. [Thesis]. University of Maryland; 2011. Available from: http://hdl.handle.net/1903/11674
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
12. Cooper, James Michael. Two mod-p Johnson filtrations.
Degree: PhD, Natural Sciences, 2014, Rice University
URL: http://hdl.handle.net/1911/76394
Subjects/Keywords: Geometric topology; Group theory; Mapping class groups
…particularly interesting algebraic invariant of a surface is its mapping class group. We write M odg… …1 for the mapping class group of an orientable surface of genus g with 1 boundary… …mapping class group appears in many areas of mathematics as an important object of study. Still… …within the realm of topology, the mapping class group is intimately related to the study of 3… …mapping class group naturally arises as an object of interest, too. For instance, the mapping…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Cooper, J. M. (2014). Two mod-p Johnson filtrations. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/76394
Chicago Manual of Style (16th Edition):
Cooper, James Michael. “Two mod-p Johnson filtrations.” 2014. Doctoral Dissertation, Rice University. Accessed March 08, 2021. http://hdl.handle.net/1911/76394.
MLA Handbook (7th Edition):
Cooper, James Michael. “Two mod-p Johnson filtrations.” 2014. Web. 08 Mar 2021.
Vancouver:
Cooper JM. Two mod-p Johnson filtrations. [Internet] [Doctoral dissertation]. Rice University; 2014. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1911/76394.
Council of Science Editors:
Cooper JM. Two mod-p Johnson filtrations. [Doctoral Dissertation]. Rice University; 2014. Available from: http://hdl.handle.net/1911/76394
University of Arizona
13. Konstantinou, Panagiota. Homomorphisms of the Fundamental Group of a Surface into PSU(1,1), and the Action of the class="hilite">Mapping Class Group.
Degree: 2006, University of Arizona
URL: http://hdl.handle.net/10150/193713
Subjects/Keywords: representation varieties; mapping class group; teichmuller space; ergodic action
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Konstantinou, P. (2006). Homomorphisms of the Fundamental Group of a Surface into PSU(1,1), and the Action of the Mapping Class Group. (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/193713
Chicago Manual of Style (16th Edition):
Konstantinou, Panagiota. “Homomorphisms of the Fundamental Group of a Surface into PSU(1,1), and the Action of the Mapping Class Group. ” 2006. Doctoral Dissertation, University of Arizona. Accessed March 08, 2021. http://hdl.handle.net/10150/193713.
MLA Handbook (7th Edition):
Konstantinou, Panagiota. “Homomorphisms of the Fundamental Group of a Surface into PSU(1,1), and the Action of the Mapping Class Group. ” 2006. Web. 08 Mar 2021.
Vancouver:
Konstantinou P. Homomorphisms of the Fundamental Group of a Surface into PSU(1,1), and the Action of the Mapping Class Group. [Internet] [Doctoral dissertation]. University of Arizona; 2006. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10150/193713.
Council of Science Editors:
Konstantinou P. Homomorphisms of the Fundamental Group of a Surface into PSU(1,1), and the Action of the Mapping Class Group. [Doctoral Dissertation]. University of Arizona; 2006. Available from: http://hdl.handle.net/10150/193713
Université de Grenoble
14. Nguyen, Maxime. Groupes modulaires et groupes d'automorphismes de complexes de surfaces de type infini : class="hilite">Mapping class groups and automorphisms of complexes of surfaces of infinite type.
Degree: Docteur es, Mathématiques, 2012, Université de Grenoble
URL: http://www.theses.fr/2012GRENM102
Subjects/Keywords: Groupe modulaire; Complexe de pantalons; Surface de type infini; Groupe de Thompson; Mapping class group; Pants complex; Surface of infinite type; Thompson group; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Nguyen, M. (2012). Groupes modulaires et groupes d'automorphismes de complexes de surfaces de type infini : Mapping class groups and automorphisms of complexes of surfaces of infinite type. (Doctoral Dissertation). Université de Grenoble. Retrieved from http://www.theses.fr/2012GRENM102
Chicago Manual of Style (16th Edition):
Nguyen, Maxime. “Groupes modulaires et groupes d'automorphismes de complexes de surfaces de type infini : Mapping class groups and automorphisms of complexes of surfaces of infinite type.” 2012. Doctoral Dissertation, Université de Grenoble. Accessed March 08, 2021. http://www.theses.fr/2012GRENM102.
MLA Handbook (7th Edition):
Nguyen, Maxime. “Groupes modulaires et groupes d'automorphismes de complexes de surfaces de type infini : Mapping class groups and automorphisms of complexes of surfaces of infinite type.” 2012. Web. 08 Mar 2021.
Vancouver:
Nguyen M. Groupes modulaires et groupes d'automorphismes de complexes de surfaces de type infini : Mapping class groups and automorphisms of complexes of surfaces of infinite type. [Internet] [Doctoral dissertation]. Université de Grenoble; 2012. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2012GRENM102.
Council of Science Editors:
Nguyen M. Groupes modulaires et groupes d'automorphismes de complexes de surfaces de type infini : Mapping class groups and automorphisms of complexes of surfaces of infinite type. [Doctoral Dissertation]. Université de Grenoble; 2012. Available from: http://www.theses.fr/2012GRENM102
15. HU HENGNAN. Identities on Hyperbolic Surfaces, Group Actions and the Markoff-Hurwitz Equations.
Degree: 2013, National University of Singapore
URL: http://scholarbank.nus.edu.sg/handle/10635/48648
Subjects/Keywords: McShane's identity; Roger's dilogarithm; Mapping class group; Character variety; Coxeter group; Hurwitz equation
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
HENGNAN, H. (2013). Identities on Hyperbolic Surfaces, Group Actions and the Markoff-Hurwitz Equations. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/48648
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
HENGNAN, HU. “Identities on Hyperbolic Surfaces, Group Actions and the Markoff-Hurwitz Equations.” 2013. Thesis, National University of Singapore. Accessed March 08, 2021. http://scholarbank.nus.edu.sg/handle/10635/48648.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
HENGNAN, HU. “Identities on Hyperbolic Surfaces, Group Actions and the Markoff-Hurwitz Equations.” 2013. Web. 08 Mar 2021.
Vancouver:
HENGNAN H. Identities on Hyperbolic Surfaces, Group Actions and the Markoff-Hurwitz Equations. [Internet] [Thesis]. National University of Singapore; 2013. [cited 2021 Mar 08]. Available from: http://scholarbank.nus.edu.sg/handle/10635/48648.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
HENGNAN H. Identities on Hyperbolic Surfaces, Group Actions and the Markoff-Hurwitz Equations. [Thesis]. National University of Singapore; 2013. Available from: http://scholarbank.nus.edu.sg/handle/10635/48648
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Louisiana State University
16. Childers, Leah R. Subgroups of the Torelli group.
Degree: PhD, Applied Mathematics, 2010, Louisiana State University
URL: etd-05252010-101928
;
https://digitalcommons.lsu.edu/gradschool_dissertations/536
Subjects/Keywords: symmetric separating curve complex; Torelli group; mapping class group; symmetric Torelli group; simply intersecting pair maps; curve complex; symmetric mapping class group
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Childers, L. R. (2010). Subgroups of the Torelli group. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-05252010-101928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/536
Chicago Manual of Style (16th Edition):
Childers, Leah R. “Subgroups of the Torelli group.” 2010. Doctoral Dissertation, Louisiana State University. Accessed March 08, 2021. etd-05252010-101928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/536.
MLA Handbook (7th Edition):
Childers, Leah R. “Subgroups of the Torelli group.” 2010. Web. 08 Mar 2021.
Vancouver:
Childers LR. Subgroups of the Torelli group. [Internet] [Doctoral dissertation]. Louisiana State University; 2010. [cited 2021 Mar 08]. Available from: etd-05252010-101928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/536.
Council of Science Editors:
Childers LR. Subgroups of the Torelli group. [Doctoral Dissertation]. Louisiana State University; 2010. Available from: etd-05252010-101928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/536
17. Kutluhan, Johanna Ceres Isabel Mangahas. A Recipe for Short-word Pseudo-Anosovs, and Group Growth.
Degree: PhD, Mathematics, 2010, University of Michigan
URL: http://hdl.handle.net/2027.42/77720
Subjects/Keywords: Mapping Class Group; Pseudo-Anosov; Curve Complex; Mathematics; Science
…separate motivation for Theorem I.1 is its utility for quantifying the mapping 4 class group… …first presents basic definitions around the mapping class group and curve complex; the second… …Mapping class group and curve complex Throughout, we consider only oriented surfaces whose… …definitions of the mapping class group. Given a surface S, its mapping class group Mod(S)… …the mapping class group to require that homeomorphisms and isotopy fix ∂S pointwise…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Kutluhan, J. C. I. M. (2010). A Recipe for Short-word Pseudo-Anosovs, and Group Growth. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/77720
Chicago Manual of Style (16th Edition):
Kutluhan, Johanna Ceres Isabel Mangahas. “A Recipe for Short-word Pseudo-Anosovs, and Group Growth.” 2010. Doctoral Dissertation, University of Michigan. Accessed March 08, 2021. http://hdl.handle.net/2027.42/77720.
MLA Handbook (7th Edition):
Kutluhan, Johanna Ceres Isabel Mangahas. “A Recipe for Short-word Pseudo-Anosovs, and Group Growth.” 2010. Web. 08 Mar 2021.
Vancouver:
Kutluhan JCIM. A Recipe for Short-word Pseudo-Anosovs, and Group Growth. [Internet] [Doctoral dissertation]. University of Michigan; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2027.42/77720.
Council of Science Editors:
Kutluhan JCIM. A Recipe for Short-word Pseudo-Anosovs, and Group Growth. [Doctoral Dissertation]. University of Michigan; 2010. Available from: http://hdl.handle.net/2027.42/77720
Universitat Autònoma de Barcelona
18.
Riba Garcia, Ricard.
Trivial 2-cocycles for invariants of mod p homology spheres and Perron's conjecture.
Degree: Departament de Matemàtiques, 2018, Universitat Autònoma de Barcelona
URL: http://hdl.handle.net/10803/664243
Subjects/Keywords: 3-varietats; 3-variedades; 3-mamifolds; Grup de classes d'aplicacions; Grupo de clases de aplicaciones; Mapping class group; Invariants topològics; Invariantes topológicos; Topological invariants; Ciències Experimentals; 515.1
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Riba Garcia, R. (2018). Trivial 2-cocycles for invariants of mod p homology spheres and Perron's conjecture. (Thesis). Universitat Autònoma de Barcelona. Retrieved from http://hdl.handle.net/10803/664243
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Riba Garcia, Ricard. “Trivial 2-cocycles for invariants of mod p homology spheres and Perron's conjecture.” 2018. Thesis, Universitat Autònoma de Barcelona. Accessed March 08, 2021. http://hdl.handle.net/10803/664243.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Riba Garcia, Ricard. “Trivial 2-cocycles for invariants of mod p homology spheres and Perron's conjecture.” 2018. Web. 08 Mar 2021.
Vancouver:
Riba Garcia R. Trivial 2-cocycles for invariants of mod p homology spheres and Perron's conjecture. [Internet] [Thesis]. Universitat Autònoma de Barcelona; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10803/664243.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Riba Garcia R. Trivial 2-cocycles for invariants of mod p homology spheres and Perron's conjecture. [Thesis]. Universitat Autònoma de Barcelona; 2018. Available from: http://hdl.handle.net/10803/664243
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
19. Pankau, Joshua Charles. On stretch factors of pseudo-Anosov maps.
Degree: 2018, University of California – eScholarship, University of California
URL: http://www.escholarship.org/uc/item/5q48t1cj
Subjects/Keywords: Mathematics; mapping class group; pseudo-Anosov; salem numbers; thurston; topology
…Contents 1 Introduction 1 2 The Mapping Class Group 5 2.1 2.2 2.3 Curves on Surfaces… …known as the mapping class group of a surface, first appeared in the early parts of the 20th… …to mix with the rigid world of algebra. The mapping class group offered another algebraic… …Dehn twist automorphisms and proved that the mapping class group is finitely generated by… …these. Nielsen provided a classification of mapping class group elements but supposedly due to…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Pankau, J. C. (2018). On stretch factors of pseudo-Anosov maps. (Thesis). University of California – eScholarship, University of California. Retrieved from http://www.escholarship.org/uc/item/5q48t1cj
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Pankau, Joshua Charles. “On stretch factors of pseudo-Anosov maps.” 2018. Thesis, University of California – eScholarship, University of California. Accessed March 08, 2021. http://www.escholarship.org/uc/item/5q48t1cj.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Pankau, Joshua Charles. “On stretch factors of pseudo-Anosov maps.” 2018. Web. 08 Mar 2021.
Vancouver:
Pankau JC. On stretch factors of pseudo-Anosov maps. [Internet] [Thesis]. University of California – eScholarship, University of California; 2018. [cited 2021 Mar 08]. Available from: http://www.escholarship.org/uc/item/5q48t1cj.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Pankau JC. On stretch factors of pseudo-Anosov maps. [Thesis]. University of California – eScholarship, University of California; 2018. Available from: http://www.escholarship.org/uc/item/5q48t1cj
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
20. Bavard, Juliette. Dynamique topologique sur les surfaces : gros groupe modulaire & classes de Brouwer : Topological dynamics on surfaces : big class="hilite">mapping class group and Brouwer classes.
Degree: Docteur es, Mathématiques, 2015, Université Pierre et Marie Curie – Paris VI
URL: http://www.theses.fr/2015PA066514
Subjects/Keywords: Groupe modulaire de surface; Surfaces de type infini; Espace Gromov-Hyperbolique; Quasi-Morphisme; Théorie de Brouwer homotopique; Complexe des courbes; Mapping class group; Homotopy Brouwer theory; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Bavard, J. (2015). Dynamique topologique sur les surfaces : gros groupe modulaire & classes de Brouwer : Topological dynamics on surfaces : big mapping class group and Brouwer classes. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2015PA066514
Chicago Manual of Style (16th Edition):
Bavard, Juliette. “Dynamique topologique sur les surfaces : gros groupe modulaire & classes de Brouwer : Topological dynamics on surfaces : big mapping class group and Brouwer classes.” 2015. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed March 08, 2021. http://www.theses.fr/2015PA066514.
MLA Handbook (7th Edition):
Bavard, Juliette. “Dynamique topologique sur les surfaces : gros groupe modulaire & classes de Brouwer : Topological dynamics on surfaces : big mapping class group and Brouwer classes.” 2015. Web. 08 Mar 2021.
Vancouver:
Bavard J. Dynamique topologique sur les surfaces : gros groupe modulaire & classes de Brouwer : Topological dynamics on surfaces : big mapping class group and Brouwer classes. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2015. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2015PA066514.
Council of Science Editors:
Bavard J. Dynamique topologique sur les surfaces : gros groupe modulaire & classes de Brouwer : Topological dynamics on surfaces : big mapping class group and Brouwer classes. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2015. Available from: http://www.theses.fr/2015PA066514
21. Tsai, Chia-Yen. Minimal pseudo-Anosov translation lengths on the Teichmuller space.
Degree: PhD, 0439, 2010, University of Illinois – Urbana-Champaign
URL: http://hdl.handle.net/2142/16103
Subjects/Keywords: pseudo-Anosov; dilatation; mapping class group; Teichmuller space
…initiated an active research program in the study of the elements of the mapping class group… …introduce some useful tools which are used later in our proofs. 2.1 Mapping class group For more… …detailed discussions of surface homeomorphisms and the mapping class group see [FLP91]… …classes of orientation preserving homeomorphisms f : S → S forms the mapping class group Mod… …about the mapping class group. Its proof can be found in [FLP91]. Theorem 2.1.8…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Tsai, C. (2010). Minimal pseudo-Anosov translation lengths on the Teichmuller space. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/16103
Chicago Manual of Style (16th Edition):
Tsai, Chia-Yen. “Minimal pseudo-Anosov translation lengths on the Teichmuller space.” 2010. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed March 08, 2021. http://hdl.handle.net/2142/16103.
MLA Handbook (7th Edition):
Tsai, Chia-Yen. “Minimal pseudo-Anosov translation lengths on the Teichmuller space.” 2010. Web. 08 Mar 2021.
Vancouver:
Tsai C. Minimal pseudo-Anosov translation lengths on the Teichmuller space. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2142/16103.
Council of Science Editors:
Tsai C. Minimal pseudo-Anosov translation lengths on the Teichmuller space. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2010. Available from: http://hdl.handle.net/2142/16103
22. Ghazouani, Selim. Structures affines complexes sur les surfaces de Riemann : Complex affine structures on Riemann surfaces.
Degree: Docteur es, Mathématiques, 2017, Paris Sciences et Lettres (ComUE)
URL: http://www.theses.fr/2017PSLEE022
Subjects/Keywords: Surfaces affines; Holonomie; Groupe modulaire; Géométrie hyperbolique complexe; Échanges d'intervalles affines; Affine surfaces; Holonomy; Mapping class group; Complex hyperbolic geometry; Affine interval exchange transformations; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ghazouani, S. (2017). Structures affines complexes sur les surfaces de Riemann : Complex affine structures on Riemann surfaces. (Doctoral Dissertation). Paris Sciences et Lettres (ComUE). Retrieved from http://www.theses.fr/2017PSLEE022
Chicago Manual of Style (16th Edition):
Ghazouani, Selim. “Structures affines complexes sur les surfaces de Riemann : Complex affine structures on Riemann surfaces.” 2017. Doctoral Dissertation, Paris Sciences et Lettres (ComUE). Accessed March 08, 2021. http://www.theses.fr/2017PSLEE022.
MLA Handbook (7th Edition):
Ghazouani, Selim. “Structures affines complexes sur les surfaces de Riemann : Complex affine structures on Riemann surfaces.” 2017. Web. 08 Mar 2021.
Vancouver:
Ghazouani S. Structures affines complexes sur les surfaces de Riemann : Complex affine structures on Riemann surfaces. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres (ComUE); 2017. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2017PSLEE022.
Council of Science Editors:
Ghazouani S. Structures affines complexes sur les surfaces de Riemann : Complex affine structures on Riemann surfaces. [Doctoral Dissertation]. Paris Sciences et Lettres (ComUE); 2017. Available from: http://www.theses.fr/2017PSLEE022
23. Martel-Tordjman, Jules. Interprétations homologiques d'invariants quantiques : Homological interprétations of quantum invariants.
Degree: Docteur es, Mathématiques, 2019, Université Toulouse III – Paul Sabatier
URL: http://www.theses.fr/2019TOU30285
Subjects/Keywords: Nœuds; Tresses; Espaces de configurations; Groupes modulaires; Homologies; Groupes quantiques; Représentations T0fts; Knots; Braids; Configuration space; Mapping class group; Homologies; Quantum groups; Non semi simples t0fts
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Martel-Tordjman, J. (2019). Interprétations homologiques d'invariants quantiques : Homological interprétations of quantum invariants. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2019TOU30285
Chicago Manual of Style (16th Edition):
Martel-Tordjman, Jules. “Interprétations homologiques d'invariants quantiques : Homological interprétations of quantum invariants.” 2019. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed March 08, 2021. http://www.theses.fr/2019TOU30285.
MLA Handbook (7th Edition):
Martel-Tordjman, Jules. “Interprétations homologiques d'invariants quantiques : Homological interprétations of quantum invariants.” 2019. Web. 08 Mar 2021.
Vancouver:
Martel-Tordjman J. Interprétations homologiques d'invariants quantiques : Homological interprétations of quantum invariants. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2019. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2019TOU30285.
Council of Science Editors:
Martel-Tordjman J. Interprétations homologiques d'invariants quantiques : Homological interprétations of quantum invariants. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2019. Available from: http://www.theses.fr/2019TOU30285
Université de Grenoble
24. Xu, Binbin. L'identité de Pleijel hyperbolique, la métrique de pression et l'extension centrale du groupe modulaire via quantification de Chekhov-Fock : Hyperbolic Pleijel identity, pressure metric and central extension of class="hilite">mapping class group via Chekhov-Fock quantization.
Degree: Docteur es, Mathématiques, 2014, Université de Grenoble
URL: http://www.theses.fr/2014GRENM068
Subjects/Keywords: Distribution de longueur de corde; Espace de Techmüller; Espace de modules de graphe; Métrique de pression; Groupe modulaire; Extension centrale; Chord length distribution; Techmüller space; Moduli space of graph; Pressure metric; Mapping class group; Central extension; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Xu, B. (2014). L'identité de Pleijel hyperbolique, la métrique de pression et l'extension centrale du groupe modulaire via quantification de Chekhov-Fock : Hyperbolic Pleijel identity, pressure metric and central extension of mapping class group via Chekhov-Fock quantization. (Doctoral Dissertation). Université de Grenoble. Retrieved from http://www.theses.fr/2014GRENM068
Chicago Manual of Style (16th Edition):
Xu, Binbin. “L'identité de Pleijel hyperbolique, la métrique de pression et l'extension centrale du groupe modulaire via quantification de Chekhov-Fock : Hyperbolic Pleijel identity, pressure metric and central extension of mapping class group via Chekhov-Fock quantization.” 2014. Doctoral Dissertation, Université de Grenoble. Accessed March 08, 2021. http://www.theses.fr/2014GRENM068.
MLA Handbook (7th Edition):
Xu, Binbin. “L'identité de Pleijel hyperbolique, la métrique de pression et l'extension centrale du groupe modulaire via quantification de Chekhov-Fock : Hyperbolic Pleijel identity, pressure metric and central extension of mapping class group via Chekhov-Fock quantization.” 2014. Web. 08 Mar 2021.
Vancouver:
Xu B. L'identité de Pleijel hyperbolique, la métrique de pression et l'extension centrale du groupe modulaire via quantification de Chekhov-Fock : Hyperbolic Pleijel identity, pressure metric and central extension of mapping class group via Chekhov-Fock quantization. [Internet] [Doctoral dissertation]. Université de Grenoble; 2014. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2014GRENM068.
Council of Science Editors:
Xu B. L'identité de Pleijel hyperbolique, la métrique de pression et l'extension centrale du groupe modulaire via quantification de Chekhov-Fock : Hyperbolic Pleijel identity, pressure metric and central extension of mapping class group via Chekhov-Fock quantization. [Doctoral Dissertation]. Université de Grenoble; 2014. Available from: http://www.theses.fr/2014GRENM068
25. Vera Arboleda, Anderson Arley. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.
Degree: Docteur es, Mathématiques, 2019, Université de Strasbourg
URL: http://www.theses.fr/2019STRAD009
Subjects/Keywords: Variétés de dimension trois; Cobordismes d’homologie; Groupe d’homéotopie; Homomorphismes de Johnson; Homomorphismes de Johnson-Levine; Homomorphismes de Johnson alternatifs; Invariant LMO; Foncteur LMO; 3-manifolds; Homology cobordisms; Mapping class group; Johnson homomorphisms; Johnson-Levine homomorphisms; Alternative Johnson homomorphisms; LMO invariant; LMO functor; 512.6; 514.2
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Vera Arboleda, A. A. (2019). Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2019STRAD009
Chicago Manual of Style (16th Edition):
Vera Arboleda, Anderson Arley. “Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.” 2019. Doctoral Dissertation, Université de Strasbourg. Accessed March 08, 2021. http://www.theses.fr/2019STRAD009.
MLA Handbook (7th Edition):
Vera Arboleda, Anderson Arley. “Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.” 2019. Web. 08 Mar 2021.
Vancouver:
Vera Arboleda AA. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2019. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2019STRAD009.
Council of Science Editors:
Vera Arboleda AA. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. [Doctoral Dissertation]. Université de Strasbourg; 2019. Available from: http://www.theses.fr/2019STRAD009
26. Cumplido Cabello, María. Sous-groupes paraboliques et généricité dans les groupes d'Artin-Tits de type sphérique : Parabolic subgroups and genericity in Artin-Tits groups of spherical type.
Degree: Docteur es, Mathématiques et leurs interactions, 2018, Rennes 1; Universidad de Sevilla (Espagne)
URL: http://www.theses.fr/2018REN1S022
Subjects/Keywords: Algèbre; Topologie; Groupes d'Artin; Groupe modulaire; Groupe de tresses; Théorie de Garside; Sous-Groupes paraboliques; Actions de groupes; Complexe de courbes; Algebra; Topology; Artin groups; Mapping class groups; Braid theory; Garside theory; Parabolic subgroups; Group actions; Curve complex
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Cumplido Cabello, M. (2018). Sous-groupes paraboliques et généricité dans les groupes d'Artin-Tits de type sphérique : Parabolic subgroups and genericity in Artin-Tits groups of spherical type. (Doctoral Dissertation). Rennes 1; Universidad de Sevilla (Espagne). Retrieved from http://www.theses.fr/2018REN1S022
Chicago Manual of Style (16th Edition):
Cumplido Cabello, María. “Sous-groupes paraboliques et généricité dans les groupes d'Artin-Tits de type sphérique : Parabolic subgroups and genericity in Artin-Tits groups of spherical type.” 2018. Doctoral Dissertation, Rennes 1; Universidad de Sevilla (Espagne). Accessed March 08, 2021. http://www.theses.fr/2018REN1S022.
MLA Handbook (7th Edition):
Cumplido Cabello, María. “Sous-groupes paraboliques et généricité dans les groupes d'Artin-Tits de type sphérique : Parabolic subgroups and genericity in Artin-Tits groups of spherical type.” 2018. Web. 08 Mar 2021.
Vancouver:
Cumplido Cabello M. Sous-groupes paraboliques et généricité dans les groupes d'Artin-Tits de type sphérique : Parabolic subgroups and genericity in Artin-Tits groups of spherical type. [Internet] [Doctoral dissertation]. Rennes 1; Universidad de Sevilla (Espagne); 2018. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2018REN1S022.
Council of Science Editors:
Cumplido Cabello M. Sous-groupes paraboliques et généricité dans les groupes d'Artin-Tits de type sphérique : Parabolic subgroups and genericity in Artin-Tits groups of spherical type. [Doctoral Dissertation]. Rennes 1; Universidad de Sevilla (Espagne); 2018. Available from: http://www.theses.fr/2018REN1S022
27. Hernández Hernández, Jesús. Combinatorial rigidity of complexes of curves and multicurves : Identification and modeling of machining robots' dynamic behavior.
Degree: Docteur es, Mathématiques, 2016, Aix Marseille Université
URL: http://www.theses.fr/2016AIXM4707
Subjects/Keywords: Groupe modulaire; Complexe des courbes; Ensembles rigides; Expansion rigide; Application qui préserve les arêtes; Graphe de Hatcher-Thurston; Applications alternantes; Graphe des courbes qui ne sépare pas et courbes extérieures; Applications super-Injectives; Mapping class group; Curve complex; Rigid sets; Rigid expansions; Edge-Preserving maps; Hatcher-Thurston graph; Alternating maps; Nonseparating and outer curve graph; Superinjective maps
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Hernández Hernández, J. (2016). Combinatorial rigidity of complexes of curves and multicurves : Identification and modeling of machining robots' dynamic behavior. (Doctoral Dissertation). Aix Marseille Université. Retrieved from http://www.theses.fr/2016AIXM4707
Chicago Manual of Style (16th Edition):
Hernández Hernández, Jesús. “Combinatorial rigidity of complexes of curves and multicurves : Identification and modeling of machining robots' dynamic behavior.” 2016. Doctoral Dissertation, Aix Marseille Université. Accessed March 08, 2021. http://www.theses.fr/2016AIXM4707.
MLA Handbook (7th Edition):
Hernández Hernández, Jesús. “Combinatorial rigidity of complexes of curves and multicurves : Identification and modeling of machining robots' dynamic behavior.” 2016. Web. 08 Mar 2021.
Vancouver:
Hernández Hernández J. Combinatorial rigidity of complexes of curves and multicurves : Identification and modeling of machining robots' dynamic behavior. [Internet] [Doctoral dissertation]. Aix Marseille Université 2016. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2016AIXM4707.
Council of Science Editors:
Hernández Hernández J. Combinatorial rigidity of complexes of curves and multicurves : Identification and modeling of machining robots' dynamic behavior. [Doctoral Dissertation]. Aix Marseille Université 2016. Available from: http://www.theses.fr/2016AIXM4707