Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Maass forms)`

.
Showing records 1 – 8 of
8 total matches.

▼ Search Limiters

Cornell University

1.
Kara, Yasemin.
The Laplacian On Hyperbolic Riemann Surfaces And *Maass* * Forms*.

Degree: PhD, Mathematics, 2015, Cornell University

URL: http://hdl.handle.net/1813/41048

► This thesis concerns the spectral theory of the Laplacian on Riemann surfaces of finite type, with emphasis on the quotients of the upper half plane…
(more)

Subjects/Keywords: Laplacian; Rieamann surfaces; Maass forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kara, Y. (2015). The Laplacian On Hyperbolic Riemann Surfaces And Maass Forms. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/41048

Chicago Manual of Style (16^{th} Edition):

Kara, Yasemin. “The Laplacian On Hyperbolic Riemann Surfaces And Maass Forms.” 2015. Doctoral Dissertation, Cornell University. Accessed January 18, 2021. http://hdl.handle.net/1813/41048.

MLA Handbook (7^{th} Edition):

Kara, Yasemin. “The Laplacian On Hyperbolic Riemann Surfaces And Maass Forms.” 2015. Web. 18 Jan 2021.

Vancouver:

Kara Y. The Laplacian On Hyperbolic Riemann Surfaces And Maass Forms. [Internet] [Doctoral dissertation]. Cornell University; 2015. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/1813/41048.

Council of Science Editors:

Kara Y. The Laplacian On Hyperbolic Riemann Surfaces And Maass Forms. [Doctoral Dissertation]. Cornell University; 2015. Available from: http://hdl.handle.net/1813/41048

University of Oklahoma

2.
Wagh, Siddhesh.
* MAASS* SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.

Degree: PhD, 2019, University of Oklahoma

URL: http://hdl.handle.net/11244/321131

► Muto, Narita and Pitale construct counterexamples to the Generalized Ramanujan Conjecture for GL(2,B) over the division quaternion algebra B with discriminant two via a lift…
(more)

Subjects/Keywords: Number Theory; Automorphic forms; Representation Theory; Maass forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wagh, S. (2019). MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/321131

Chicago Manual of Style (16^{th} Edition):

Wagh, Siddhesh. “MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.” 2019. Doctoral Dissertation, University of Oklahoma. Accessed January 18, 2021. http://hdl.handle.net/11244/321131.

MLA Handbook (7^{th} Edition):

Wagh, Siddhesh. “MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.” 2019. Web. 18 Jan 2021.

Vancouver:

Wagh S. MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. [Internet] [Doctoral dissertation]. University of Oklahoma; 2019. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/11244/321131.

Council of Science Editors:

Wagh S. MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. [Doctoral Dissertation]. University of Oklahoma; 2019. Available from: http://hdl.handle.net/11244/321131

The Ohio State University

3. Lin, Yongxiao. Subconvex bounds for twists of GL(3) L-functions.

Degree: PhD, Mathematics, 2018, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu152416635614617

► Let π be a fixed Hecke – *Maass* cusp form for SL(3,Z). Let χ be a primitive Dirichlet character modulo M which we assume to be…
(more)

Subjects/Keywords: Mathematics; L-functions; subconvexity; Hecke – Maass cusp forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lin, Y. (2018). Subconvex bounds for twists of GL(3) L-functions. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu152416635614617

Chicago Manual of Style (16^{th} Edition):

Lin, Yongxiao. “Subconvex bounds for twists of GL(3) L-functions.” 2018. Doctoral Dissertation, The Ohio State University. Accessed January 18, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu152416635614617.

MLA Handbook (7^{th} Edition):

Lin, Yongxiao. “Subconvex bounds for twists of GL(3) L-functions.” 2018. Web. 18 Jan 2021.

Vancouver:

Lin Y. Subconvex bounds for twists of GL(3) L-functions. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2021 Jan 18]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu152416635614617.

Council of Science Editors:

Lin Y. Subconvex bounds for twists of GL(3) L-functions. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu152416635614617

Brigham Young University

4. Molnar, Grant Steven. The Arithmetic of Modular Grids.

Degree: MS, 2018, Brigham Young University

URL: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7990&context=etd

► Let <em>M_{k}^{(∞)}</em> (Gamma, nu) denote the space of weight k weakly holomorphic weight modular *forms* with poles only at the cusp (∞), and let widehat…
(more)

Subjects/Keywords: weakly holomorphic modular forms; harmonic Maass forms; Zagier duality; Bruinier-Funke pairing; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Molnar, G. S. (2018). The Arithmetic of Modular Grids. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7990&context=etd

Chicago Manual of Style (16^{th} Edition):

Molnar, Grant Steven. “The Arithmetic of Modular Grids.” 2018. Masters Thesis, Brigham Young University. Accessed January 18, 2021. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7990&context=etd.

MLA Handbook (7^{th} Edition):

Molnar, Grant Steven. “The Arithmetic of Modular Grids.” 2018. Web. 18 Jan 2021.

Vancouver:

Molnar GS. The Arithmetic of Modular Grids. [Internet] [Masters thesis]. Brigham Young University; 2018. [cited 2021 Jan 18]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7990&context=etd.

Council of Science Editors:

Molnar GS. The Arithmetic of Modular Grids. [Masters Thesis]. Brigham Young University; 2018. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7990&context=etd

5.
Dijk, D.J. van.
*Maass**forms* and Fourrier decomposition.

Degree: 2014, Universiteit Utrecht

URL: http://dspace.library.uu.nl:8080/handle/1874/298981

► We develop a theory of Fourier analysis along closed geodesics of *Maass* automorphic *forms*. *Maass* automorphic *forms* are (skew-)invariant functions with respect to a Fuchsian…
(more)

Subjects/Keywords: Maass forms; Fourrier decomposition; SL2R; automorphic forms

…From the above relations it follows that the *Maass* operators shift the weight of *Maass*… …automorphic
*forms* by 2:
±
Ek
:A s,k (Γ\H, χ) → A s,k±2 (Γ\H, χ),
±
Ek… …x29;
We can now define the space of automorphic *forms* A s,k (Γ\G, χ) on the… …anti-)holomorphic *forms* cannot be eigenfunctions of h∗ , as h∗ sends holomorphic… …φ}.
(33)
Note that (anti-)holomorphic *forms* have spectral…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dijk, D. J. v. (2014). Maass forms and Fourrier decomposition. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/298981

Chicago Manual of Style (16^{th} Edition):

Dijk, D J van. “Maass forms and Fourrier decomposition.” 2014. Masters Thesis, Universiteit Utrecht. Accessed January 18, 2021. http://dspace.library.uu.nl:8080/handle/1874/298981.

MLA Handbook (7^{th} Edition):

Dijk, D J van. “Maass forms and Fourrier decomposition.” 2014. Web. 18 Jan 2021.

Vancouver:

Dijk DJv. Maass forms and Fourrier decomposition. [Internet] [Masters thesis]. Universiteit Utrecht; 2014. [cited 2021 Jan 18]. Available from: http://dspace.library.uu.nl:8080/handle/1874/298981.

Council of Science Editors:

Dijk DJv. Maass forms and Fourrier decomposition. [Masters Thesis]. Universiteit Utrecht; 2014. Available from: http://dspace.library.uu.nl:8080/handle/1874/298981

The Ohio State University

6.
Zhao, Peng.
Quantum Variance of *Maass*-Hecke Cusp * Forms*.

Degree: PhD, Mathematics, 2009, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1243916906

► In this thesis we study quantum variance for the modular surface X. This is an important problem in mathematical physics and number theory concerning…
(more)

Subjects/Keywords: Mathematics; quantum variance; Maass-Hecke cusp forms; Kuznetsov formula

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhao, P. (2009). Quantum Variance of Maass-Hecke Cusp Forms. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1243916906

Chicago Manual of Style (16^{th} Edition):

Zhao, Peng. “Quantum Variance of Maass-Hecke Cusp Forms.” 2009. Doctoral Dissertation, The Ohio State University. Accessed January 18, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1243916906.

MLA Handbook (7^{th} Edition):

Zhao, Peng. “Quantum Variance of Maass-Hecke Cusp Forms.” 2009. Web. 18 Jan 2021.

Vancouver:

Zhao P. Quantum Variance of Maass-Hecke Cusp Forms. [Internet] [Doctoral dissertation]. The Ohio State University; 2009. [cited 2021 Jan 18]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1243916906.

Council of Science Editors:

Zhao P. Quantum Variance of Maass-Hecke Cusp Forms. [Doctoral Dissertation]. The Ohio State University; 2009. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1243916906

7.
Nowland, Kevin John.
Properties of SU(2, 1) Hecke-*Maass* cusp *forms* and Eisenstein
series.

Degree: PhD, Mathematics, 2018, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1543417235410827

► We calculate the L-function for Hecke-*Maass* cusp *forms* on SU (2, 1) by calculating a Shimura integral. Toward this end, we provide a new version…
(more)

Subjects/Keywords: Mathematics; analytic number theory; unitary groups; Eisenstein series; Hecke-Maass forms; Maass forms; cusp forms; functional equation

…Hecke-*Maass* cusp *forms* . . . . . . . . . . . . . . . . 119
5.1
5.2
5.3
5.4
Weil… …this dissertation are the Hecke-*Maass* cusp *forms* and
Eisenstein series associated to the… …Eisenstein series and L-functions for Hecke-*Maass* *forms*.
1
1.1
Group structure
Let
0 0… …coefficients
3.3.3 Even and odd *forms* . . . . . . . . . . .
3.3.4 Main result… …30] for holomorphic *forms*. Along the way we
re-develop the necessary Hecke and…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nowland, K. J. (2018). Properties of SU(2, 1) Hecke-Maass cusp forms and Eisenstein series. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1543417235410827

Chicago Manual of Style (16^{th} Edition):

Nowland, Kevin John. “Properties of SU(2, 1) Hecke-Maass cusp forms and Eisenstein series.” 2018. Doctoral Dissertation, The Ohio State University. Accessed January 18, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543417235410827.

MLA Handbook (7^{th} Edition):

Nowland, Kevin John. “Properties of SU(2, 1) Hecke-Maass cusp forms and Eisenstein series.” 2018. Web. 18 Jan 2021.

Vancouver:

Nowland KJ. Properties of SU(2, 1) Hecke-Maass cusp forms and Eisenstein series. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2021 Jan 18]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1543417235410827.

Council of Science Editors:

Nowland KJ. Properties of SU(2, 1) Hecke-Maass cusp forms and Eisenstein series. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1543417235410827

8.
Savala, Paul.
Computing spectral data for *Maass* cusp *forms* using resonance.

Degree: PhD, Mathematics, 2016, University of Iowa

URL: https://ir.uiowa.edu/etd/3182

► The primary arithmetic information attached to a *Maass* cusp form is its Laplace eigenvalue. However, in the case of cuspidal *Maass* *forms*, the range…
(more)

Subjects/Keywords: publicabstract; automorphic forms; laplace eigenvalue; maass forms; number theory; resonance; Mathematics

…*Maass* *Forms* . . . . . . . . . . . . . . . . . . . . . .
1.3.1 The Spectrum of the Laplacian… …*Maass* Cusp *Forms* for SL(n,Z)… …modular *forms*, and the nonholomorphic
*Maass* *forms*.
Holomorphic modular *forms* are well understood… …Chapter 7.
1.3
*Maass* *Forms*
As their name suggests, *Maass* *forms* were first considered by Hans… …*Maass* in
1949 in [Maa49]. Unlike holomorphic *forms*, *Maass* *forms* are not well…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Savala, P. (2016). Computing spectral data for Maass cusp forms using resonance. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/3182

Chicago Manual of Style (16^{th} Edition):

Savala, Paul. “Computing spectral data for Maass cusp forms using resonance.” 2016. Doctoral Dissertation, University of Iowa. Accessed January 18, 2021. https://ir.uiowa.edu/etd/3182.

MLA Handbook (7^{th} Edition):

Savala, Paul. “Computing spectral data for Maass cusp forms using resonance.” 2016. Web. 18 Jan 2021.

Vancouver:

Savala P. Computing spectral data for Maass cusp forms using resonance. [Internet] [Doctoral dissertation]. University of Iowa; 2016. [cited 2021 Jan 18]. Available from: https://ir.uiowa.edu/etd/3182.

Council of Science Editors:

Savala P. Computing spectral data for Maass cusp forms using resonance. [Doctoral Dissertation]. University of Iowa; 2016. Available from: https://ir.uiowa.edu/etd/3182