Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(MULTIVARIATE POLYNOMIALS ALGEBRA ). Showing records 1 – 30 of 6518 total matches.

[1] [2] [3] [4] [5] … [218]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Languages

Country

▼ Search Limiters


University of Texas – Austin

1. Garza, John Matthew, 1975-. The height in terms of the normalizer of a stabilizer.

Degree: PhD, Mathematics, 2008, University of Texas – Austin

 This dissertation is about the Weil height of algebraic numbers and the Mahler measure of polynomials in one variable. We investigate connections between the normalizer… (more)

Subjects/Keywords: Algebra; Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Garza, John Matthew, 1. (2008). The height in terms of the normalizer of a stabilizer. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/3846

Chicago Manual of Style (16th Edition):

Garza, John Matthew, 1975-. “The height in terms of the normalizer of a stabilizer.” 2008. Doctoral Dissertation, University of Texas – Austin. Accessed October 27, 2020. http://hdl.handle.net/2152/3846.

MLA Handbook (7th Edition):

Garza, John Matthew, 1975-. “The height in terms of the normalizer of a stabilizer.” 2008. Web. 27 Oct 2020.

Vancouver:

Garza, John Matthew 1. The height in terms of the normalizer of a stabilizer. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2008. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/2152/3846.

Council of Science Editors:

Garza, John Matthew 1. The height in terms of the normalizer of a stabilizer. [Doctoral Dissertation]. University of Texas – Austin; 2008. Available from: http://hdl.handle.net/2152/3846


Delft University of Technology

2. van den Boom, Eddo (author). Binomial formulas for Macdonald polynomials.

Degree: 2019, Delft University of Technology

Symmetric and nonsymmetric Macdonald polynomials associated to root systems are very general families of orthogonal polynomials in multiple variables. Their definition is quite complex, but… (more)

Subjects/Keywords: Macdonald polynomials; Binomial formula; Interpolation polynomials; Affine Hecke algebra; Koornwinder polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

van den Boom, E. (. (2019). Binomial formulas for Macdonald polynomials. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:d37bd300-1338-4555-8709-4042f456a19e

Chicago Manual of Style (16th Edition):

van den Boom, Eddo (author). “Binomial formulas for Macdonald polynomials.” 2019. Masters Thesis, Delft University of Technology. Accessed October 27, 2020. http://resolver.tudelft.nl/uuid:d37bd300-1338-4555-8709-4042f456a19e.

MLA Handbook (7th Edition):

van den Boom, Eddo (author). “Binomial formulas for Macdonald polynomials.” 2019. Web. 27 Oct 2020.

Vancouver:

van den Boom E(. Binomial formulas for Macdonald polynomials. [Internet] [Masters thesis]. Delft University of Technology; 2019. [cited 2020 Oct 27]. Available from: http://resolver.tudelft.nl/uuid:d37bd300-1338-4555-8709-4042f456a19e.

Council of Science Editors:

van den Boom E(. Binomial formulas for Macdonald polynomials. [Masters Thesis]. Delft University of Technology; 2019. Available from: http://resolver.tudelft.nl/uuid:d37bd300-1338-4555-8709-4042f456a19e


Universidade Estadual de Campinas

3. Marcelo Fidelis. Identidades polinomiais em algebras T-primas.

Degree: Instituto de Matematica, Estatistica e Computação Cientifica, 2005, Universidade Estadual de Campinas

In this work we study tensor products of T-prime T-ideals over infinite fields. The behaviour of these tensor products over a field of characteristic zero… (more)

Subjects/Keywords: Polinomios; Polynomials; Aneis (Algebra); Noncommutative algebra; Rings (Algebra); Algebra não-comutativa

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fidelis, M. (2005). Identidades polinomiais em algebras T-primas. (Thesis). Universidade Estadual de Campinas. Retrieved from http://libdigi.unicamp.br/document/?code=vtls000348409

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Fidelis, Marcelo. “Identidades polinomiais em algebras T-primas.” 2005. Thesis, Universidade Estadual de Campinas. Accessed October 27, 2020. http://libdigi.unicamp.br/document/?code=vtls000348409.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Fidelis, Marcelo. “Identidades polinomiais em algebras T-primas.” 2005. Web. 27 Oct 2020.

Vancouver:

Fidelis M. Identidades polinomiais em algebras T-primas. [Internet] [Thesis]. Universidade Estadual de Campinas; 2005. [cited 2020 Oct 27]. Available from: http://libdigi.unicamp.br/document/?code=vtls000348409.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fidelis M. Identidades polinomiais em algebras T-primas. [Thesis]. Universidade Estadual de Campinas; 2005. Available from: http://libdigi.unicamp.br/document/?code=vtls000348409

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Delaware

4. Castillo, Chris. A method for constructing groups of permutation polynomials and its application to projective geometry.

Degree: PhD, University of Delaware, Department of Mathematical Sciences, 2015, University of Delaware

 This dissertation presents original work on permutation polynomials over finite fields. From a consideration of the proof of Cayley's theorem, it is clear that any… (more)

Subjects/Keywords: Permutations.; Polynomials.; Finite fields (Algebra); Cayley algebras.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Castillo, C. (2015). A method for constructing groups of permutation polynomials and its application to projective geometry. (Doctoral Dissertation). University of Delaware. Retrieved from http://udspace.udel.edu/handle/19716/17430

Chicago Manual of Style (16th Edition):

Castillo, Chris. “A method for constructing groups of permutation polynomials and its application to projective geometry.” 2015. Doctoral Dissertation, University of Delaware. Accessed October 27, 2020. http://udspace.udel.edu/handle/19716/17430.

MLA Handbook (7th Edition):

Castillo, Chris. “A method for constructing groups of permutation polynomials and its application to projective geometry.” 2015. Web. 27 Oct 2020.

Vancouver:

Castillo C. A method for constructing groups of permutation polynomials and its application to projective geometry. [Internet] [Doctoral dissertation]. University of Delaware; 2015. [cited 2020 Oct 27]. Available from: http://udspace.udel.edu/handle/19716/17430.

Council of Science Editors:

Castillo C. A method for constructing groups of permutation polynomials and its application to projective geometry. [Doctoral Dissertation]. University of Delaware; 2015. Available from: http://udspace.udel.edu/handle/19716/17430


Colorado State University

5. Hodges, Tim. Computing syzygies of homogeneous polynomials using linear algebra.

Degree: MS(M.S.), Mathematics, 2014, Colorado State University

 Given a ideal generated by polynomials ƒ1,...,ƒn in polynomial ring of m variables a syzygy is an n-tuple α1,.., αn, & αi in our polynomial… (more)

Subjects/Keywords: algebraic geometry; syzygy; linear algebra; homogenous polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hodges, T. (2014). Computing syzygies of homogeneous polynomials using linear algebra. (Masters Thesis). Colorado State University. Retrieved from http://hdl.handle.net/10217/82554

Chicago Manual of Style (16th Edition):

Hodges, Tim. “Computing syzygies of homogeneous polynomials using linear algebra.” 2014. Masters Thesis, Colorado State University. Accessed October 27, 2020. http://hdl.handle.net/10217/82554.

MLA Handbook (7th Edition):

Hodges, Tim. “Computing syzygies of homogeneous polynomials using linear algebra.” 2014. Web. 27 Oct 2020.

Vancouver:

Hodges T. Computing syzygies of homogeneous polynomials using linear algebra. [Internet] [Masters thesis]. Colorado State University; 2014. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/10217/82554.

Council of Science Editors:

Hodges T. Computing syzygies of homogeneous polynomials using linear algebra. [Masters Thesis]. Colorado State University; 2014. Available from: http://hdl.handle.net/10217/82554


Kent State University

6. Almutairi, Najat Bandar. ON MULTILINEAR POLYNOMIALS EVALUATED ON QUATERNION ALGEBRA.

Degree: MS, College of Arts and Sciences / Department of Mathematical Science, 2016, Kent State University

The purpose of this thesis is to describe the image of quaternion algebra under multilinearpolynomials. In it, we provide a proof that the image of multilinear non-centralpolynomials contains ai + bj + ck for all real numbers a, b and c. Advisors/Committee Members: Chebotar, Mikhail (Advisor).

Subjects/Keywords: Mathematics; quaternion algebra; multilinear polynomials; image of multilinear polynomials; central polynomial

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Almutairi, N. B. (2016). ON MULTILINEAR POLYNOMIALS EVALUATED ON QUATERNION ALGEBRA. (Masters Thesis). Kent State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=kent1454279474

Chicago Manual of Style (16th Edition):

Almutairi, Najat Bandar. “ON MULTILINEAR POLYNOMIALS EVALUATED ON QUATERNION ALGEBRA.” 2016. Masters Thesis, Kent State University. Accessed October 27, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1454279474.

MLA Handbook (7th Edition):

Almutairi, Najat Bandar. “ON MULTILINEAR POLYNOMIALS EVALUATED ON QUATERNION ALGEBRA.” 2016. Web. 27 Oct 2020.

Vancouver:

Almutairi NB. ON MULTILINEAR POLYNOMIALS EVALUATED ON QUATERNION ALGEBRA. [Internet] [Masters thesis]. Kent State University; 2016. [cited 2020 Oct 27]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=kent1454279474.

Council of Science Editors:

Almutairi NB. ON MULTILINEAR POLYNOMIALS EVALUATED ON QUATERNION ALGEBRA. [Masters Thesis]. Kent State University; 2016. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=kent1454279474


California State University – San Bernardino

7. Lac, Jacquelyn Ha. Chinese remainder theorem and its applications.

Degree: MAin Mathematics, Mathematics, 2008, California State University – San Bernardino

Subjects/Keywords: Algebra; Polynomials; Coding theory; Algebra; Coding theory; Polynomials.; Algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lac, J. H. (2008). Chinese remainder theorem and its applications. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd-project/3373

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lac, Jacquelyn Ha. “Chinese remainder theorem and its applications.” 2008. Thesis, California State University – San Bernardino. Accessed October 27, 2020. https://scholarworks.lib.csusb.edu/etd-project/3373.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lac, Jacquelyn Ha. “Chinese remainder theorem and its applications.” 2008. Web. 27 Oct 2020.

Vancouver:

Lac JH. Chinese remainder theorem and its applications. [Internet] [Thesis]. California State University – San Bernardino; 2008. [cited 2020 Oct 27]. Available from: https://scholarworks.lib.csusb.edu/etd-project/3373.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lac JH. Chinese remainder theorem and its applications. [Thesis]. California State University – San Bernardino; 2008. Available from: https://scholarworks.lib.csusb.edu/etd-project/3373

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

8. Guha, Ashwin. An Algorithmic Characterization Of Polynomial Functions Over Zpn.

Degree: MSc Engg, Faculty of Engineering, 2014, Indian Institute of Science

 The problem of polynomial representability of functions is central to many branches of mathematics. If the underlying set is a finite field, every function can… (more)

Subjects/Keywords: Polynomial Functions; Polynomials Over Finite Fields; Polynomials Over Finite Rings; Polynomial Representability; Polynomial Functions - Algorithms; Polynomials; Functional Polynomial Equations; Zpn; Algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guha, A. (2014). An Algorithmic Characterization Of Polynomial Functions Over Zpn. (Masters Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2337

Chicago Manual of Style (16th Edition):

Guha, Ashwin. “An Algorithmic Characterization Of Polynomial Functions Over Zpn.” 2014. Masters Thesis, Indian Institute of Science. Accessed October 27, 2020. http://etd.iisc.ac.in/handle/2005/2337.

MLA Handbook (7th Edition):

Guha, Ashwin. “An Algorithmic Characterization Of Polynomial Functions Over Zpn.” 2014. Web. 27 Oct 2020.

Vancouver:

Guha A. An Algorithmic Characterization Of Polynomial Functions Over Zpn. [Internet] [Masters thesis]. Indian Institute of Science; 2014. [cited 2020 Oct 27]. Available from: http://etd.iisc.ac.in/handle/2005/2337.

Council of Science Editors:

Guha A. An Algorithmic Characterization Of Polynomial Functions Over Zpn. [Masters Thesis]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ac.in/handle/2005/2337


The Ohio State University

9. Guan, Puhua. Factorization of multivariate polynomials.

Degree: PhD, Graduate School, 1985, The Ohio State University

Subjects/Keywords: Mathematics; Polynomials; Multivariate analysis; Factorization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guan, P. (1985). Factorization of multivariate polynomials. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1487263399023278

Chicago Manual of Style (16th Edition):

Guan, Puhua. “Factorization of multivariate polynomials.” 1985. Doctoral Dissertation, The Ohio State University. Accessed October 27, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487263399023278.

MLA Handbook (7th Edition):

Guan, Puhua. “Factorization of multivariate polynomials.” 1985. Web. 27 Oct 2020.

Vancouver:

Guan P. Factorization of multivariate polynomials. [Internet] [Doctoral dissertation]. The Ohio State University; 1985. [cited 2020 Oct 27]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487263399023278.

Council of Science Editors:

Guan P. Factorization of multivariate polynomials. [Doctoral Dissertation]. The Ohio State University; 1985. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487263399023278


Florida Atlantic University

10. Villanueva, Yuri. Rings of integer-valued polynomials and derivatives.

Degree: PhD, 2012, Florida Atlantic University

Summary: For D an integral domain with field of fractions K and E a subset of K, the ring Int (E,D) = {f e K[X]lf… (more)

Subjects/Keywords: Rings of integers; Ideals (Algebra); Polynomials; Arithmetic algebraic geometry; Categories (Mathematics); Commutative algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Villanueva, Y. (2012). Rings of integer-valued polynomials and derivatives. (Doctoral Dissertation). Florida Atlantic University. Retrieved from http://purl.flvc.org/FAU/3356899

Chicago Manual of Style (16th Edition):

Villanueva, Yuri. “Rings of integer-valued polynomials and derivatives.” 2012. Doctoral Dissertation, Florida Atlantic University. Accessed October 27, 2020. http://purl.flvc.org/FAU/3356899.

MLA Handbook (7th Edition):

Villanueva, Yuri. “Rings of integer-valued polynomials and derivatives.” 2012. Web. 27 Oct 2020.

Vancouver:

Villanueva Y. Rings of integer-valued polynomials and derivatives. [Internet] [Doctoral dissertation]. Florida Atlantic University; 2012. [cited 2020 Oct 27]. Available from: http://purl.flvc.org/FAU/3356899.

Council of Science Editors:

Villanueva Y. Rings of integer-valued polynomials and derivatives. [Doctoral Dissertation]. Florida Atlantic University; 2012. Available from: http://purl.flvc.org/FAU/3356899


University of Georgia

11. Tian, Chen. An exploration of connections between high school algebra and abstract algebra.

Degree: 2014, University of Georgia

 This thesis illuminates some connections between high school algebra and abstract algebra. The concepts of function (e.g., homomorphism and 1-1 correspondence) and algebraic structure (e.g.,… (more)

Subjects/Keywords: high school algebra; abstract algebra; connections; algebraic structure; isomorphism; the real numbers; polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tian, C. (2014). An exploration of connections between high school algebra and abstract algebra. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/26516

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Tian, Chen. “An exploration of connections between high school algebra and abstract algebra.” 2014. Thesis, University of Georgia. Accessed October 27, 2020. http://hdl.handle.net/10724/26516.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Tian, Chen. “An exploration of connections between high school algebra and abstract algebra.” 2014. Web. 27 Oct 2020.

Vancouver:

Tian C. An exploration of connections between high school algebra and abstract algebra. [Internet] [Thesis]. University of Georgia; 2014. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/10724/26516.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Tian C. An exploration of connections between high school algebra and abstract algebra. [Thesis]. University of Georgia; 2014. Available from: http://hdl.handle.net/10724/26516

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Delaware

12. Kodess, Aleksandr. Properties of some algebraically defined digraphs.

Degree: PhD, University of Delaware, Department of Mathematics, 2014, University of Delaware

This thesis is concerned with the study of a family of digraphs defined by systems of polynomial equations over finite fields. We explore the connectivity and diameter of some special classes of these digraphs, along with the structure of their isomorphism classes. Advisors/Committee Members: Lazebnik, Felix.

Subjects/Keywords: Directed graphs.; Polynomials.; Finite fields (Algebra); Isomorphisms (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kodess, A. (2014). Properties of some algebraically defined digraphs. (Doctoral Dissertation). University of Delaware. Retrieved from http://udspace.udel.edu/handle/19716/16756

Chicago Manual of Style (16th Edition):

Kodess, Aleksandr. “Properties of some algebraically defined digraphs.” 2014. Doctoral Dissertation, University of Delaware. Accessed October 27, 2020. http://udspace.udel.edu/handle/19716/16756.

MLA Handbook (7th Edition):

Kodess, Aleksandr. “Properties of some algebraically defined digraphs.” 2014. Web. 27 Oct 2020.

Vancouver:

Kodess A. Properties of some algebraically defined digraphs. [Internet] [Doctoral dissertation]. University of Delaware; 2014. [cited 2020 Oct 27]. Available from: http://udspace.udel.edu/handle/19716/16756.

Council of Science Editors:

Kodess A. Properties of some algebraically defined digraphs. [Doctoral Dissertation]. University of Delaware; 2014. Available from: http://udspace.udel.edu/handle/19716/16756


University of Arizona

13. GOMEZ-CALDERON, JAVIER. POLYNOMIALS WITH SMALL VALUE SET OVER FINITE FIELDS.

Degree: 1986, University of Arizona

 Let K(q) be the finite field with q elements and characteristic p. Let f(x) be a monic polynomial of degree d with coefficients in K(q).… (more)

Subjects/Keywords: Polynomials.; Finite fields (Algebra)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

GOMEZ-CALDERON, J. (1986). POLYNOMIALS WITH SMALL VALUE SET OVER FINITE FIELDS. (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/183933

Chicago Manual of Style (16th Edition):

GOMEZ-CALDERON, JAVIER. “POLYNOMIALS WITH SMALL VALUE SET OVER FINITE FIELDS. ” 1986. Doctoral Dissertation, University of Arizona. Accessed October 27, 2020. http://hdl.handle.net/10150/183933.

MLA Handbook (7th Edition):

GOMEZ-CALDERON, JAVIER. “POLYNOMIALS WITH SMALL VALUE SET OVER FINITE FIELDS. ” 1986. Web. 27 Oct 2020.

Vancouver:

GOMEZ-CALDERON J. POLYNOMIALS WITH SMALL VALUE SET OVER FINITE FIELDS. [Internet] [Doctoral dissertation]. University of Arizona; 1986. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/10150/183933.

Council of Science Editors:

GOMEZ-CALDERON J. POLYNOMIALS WITH SMALL VALUE SET OVER FINITE FIELDS. [Doctoral Dissertation]. University of Arizona; 1986. Available from: http://hdl.handle.net/10150/183933


University of Waterloo

14. Roche, Daniel Steven. Efficient Computation with Sparse and Dense Polynomials.

Degree: 2011, University of Waterloo

 Computations with polynomials are at the heart of any computer algebra system and also have many applications in engineering, coding theory, and cryptography. Generally speaking,… (more)

Subjects/Keywords: computer algebra; symbolic computation; polynomials; multiplication; interpolation; perfect powers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roche, D. S. (2011). Efficient Computation with Sparse and Dense Polynomials. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/5869

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Roche, Daniel Steven. “Efficient Computation with Sparse and Dense Polynomials.” 2011. Thesis, University of Waterloo. Accessed October 27, 2020. http://hdl.handle.net/10012/5869.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Roche, Daniel Steven. “Efficient Computation with Sparse and Dense Polynomials.” 2011. Web. 27 Oct 2020.

Vancouver:

Roche DS. Efficient Computation with Sparse and Dense Polynomials. [Internet] [Thesis]. University of Waterloo; 2011. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/10012/5869.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Roche DS. Efficient Computation with Sparse and Dense Polynomials. [Thesis]. University of Waterloo; 2011. Available from: http://hdl.handle.net/10012/5869

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

15. Wentling, Tristen Kirk. A Cycle Generating Function On Finite Local Rings.

Degree: MSin Mathematics, Mathematics, 2016, Missouri State University

 We say a function generates a cycle if its output returns the initial value for some number of successive applications of . In this thesis,… (more)

Subjects/Keywords: local rings; polynomials; graph theory; primes; abstract algebra; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wentling, T. K. (2016). A Cycle Generating Function On Finite Local Rings. (Masters Thesis). Missouri State University. Retrieved from https://bearworks.missouristate.edu/theses/1660

Chicago Manual of Style (16th Edition):

Wentling, Tristen Kirk. “A Cycle Generating Function On Finite Local Rings.” 2016. Masters Thesis, Missouri State University. Accessed October 27, 2020. https://bearworks.missouristate.edu/theses/1660.

MLA Handbook (7th Edition):

Wentling, Tristen Kirk. “A Cycle Generating Function On Finite Local Rings.” 2016. Web. 27 Oct 2020.

Vancouver:

Wentling TK. A Cycle Generating Function On Finite Local Rings. [Internet] [Masters thesis]. Missouri State University; 2016. [cited 2020 Oct 27]. Available from: https://bearworks.missouristate.edu/theses/1660.

Council of Science Editors:

Wentling TK. A Cycle Generating Function On Finite Local Rings. [Masters Thesis]. Missouri State University; 2016. Available from: https://bearworks.missouristate.edu/theses/1660


University of Texas – Austin

16. Fukshansky, Leonid Eugene. Algebraic points of small height with additional arithmetic conditions.

Degree: PhD, Mathematics, 2004, University of Texas – Austin

Subjects/Keywords: Algebra; Forms, Quadratic; Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fukshansky, L. E. (2004). Algebraic points of small height with additional arithmetic conditions. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/1150

Chicago Manual of Style (16th Edition):

Fukshansky, Leonid Eugene. “Algebraic points of small height with additional arithmetic conditions.” 2004. Doctoral Dissertation, University of Texas – Austin. Accessed October 27, 2020. http://hdl.handle.net/2152/1150.

MLA Handbook (7th Edition):

Fukshansky, Leonid Eugene. “Algebraic points of small height with additional arithmetic conditions.” 2004. Web. 27 Oct 2020.

Vancouver:

Fukshansky LE. Algebraic points of small height with additional arithmetic conditions. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2004. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/2152/1150.

Council of Science Editors:

Fukshansky LE. Algebraic points of small height with additional arithmetic conditions. [Doctoral Dissertation]. University of Texas – Austin; 2004. Available from: http://hdl.handle.net/2152/1150


ETH Zürich

17. Rostalski, Philipp. Algebraic moments: real root finding and related topics.

Degree: 2009, ETH Zürich

Subjects/Keywords: POLYNOME MEHRERER VERÄNDERLICHER (ALGEBRA); NULLSTELLEN VON POLYNOMEN (NUMERISCHE MATHEMATIK); IDEALE UND RADIKALE IN ASSOZIATIVEN RINGEN (ALGEBRA); GRÖBNERBASEN (ALGEBRA); COMPUTERALGEBRA + SYMBOLISCHE BERECHNUNG; NUMERISCHE METHODEN IN DER ALGEBRA (NUMERISCHE MATHEMATIK); MULTIVARIATE POLYNOMIALS (ALGEBRA); ZEROS OF POLYNOMIALS (NUMERICAL MATHEMATICS); IDEALS AND RADICALS IN ASSOCIATIVE RINGS (ALGEBRA); GRÖBNER BASES (ALGEBRA); COMPUTER ALGEBRA + SYMBOLIC COMPUTATION; NUMERICAL METHODS IN ALGEBRA (NUMERICAL MATHEMATICS); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rostalski, P. (2009). Algebraic moments: real root finding and related topics. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/151304

Chicago Manual of Style (16th Edition):

Rostalski, Philipp. “Algebraic moments: real root finding and related topics.” 2009. Doctoral Dissertation, ETH Zürich. Accessed October 27, 2020. http://hdl.handle.net/20.500.11850/151304.

MLA Handbook (7th Edition):

Rostalski, Philipp. “Algebraic moments: real root finding and related topics.” 2009. Web. 27 Oct 2020.

Vancouver:

Rostalski P. Algebraic moments: real root finding and related topics. [Internet] [Doctoral dissertation]. ETH Zürich; 2009. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/20.500.11850/151304.

Council of Science Editors:

Rostalski P. Algebraic moments: real root finding and related topics. [Doctoral Dissertation]. ETH Zürich; 2009. Available from: http://hdl.handle.net/20.500.11850/151304


ETH Zürich

18. Habicht, Walter. Ueber die Lösbarkeit gewisser algebraischer Gleichungssysteme.

Degree: 1946, ETH Zürich

Subjects/Keywords: POLYNOME MEHRERER VERÄNDERLICHER (ALGEBRA); VEKTORFELDER (TOPOLOGIE DER MANNIGFALTIGKEITEN); RIEMANNSCHE MANNIGFALTIGKEITEN (TOPOLOGIE); MULTIVARIATE POLYNOMIALS (ALGEBRA); VECTOR FIELDS (TOPOLOGY OF MANIFOLDS); RIEMANNIAN MANIFOLDS (TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Habicht, W. (1946). Ueber die Lösbarkeit gewisser algebraischer Gleichungssysteme. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135305

Chicago Manual of Style (16th Edition):

Habicht, Walter. “Ueber die Lösbarkeit gewisser algebraischer Gleichungssysteme.” 1946. Doctoral Dissertation, ETH Zürich. Accessed October 27, 2020. http://hdl.handle.net/20.500.11850/135305.

MLA Handbook (7th Edition):

Habicht, Walter. “Ueber die Lösbarkeit gewisser algebraischer Gleichungssysteme.” 1946. Web. 27 Oct 2020.

Vancouver:

Habicht W. Ueber die Lösbarkeit gewisser algebraischer Gleichungssysteme. [Internet] [Doctoral dissertation]. ETH Zürich; 1946. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/20.500.11850/135305.

Council of Science Editors:

Habicht W. Ueber die Lösbarkeit gewisser algebraischer Gleichungssysteme. [Doctoral Dissertation]. ETH Zürich; 1946. Available from: http://hdl.handle.net/20.500.11850/135305


Virginia Tech

19. Valvo, Daniel William. Repairing Cartesian Codes with Linear Exact Repair Schemes.

Degree: MS, Mathematics, 2020, Virginia Tech

 Distributed storage systems are systems which store a single data file over multiple storage nodes. Each storage node has a certain storage efficiency, the "space"… (more)

Subjects/Keywords: Cartesian code; Reed-Solomon code; exact repair schemes; finite fields; distributed storage networks; multivariate polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Valvo, D. W. (2020). Repairing Cartesian Codes with Linear Exact Repair Schemes. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/98818

Chicago Manual of Style (16th Edition):

Valvo, Daniel William. “Repairing Cartesian Codes with Linear Exact Repair Schemes.” 2020. Masters Thesis, Virginia Tech. Accessed October 27, 2020. http://hdl.handle.net/10919/98818.

MLA Handbook (7th Edition):

Valvo, Daniel William. “Repairing Cartesian Codes with Linear Exact Repair Schemes.” 2020. Web. 27 Oct 2020.

Vancouver:

Valvo DW. Repairing Cartesian Codes with Linear Exact Repair Schemes. [Internet] [Masters thesis]. Virginia Tech; 2020. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/10919/98818.

Council of Science Editors:

Valvo DW. Repairing Cartesian Codes with Linear Exact Repair Schemes. [Masters Thesis]. Virginia Tech; 2020. Available from: http://hdl.handle.net/10919/98818


California State University – San Bernardino

20. Beyronneau, Robert Lewis. The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples.

Degree: MAin Mathematics, Mathematics, 2005, California State University – San Bernardino

This project centers around finding specific examples of quintic polynomials that were and were not solvable. This helped to devise a method for finding examples of solvable and unsolvable quintics.

Subjects/Keywords: Polynomials; Algebra; Galois theory; Algebraic fields; Quadratic differentials; Algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Beyronneau, R. L. (2005). The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd-project/2700

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Beyronneau, Robert Lewis. “The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples.” 2005. Thesis, California State University – San Bernardino. Accessed October 27, 2020. https://scholarworks.lib.csusb.edu/etd-project/2700.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Beyronneau, Robert Lewis. “The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples.” 2005. Web. 27 Oct 2020.

Vancouver:

Beyronneau RL. The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples. [Internet] [Thesis]. California State University – San Bernardino; 2005. [cited 2020 Oct 27]. Available from: https://scholarworks.lib.csusb.edu/etd-project/2700.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Beyronneau RL. The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples. [Thesis]. California State University – San Bernardino; 2005. Available from: https://scholarworks.lib.csusb.edu/etd-project/2700

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Washington

21. Casper, William Riley. Bispectral Operator Algebras.

Degree: PhD, 2017, University of Washington

 This dissertation is an amalgamation of various results on the structure of bispectral differential operator algebras, ie. algebras of differential operators with possibly noncommutative coefficients… (more)

Subjects/Keywords: Bispectral problem; Differential operators; Noncommutative algebra; Operator algebras; Orthogonal Polynomials; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Casper, W. R. (2017). Bispectral Operator Algebras. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/40239

Chicago Manual of Style (16th Edition):

Casper, William Riley. “Bispectral Operator Algebras.” 2017. Doctoral Dissertation, University of Washington. Accessed October 27, 2020. http://hdl.handle.net/1773/40239.

MLA Handbook (7th Edition):

Casper, William Riley. “Bispectral Operator Algebras.” 2017. Web. 27 Oct 2020.

Vancouver:

Casper WR. Bispectral Operator Algebras. [Internet] [Doctoral dissertation]. University of Washington; 2017. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/1773/40239.

Council of Science Editors:

Casper WR. Bispectral Operator Algebras. [Doctoral Dissertation]. University of Washington; 2017. Available from: http://hdl.handle.net/1773/40239


Florida Atlantic University

22. Marshall, Mario V. Polynomials that are integer valued on the image of an integer-valued polynomial.

Degree: PhD, 2009, Florida Atlantic University

Summary: Let D be an integral domain and f a polynomial that is integer-valued on D. We prove that Int(f(D);D) has the Skolem Property and… (more)

Subjects/Keywords: Polynomials; Ring of integers; Ideals (Algebra)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marshall, M. V. (2009). Polynomials that are integer valued on the image of an integer-valued polynomial. (Doctoral Dissertation). Florida Atlantic University. Retrieved from http://purl.flvc.org/FAU/216411

Chicago Manual of Style (16th Edition):

Marshall, Mario V. “Polynomials that are integer valued on the image of an integer-valued polynomial.” 2009. Doctoral Dissertation, Florida Atlantic University. Accessed October 27, 2020. http://purl.flvc.org/FAU/216411.

MLA Handbook (7th Edition):

Marshall, Mario V. “Polynomials that are integer valued on the image of an integer-valued polynomial.” 2009. Web. 27 Oct 2020.

Vancouver:

Marshall MV. Polynomials that are integer valued on the image of an integer-valued polynomial. [Internet] [Doctoral dissertation]. Florida Atlantic University; 2009. [cited 2020 Oct 27]. Available from: http://purl.flvc.org/FAU/216411.

Council of Science Editors:

Marshall MV. Polynomials that are integer valued on the image of an integer-valued polynomial. [Doctoral Dissertation]. Florida Atlantic University; 2009. Available from: http://purl.flvc.org/FAU/216411


Clemson University

23. Baumbaugh, Travis. Results on Common Left/Right Divisors of Skew Polynomials.

Degree: MS, Mathematical Science, 2016, Clemson University

 Since being introduced by Oystein Ore in his 1933 paper, “Theory of Non-Commutative Polynomials” [6], non-commutative, skew, or Ore polynomials have been studied extensively. One… (more)

Subjects/Keywords: Abstract algebra; Coding Theory; Greatest common divisor; Non-commutative; Polynomial ring; Skew Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Baumbaugh, T. (2016). Results on Common Left/Right Divisors of Skew Polynomials. (Masters Thesis). Clemson University. Retrieved from https://tigerprints.clemson.edu/all_theses/2413

Chicago Manual of Style (16th Edition):

Baumbaugh, Travis. “Results on Common Left/Right Divisors of Skew Polynomials.” 2016. Masters Thesis, Clemson University. Accessed October 27, 2020. https://tigerprints.clemson.edu/all_theses/2413.

MLA Handbook (7th Edition):

Baumbaugh, Travis. “Results on Common Left/Right Divisors of Skew Polynomials.” 2016. Web. 27 Oct 2020.

Vancouver:

Baumbaugh T. Results on Common Left/Right Divisors of Skew Polynomials. [Internet] [Masters thesis]. Clemson University; 2016. [cited 2020 Oct 27]. Available from: https://tigerprints.clemson.edu/all_theses/2413.

Council of Science Editors:

Baumbaugh T. Results on Common Left/Right Divisors of Skew Polynomials. [Masters Thesis]. Clemson University; 2016. Available from: https://tigerprints.clemson.edu/all_theses/2413


University of Cincinnati

24. Cabarcas, Daniel. Gröbner Bases Computation and Mutant Polynomials.

Degree: PhD, Arts and Sciences: Mathematical Sciences, 2011, University of Cincinnati

  Gröbner bases are the single most important tool in applicable algebraic geometry. They are used to compute standard representatives in the residue classes of… (more)

Subjects/Keywords: Mathematics; Gr&246; bner bases; Mutant polynomials; Complexity; Algorithms; Symbolic computation; Linear algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cabarcas, D. (2011). Gröbner Bases Computation and Mutant Polynomials. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300

Chicago Manual of Style (16th Edition):

Cabarcas, Daniel. “Gröbner Bases Computation and Mutant Polynomials.” 2011. Doctoral Dissertation, University of Cincinnati. Accessed October 27, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300.

MLA Handbook (7th Edition):

Cabarcas, Daniel. “Gröbner Bases Computation and Mutant Polynomials.” 2011. Web. 27 Oct 2020.

Vancouver:

Cabarcas D. Gröbner Bases Computation and Mutant Polynomials. [Internet] [Doctoral dissertation]. University of Cincinnati; 2011. [cited 2020 Oct 27]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300.

Council of Science Editors:

Cabarcas D. Gröbner Bases Computation and Mutant Polynomials. [Doctoral Dissertation]. University of Cincinnati; 2011. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300


Texas A&M University

25. Yagi, Daisuke. Theory and Application of Local Weighted Shape Constrained Estimators for Analyzing Census of Manufacturing Data.

Degree: PhD, Industrial Engineering, 2018, Texas A&M University

 Efficiency and productivity analysis focuses on firm performance to obtain firm–level and industry–level economic structural insights. This study provides the theoretical and methodological basis for… (more)

Subjects/Keywords: Productivity analysis; Production economics; Kernel estimation; Local polynomials; Multivariate convex regression; Nonparametric regression; Shape constraints; Instrumental variables

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yagi, D. (2018). Theory and Application of Local Weighted Shape Constrained Estimators for Analyzing Census of Manufacturing Data. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/174071

Chicago Manual of Style (16th Edition):

Yagi, Daisuke. “Theory and Application of Local Weighted Shape Constrained Estimators for Analyzing Census of Manufacturing Data.” 2018. Doctoral Dissertation, Texas A&M University. Accessed October 27, 2020. http://hdl.handle.net/1969.1/174071.

MLA Handbook (7th Edition):

Yagi, Daisuke. “Theory and Application of Local Weighted Shape Constrained Estimators for Analyzing Census of Manufacturing Data.” 2018. Web. 27 Oct 2020.

Vancouver:

Yagi D. Theory and Application of Local Weighted Shape Constrained Estimators for Analyzing Census of Manufacturing Data. [Internet] [Doctoral dissertation]. Texas A&M University; 2018. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/1969.1/174071.

Council of Science Editors:

Yagi D. Theory and Application of Local Weighted Shape Constrained Estimators for Analyzing Census of Manufacturing Data. [Doctoral Dissertation]. Texas A&M University; 2018. Available from: http://hdl.handle.net/1969.1/174071


University of Western Ontario

26. Ataei Jaliseh, Masoud. On the Extended Hensel Construction and its Application to the Computation of Real Limit Points.

Degree: 2017, University of Western Ontario

 The Extended Hensel Construction (EHC) is a procedure which, for an input bivariate polyno- mial with complex coefficients, can serve the same purpose as the… (more)

Subjects/Keywords: Computer Algebra; Extended Hensel Construction; Limit of a multivariate rational function; Theory and Algorithms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ataei Jaliseh, M. (2017). On the Extended Hensel Construction and its Application to the Computation of Real Limit Points. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/5127

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ataei Jaliseh, Masoud. “On the Extended Hensel Construction and its Application to the Computation of Real Limit Points.” 2017. Thesis, University of Western Ontario. Accessed October 27, 2020. https://ir.lib.uwo.ca/etd/5127.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ataei Jaliseh, Masoud. “On the Extended Hensel Construction and its Application to the Computation of Real Limit Points.” 2017. Web. 27 Oct 2020.

Vancouver:

Ataei Jaliseh M. On the Extended Hensel Construction and its Application to the Computation of Real Limit Points. [Internet] [Thesis]. University of Western Ontario; 2017. [cited 2020 Oct 27]. Available from: https://ir.lib.uwo.ca/etd/5127.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ataei Jaliseh M. On the Extended Hensel Construction and its Application to the Computation of Real Limit Points. [Thesis]. University of Western Ontario; 2017. Available from: https://ir.lib.uwo.ca/etd/5127

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of North Texas

27. Park, Hong Goo. Polynomial Isomorphisms of Cayley Objects Over a Finite Field.

Degree: 1989, University of North Texas

 In this dissertation the Bays-Lambossy theorem is generalized to GF(pn). The Bays-Lambossy theorem states that if two Cayley objects each based on GF(p) are isomorphic… (more)

Subjects/Keywords: Polynomials; Cayley objects; Isomorphisms (Mathematics); Finite fields (Algebra); Cayley algebras.; Polynomials.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Park, H. G. (1989). Polynomial Isomorphisms of Cayley Objects Over a Finite Field. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc331144/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Park, Hong Goo. “Polynomial Isomorphisms of Cayley Objects Over a Finite Field.” 1989. Thesis, University of North Texas. Accessed October 27, 2020. https://digital.library.unt.edu/ark:/67531/metadc331144/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Park, Hong Goo. “Polynomial Isomorphisms of Cayley Objects Over a Finite Field.” 1989. Web. 27 Oct 2020.

Vancouver:

Park HG. Polynomial Isomorphisms of Cayley Objects Over a Finite Field. [Internet] [Thesis]. University of North Texas; 1989. [cited 2020 Oct 27]. Available from: https://digital.library.unt.edu/ark:/67531/metadc331144/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Park HG. Polynomial Isomorphisms of Cayley Objects Over a Finite Field. [Thesis]. University of North Texas; 1989. Available from: https://digital.library.unt.edu/ark:/67531/metadc331144/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

28. FÃbio da Costa Ribeiro. FamÃlias de reticulados de densidade recorde em dimensÃes dois e trÃs.

Degree: Master, 2014, Universidade Federal do Ceará

O objetivo deste trabalho à construir exemplos em R2 e R3 de reticulados com mÃxima densidade de centro. O primeiro capÃtulo à destinado a introduzir… (more)

Subjects/Keywords: ALGEBRA; densidade de reticulado; empacotamento esfÃrico; corpos de nÃmeros; density of lattices; sphere packing; numbers field; PolinÃmios; Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ribeiro, F. d. C. (2014). FamÃlias de reticulados de densidade recorde em dimensÃes dois e trÃs. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14062 ;

Chicago Manual of Style (16th Edition):

Ribeiro, FÃbio da Costa. “FamÃlias de reticulados de densidade recorde em dimensÃes dois e trÃs.” 2014. Masters Thesis, Universidade Federal do Ceará. Accessed October 27, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14062 ;.

MLA Handbook (7th Edition):

Ribeiro, FÃbio da Costa. “FamÃlias de reticulados de densidade recorde em dimensÃes dois e trÃs.” 2014. Web. 27 Oct 2020.

Vancouver:

Ribeiro FdC. FamÃlias de reticulados de densidade recorde em dimensÃes dois e trÃs. [Internet] [Masters thesis]. Universidade Federal do Ceará 2014. [cited 2020 Oct 27]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14062 ;.

Council of Science Editors:

Ribeiro FdC. FamÃlias de reticulados de densidade recorde em dimensÃes dois e trÃs. [Masters Thesis]. Universidade Federal do Ceará 2014. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14062 ;

29. Aislan Sirino Lopes. CritÃrio para a construtibilidade de polÃgonos regulares por rÃgua e compasso e nÃmeros construtÃveis.

Degree: Master, 2014, Universidade Federal do Ceará

Este trabalho aborda construÃÃes geomÃtricas elementares e de polÃgonos regulares realizadas com rÃgua nÃo graduada e compasso respeitando as regras ou operaÃÃes elementares usadas na… (more)

Subjects/Keywords: ALGEBRA; polÃgonos regulares; nÃmeros construtÃveis; extensÃes algÃbricas; regular polygons; constructible numbers; polynomials; algebraic fields extensions; ConstruÃÃes geomÃtricas; PolinÃmios; Geometric constructions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lopes, A. S. (2014). CritÃrio para a construtibilidade de polÃgonos regulares por rÃgua e compasso e nÃmeros construtÃveis. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12590 ;

Chicago Manual of Style (16th Edition):

Lopes, Aislan Sirino. “CritÃrio para a construtibilidade de polÃgonos regulares por rÃgua e compasso e nÃmeros construtÃveis.” 2014. Masters Thesis, Universidade Federal do Ceará. Accessed October 27, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12590 ;.

MLA Handbook (7th Edition):

Lopes, Aislan Sirino. “CritÃrio para a construtibilidade de polÃgonos regulares por rÃgua e compasso e nÃmeros construtÃveis.” 2014. Web. 27 Oct 2020.

Vancouver:

Lopes AS. CritÃrio para a construtibilidade de polÃgonos regulares por rÃgua e compasso e nÃmeros construtÃveis. [Internet] [Masters thesis]. Universidade Federal do Ceará 2014. [cited 2020 Oct 27]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12590 ;.

Council of Science Editors:

Lopes AS. CritÃrio para a construtibilidade de polÃgonos regulares por rÃgua e compasso e nÃmeros construtÃveis. [Masters Thesis]. Universidade Federal do Ceará 2014. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12590 ;

30. Carraschi, Jonas Eduardo. Equações polinomiais.

Degree: Mestrado, Mestrado Profissional em Matemática em Rede Nacional, 2014, University of São Paulo

Estudamos neste trabalho as equações polinomiais em sua abrangência: quadráticas, cúbicas e quárticas por diversos métodos clássicos, a limitação das raízes, resultados sobre equações polinomiais… (more)

Subjects/Keywords: Algebra; Álgebra; Ensino de matemática; Polynomial equations; Raízes de polinômios; Roots of polynomials; Teaching of mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Carraschi, J. E. (2014). Equações polinomiais. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55136/tde-07072014-141824/ ;

Chicago Manual of Style (16th Edition):

Carraschi, Jonas Eduardo. “Equações polinomiais.” 2014. Masters Thesis, University of São Paulo. Accessed October 27, 2020. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-07072014-141824/ ;.

MLA Handbook (7th Edition):

Carraschi, Jonas Eduardo. “Equações polinomiais.” 2014. Web. 27 Oct 2020.

Vancouver:

Carraschi JE. Equações polinomiais. [Internet] [Masters thesis]. University of São Paulo; 2014. [cited 2020 Oct 27]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55136/tde-07072014-141824/ ;.

Council of Science Editors:

Carraschi JE. Equações polinomiais. [Masters Thesis]. University of São Paulo; 2014. Available from: http://www.teses.usp.br/teses/disponiveis/55/55136/tde-07072014-141824/ ;

[1] [2] [3] [4] [5] … [218]

.