Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(MODULI SPACES ALGEBRAIC GEOMETRY ). Showing records 1 – 30 of 11797 total matches.

[1] [2] [3] [4] [5] … [394]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Languages

Country

▼ Search Limiters


Queens University

1. Harder, Andrew. Moduli Spaces of K3 Surfaces with Large Picard Number .

Degree: Mathematics and Statistics, 2011, Queens University

 Morrison has constructed a geometric relationship between K3 surfaces with large Picard number and abelian surfaces. In particular, this establishes that the period spaces of… (more)

Subjects/Keywords: K3 Surfaces ; Algebraic Geometry ; Mathematics ; Moduli spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Harder, A. (2011). Moduli Spaces of K3 Surfaces with Large Picard Number . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/6646

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Harder, Andrew. “Moduli Spaces of K3 Surfaces with Large Picard Number .” 2011. Thesis, Queens University. Accessed May 06, 2021. http://hdl.handle.net/1974/6646.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Harder, Andrew. “Moduli Spaces of K3 Surfaces with Large Picard Number .” 2011. Web. 06 May 2021.

Vancouver:

Harder A. Moduli Spaces of K3 Surfaces with Large Picard Number . [Internet] [Thesis]. Queens University; 2011. [cited 2021 May 06]. Available from: http://hdl.handle.net/1974/6646.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Harder A. Moduli Spaces of K3 Surfaces with Large Picard Number . [Thesis]. Queens University; 2011. Available from: http://hdl.handle.net/1974/6646

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

2. Gross, Jacob. Moduli spaces of complexes of coherent sheaves.

Degree: PhD, 2020, University of Oxford

 In this thesis we consider problems related to Joyce’s vertex algebra construction and the topology of stabilized moduli spaces. We first compute the homology of… (more)

Subjects/Keywords: Algebraic Topology; Algebraic Geometry; Calabi-Yau Manifolds; Moduli Spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gross, J. (2020). Moduli spaces of complexes of coherent sheaves. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:857c53a5-345b-4ab9-9420-f94c8030b4b3 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820698

Chicago Manual of Style (16th Edition):

Gross, Jacob. “Moduli spaces of complexes of coherent sheaves.” 2020. Doctoral Dissertation, University of Oxford. Accessed May 06, 2021. http://ora.ox.ac.uk/objects/uuid:857c53a5-345b-4ab9-9420-f94c8030b4b3 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820698.

MLA Handbook (7th Edition):

Gross, Jacob. “Moduli spaces of complexes of coherent sheaves.” 2020. Web. 06 May 2021.

Vancouver:

Gross J. Moduli spaces of complexes of coherent sheaves. [Internet] [Doctoral dissertation]. University of Oxford; 2020. [cited 2021 May 06]. Available from: http://ora.ox.ac.uk/objects/uuid:857c53a5-345b-4ab9-9420-f94c8030b4b3 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820698.

Council of Science Editors:

Gross J. Moduli spaces of complexes of coherent sheaves. [Doctoral Dissertation]. University of Oxford; 2020. Available from: http://ora.ox.ac.uk/objects/uuid:857c53a5-345b-4ab9-9420-f94c8030b4b3 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820698


Penn State University

3. Levine, Daniel. Cohomology of General Sheaves in Moduli and Existence of Semistable Sheaves on del Pezzo Surfaces.

Degree: 2020, Penn State University

 Let Xm be a del Pezzo surface of degree 9-m, and let L ∈ Πc(Xm) be the total transform of a line on \PP2. When… (more)

Subjects/Keywords: Algebraic Geometry; Sheaf Cohomology; Moduli of Sheaves; del Pezzo Surfaces; Rational Surfaces; Moduli Spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Levine, D. (2020). Cohomology of General Sheaves in Moduli and Existence of Semistable Sheaves on del Pezzo Surfaces. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/17519dul190

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Levine, Daniel. “Cohomology of General Sheaves in Moduli and Existence of Semistable Sheaves on del Pezzo Surfaces.” 2020. Thesis, Penn State University. Accessed May 06, 2021. https://submit-etda.libraries.psu.edu/catalog/17519dul190.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Levine, Daniel. “Cohomology of General Sheaves in Moduli and Existence of Semistable Sheaves on del Pezzo Surfaces.” 2020. Web. 06 May 2021.

Vancouver:

Levine D. Cohomology of General Sheaves in Moduli and Existence of Semistable Sheaves on del Pezzo Surfaces. [Internet] [Thesis]. Penn State University; 2020. [cited 2021 May 06]. Available from: https://submit-etda.libraries.psu.edu/catalog/17519dul190.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Levine D. Cohomology of General Sheaves in Moduli and Existence of Semistable Sheaves on del Pezzo Surfaces. [Thesis]. Penn State University; 2020. Available from: https://submit-etda.libraries.psu.edu/catalog/17519dul190

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – Berkeley

4. Solis, Pablo. Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves.

Degree: Mathematics, 2014, University of California – Berkeley

Moduli problems have become a central area of interest in a wide range of mathematical fields such as representation theory and topology but particularly in… (more)

Subjects/Keywords: Mathematics; algebraic geometry; compactification; curves; loop groups; moduli spaces; principal bundles

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Solis, P. (2014). Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/6ns944x1

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Solis, Pablo. “Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves.” 2014. Thesis, University of California – Berkeley. Accessed May 06, 2021. http://www.escholarship.org/uc/item/6ns944x1.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Solis, Pablo. “Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves.” 2014. Web. 06 May 2021.

Vancouver:

Solis P. Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves. [Internet] [Thesis]. University of California – Berkeley; 2014. [cited 2021 May 06]. Available from: http://www.escholarship.org/uc/item/6ns944x1.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Solis P. Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves. [Thesis]. University of California – Berkeley; 2014. Available from: http://www.escholarship.org/uc/item/6ns944x1

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Washington

5. Zsamboki, Pal. Toward the compactification of the stack of Lie(G)-forms using perfect complexes.

Degree: PhD, 2015, University of Washington

 To establish geometric properties of an algebraic stack, one can find a compactification. This method has been successfully employed to find irreducible components for example… (more)

Subjects/Keywords: derived algebraic geometry; moduli spaces; torsors; Mathematics; mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zsamboki, P. (2015). Toward the compactification of the stack of Lie(G)-forms using perfect complexes. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/34022

Chicago Manual of Style (16th Edition):

Zsamboki, Pal. “Toward the compactification of the stack of Lie(G)-forms using perfect complexes.” 2015. Doctoral Dissertation, University of Washington. Accessed May 06, 2021. http://hdl.handle.net/1773/34022.

MLA Handbook (7th Edition):

Zsamboki, Pal. “Toward the compactification of the stack of Lie(G)-forms using perfect complexes.” 2015. Web. 06 May 2021.

Vancouver:

Zsamboki P. Toward the compactification of the stack of Lie(G)-forms using perfect complexes. [Internet] [Doctoral dissertation]. University of Washington; 2015. [cited 2021 May 06]. Available from: http://hdl.handle.net/1773/34022.

Council of Science Editors:

Zsamboki P. Toward the compactification of the stack of Lie(G)-forms using perfect complexes. [Doctoral Dissertation]. University of Washington; 2015. Available from: http://hdl.handle.net/1773/34022

6. Han, Changho. Stable log surfaces, trigonal covers, and canonical curves of genus 4.

Degree: PhD, 2019, Harvard University

We describe a compactification of the moduli space of pairs (S, C) where S is isomorphic to \PP1  ×  \PP1 and C \subset S is… (more)

Subjects/Keywords: Algebraic Geometry; Moduli spaces

algebraic geometry, namely (1) the study of compact moduli spaces of surfaces of log… …varieties are themselves parametrized by points of algebraic varieties, called moduli spaces. A… …characteristics, by using the existence of M g . 1 In contrast to the geometry of the moduli spaces… …of curves, the geometry of moduli spaces of surfaces are generally unknown. Even… …geometry of moduli spaces of surfaces satisfies "Murphy’s law", i.e. it can get… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Han, C. (2019). Stable log surfaces, trigonal covers, and canonical curves of genus 4. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707

Chicago Manual of Style (16th Edition):

Han, Changho. “Stable log surfaces, trigonal covers, and canonical curves of genus 4.” 2019. Doctoral Dissertation, Harvard University. Accessed May 06, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707.

MLA Handbook (7th Edition):

Han, Changho. “Stable log surfaces, trigonal covers, and canonical curves of genus 4.” 2019. Web. 06 May 2021.

Vancouver:

Han C. Stable log surfaces, trigonal covers, and canonical curves of genus 4. [Internet] [Doctoral dissertation]. Harvard University; 2019. [cited 2021 May 06]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707.

Council of Science Editors:

Han C. Stable log surfaces, trigonal covers, and canonical curves of genus 4. [Doctoral Dissertation]. Harvard University; 2019. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707


University of Oxford

7. Hoskins, Victoria Amy. Moduli spaces of complexes of sheaves.

Degree: PhD, 2011, University of Oxford

 This thesis is on moduli spaces of complexes of sheaves and diagrams of such moduli spaces. The objects in these diagrams are constructed as geometric… (more)

Subjects/Keywords: 514.224; Algebraic geometry; moduli spaces; sheaves; complexes; geometric invariant theory; Harder-Narasimhan stratifications

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hoskins, V. A. (2011). Moduli spaces of complexes of sheaves. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:aedd2719-2a38-41f9-9825-aa8f43fb872c ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558390

Chicago Manual of Style (16th Edition):

Hoskins, Victoria Amy. “Moduli spaces of complexes of sheaves.” 2011. Doctoral Dissertation, University of Oxford. Accessed May 06, 2021. http://ora.ox.ac.uk/objects/uuid:aedd2719-2a38-41f9-9825-aa8f43fb872c ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558390.

MLA Handbook (7th Edition):

Hoskins, Victoria Amy. “Moduli spaces of complexes of sheaves.” 2011. Web. 06 May 2021.

Vancouver:

Hoskins VA. Moduli spaces of complexes of sheaves. [Internet] [Doctoral dissertation]. University of Oxford; 2011. [cited 2021 May 06]. Available from: http://ora.ox.ac.uk/objects/uuid:aedd2719-2a38-41f9-9825-aa8f43fb872c ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558390.

Council of Science Editors:

Hoskins VA. Moduli spaces of complexes of sheaves. [Doctoral Dissertation]. University of Oxford; 2011. Available from: http://ora.ox.ac.uk/objects/uuid:aedd2719-2a38-41f9-9825-aa8f43fb872c ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558390


University of Maryland

8. Long, Terence Dyer. Twist-bulge derivatives and deformations of convex real projective structures on surfaces.

Degree: Mathematics, 2015, University of Maryland

 Let S be a closed orientable surface with genus g>1 equipped with a convex ℝP}2 structure. A basic example of such a convex ℝP}2 structure… (more)

Subjects/Keywords: Mathematics; geometry; moduli spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Long, T. D. (2015). Twist-bulge derivatives and deformations of convex real projective structures on surfaces. (Thesis). University of Maryland. Retrieved from http://hdl.handle.net/1903/16644

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Long, Terence Dyer. “Twist-bulge derivatives and deformations of convex real projective structures on surfaces.” 2015. Thesis, University of Maryland. Accessed May 06, 2021. http://hdl.handle.net/1903/16644.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Long, Terence Dyer. “Twist-bulge derivatives and deformations of convex real projective structures on surfaces.” 2015. Web. 06 May 2021.

Vancouver:

Long TD. Twist-bulge derivatives and deformations of convex real projective structures on surfaces. [Internet] [Thesis]. University of Maryland; 2015. [cited 2021 May 06]. Available from: http://hdl.handle.net/1903/16644.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Long TD. Twist-bulge derivatives and deformations of convex real projective structures on surfaces. [Thesis]. University of Maryland; 2015. Available from: http://hdl.handle.net/1903/16644

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

9. Mercer Truett Bridges (7949348). Effective Divisors on Kontsevich Moduli Spaces.

Degree: 2018, University of Illinois – Chicago

 We study the cone of effective divisors on Kontsevich's moduli space of genus 0 stable maps to projective space in the case where map is… (more)

Subjects/Keywords: Uncategorized; birational geometry; moduli spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

(7949348), M. T. B. (2018). Effective Divisors on Kontsevich Moduli Spaces. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/23067

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

(7949348), Mercer Truett Bridges. “Effective Divisors on Kontsevich Moduli Spaces.” 2018. Thesis, University of Illinois – Chicago. Accessed May 06, 2021. http://hdl.handle.net/10027/23067.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

(7949348), Mercer Truett Bridges. “Effective Divisors on Kontsevich Moduli Spaces.” 2018. Web. 06 May 2021.

Vancouver:

(7949348) MTB. Effective Divisors on Kontsevich Moduli Spaces. [Internet] [Thesis]. University of Illinois – Chicago; 2018. [cited 2021 May 06]. Available from: http://hdl.handle.net/10027/23067.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

(7949348) MTB. Effective Divisors on Kontsevich Moduli Spaces. [Thesis]. University of Illinois – Chicago; 2018. Available from: http://hdl.handle.net/10027/23067

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

10. Schlüeter, Dirk Christopher. Universal moduli of parabolic sheaves on stable marked curves.

Degree: PhD, 2011, University of Oxford

 The topic of this thesis is the moduli theory of (parabolic) sheaves on stable curves. Using geometric invariant theory (GIT), universal moduli spaces of semistable… (more)

Subjects/Keywords: 516.35; Mathematics; Geometry; algebraic geometry; moduli spaces; geometric invariant theory; parabolic sheaves; parabolic bundles; marked curves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schlüeter, D. C. (2011). Universal moduli of parabolic sheaves on stable marked curves. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:b0260f8e-6654-4bec-b670-5e925fd403dd ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572475

Chicago Manual of Style (16th Edition):

Schlüeter, Dirk Christopher. “Universal moduli of parabolic sheaves on stable marked curves.” 2011. Doctoral Dissertation, University of Oxford. Accessed May 06, 2021. http://ora.ox.ac.uk/objects/uuid:b0260f8e-6654-4bec-b670-5e925fd403dd ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572475.

MLA Handbook (7th Edition):

Schlüeter, Dirk Christopher. “Universal moduli of parabolic sheaves on stable marked curves.” 2011. Web. 06 May 2021.

Vancouver:

Schlüeter DC. Universal moduli of parabolic sheaves on stable marked curves. [Internet] [Doctoral dissertation]. University of Oxford; 2011. [cited 2021 May 06]. Available from: http://ora.ox.ac.uk/objects/uuid:b0260f8e-6654-4bec-b670-5e925fd403dd ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572475.

Council of Science Editors:

Schlüeter DC. Universal moduli of parabolic sheaves on stable marked curves. [Doctoral Dissertation]. University of Oxford; 2011. Available from: http://ora.ox.ac.uk/objects/uuid:b0260f8e-6654-4bec-b670-5e925fd403dd ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572475


University of Illinois – Chicago

11. Timothy L. Ryan (7974164). The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface.

Degree: 2016, University of Illinois – Chicago

 In this paper, we provide an approach to computing the effective cone of moduli spaces of sheaves on a smooth quadric surface. We find Brill-Noether… (more)

Subjects/Keywords: Uncategorized; algebraic geometry; moduli spaces; bridgeland stability; stability; birational geometry; effective cone; quadric surface; mmp; minimal model program

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

(7974164), T. L. R. (2016). The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/21355

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

(7974164), Timothy L. Ryan. “The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface.” 2016. Thesis, University of Illinois – Chicago. Accessed May 06, 2021. http://hdl.handle.net/10027/21355.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

(7974164), Timothy L. Ryan. “The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface.” 2016. Web. 06 May 2021.

Vancouver:

(7974164) TLR. The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface. [Internet] [Thesis]. University of Illinois – Chicago; 2016. [cited 2021 May 06]. Available from: http://hdl.handle.net/10027/21355.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

(7974164) TLR. The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface. [Thesis]. University of Illinois – Chicago; 2016. Available from: http://hdl.handle.net/10027/21355

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Queens University

12. Ren, Owen. Moduli spaces of vector bundles on toric surfaces .

Degree: Mathematics and Statistics, Queens University

 The moduli spaces parametrizing isomorphism classes of vector bundles are poorly understood. For certain choices of the first Chern class and a suitable second Chern… (more)

Subjects/Keywords: Mathematics ; Moduli spaces ; Algebraic geometry ; Toric surfaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ren, O. (n.d.). Moduli spaces of vector bundles on toric surfaces . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/24812

Note: this citation may be lacking information needed for this citation format:
No year of publication.
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ren, Owen. “Moduli spaces of vector bundles on toric surfaces .” Thesis, Queens University. Accessed May 06, 2021. http://hdl.handle.net/1974/24812.

Note: this citation may be lacking information needed for this citation format:
No year of publication.
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ren, Owen. “Moduli spaces of vector bundles on toric surfaces .” Web. 06 May 2021.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Vancouver:

Ren O. Moduli spaces of vector bundles on toric surfaces . [Internet] [Thesis]. Queens University; [cited 2021 May 06]. Available from: http://hdl.handle.net/1974/24812.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
No year of publication.

Council of Science Editors:

Ren O. Moduli spaces of vector bundles on toric surfaces . [Thesis]. Queens University; Available from: http://hdl.handle.net/1974/24812

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
No year of publication.

13. Galeotti, Mattia Francesco. Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale.

Degree: Docteur es, Mathématiques, 2017, Université Pierre et Marie Curie – Paris VI

L'espace de modules Mgbar des courbes stables de genre g est un object central en géométrie algébrique. Du point de vue de la géométrie birationelle,… (more)

Subjects/Keywords: Géométrie algébrique; Espaces de modules; Courbes; Singularités; Recouvrements; Anneau tautologique; Algebraic geometry; Moduli spaces; Tautological ring; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Galeotti, M. F. (2017). Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2017PA066485

Chicago Manual of Style (16th Edition):

Galeotti, Mattia Francesco. “Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale.” 2017. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed May 06, 2021. http://www.theses.fr/2017PA066485.

MLA Handbook (7th Edition):

Galeotti, Mattia Francesco. “Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale.” 2017. Web. 06 May 2021.

Vancouver:

Galeotti MF. Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. [cited 2021 May 06]. Available from: http://www.theses.fr/2017PA066485.

Council of Science Editors:

Galeotti MF. Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. Available from: http://www.theses.fr/2017PA066485


University of Georgia

14. Arcara, Daniele. Moduli spaces of vector bundles on curves.

Degree: 2014, University of Georgia

 In this work, we generalize Bertram’s work on rank two vector bundles on a smooth irreducible projective curve to an irreducible singular curve C with… (more)

Subjects/Keywords: Algebraic Geometry; Algebraic Curve; Vector Bundle; Moduli Space; Blow-up

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Arcara, D. (2014). Moduli spaces of vector bundles on curves. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/20727

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Arcara, Daniele. “Moduli spaces of vector bundles on curves.” 2014. Thesis, University of Georgia. Accessed May 06, 2021. http://hdl.handle.net/10724/20727.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Arcara, Daniele. “Moduli spaces of vector bundles on curves.” 2014. Web. 06 May 2021.

Vancouver:

Arcara D. Moduli spaces of vector bundles on curves. [Internet] [Thesis]. University of Georgia; 2014. [cited 2021 May 06]. Available from: http://hdl.handle.net/10724/20727.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Arcara D. Moduli spaces of vector bundles on curves. [Thesis]. University of Georgia; 2014. Available from: http://hdl.handle.net/10724/20727

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Washington

15. DeVleming, Kristin Elizabeth. Compact Moduli of Surfaces in Three-Dimensional Projective Space.

Degree: PhD, 2018, University of Washington

 The main goal of this paper is to construct a compactification of the moduli space of degree d  ≥  5 hypersurfaces in ℙ3, i.e. a… (more)

Subjects/Keywords: algebra; algebraic geometry; geometry; minimal model program; moduli; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

DeVleming, K. E. (2018). Compact Moduli of Surfaces in Three-Dimensional Projective Space. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/42454

Chicago Manual of Style (16th Edition):

DeVleming, Kristin Elizabeth. “Compact Moduli of Surfaces in Three-Dimensional Projective Space.” 2018. Doctoral Dissertation, University of Washington. Accessed May 06, 2021. http://hdl.handle.net/1773/42454.

MLA Handbook (7th Edition):

DeVleming, Kristin Elizabeth. “Compact Moduli of Surfaces in Three-Dimensional Projective Space.” 2018. Web. 06 May 2021.

Vancouver:

DeVleming KE. Compact Moduli of Surfaces in Three-Dimensional Projective Space. [Internet] [Doctoral dissertation]. University of Washington; 2018. [cited 2021 May 06]. Available from: http://hdl.handle.net/1773/42454.

Council of Science Editors:

DeVleming KE. Compact Moduli of Surfaces in Three-Dimensional Projective Space. [Doctoral Dissertation]. University of Washington; 2018. Available from: http://hdl.handle.net/1773/42454


Université du Luxembourg

16. Leytem, Alain. Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane.

Degree: 2016, Université du Luxembourg

 This thesis consists of two individual parts, each one having an interest in itself, but which are also related to each other. In Part I… (more)

Subjects/Keywords: algebraic geometry; non-integral torsion; purity; Simpson moduli spaces; singular sheaves; codimension; Physical, chemical, mathematical & earth Sciences :: Mathematics [G03]; Physique, chimie, mathématiques & sciences de la terre :: Mathématiques [G03]

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leytem, A. (2016). Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane. (Doctoral Dissertation). Université du Luxembourg. Retrieved from http://orbilu.uni.lu/handle/10993/23380

Chicago Manual of Style (16th Edition):

Leytem, Alain. “Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane.” 2016. Doctoral Dissertation, Université du Luxembourg. Accessed May 06, 2021. http://orbilu.uni.lu/handle/10993/23380.

MLA Handbook (7th Edition):

Leytem, Alain. “Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane.” 2016. Web. 06 May 2021.

Vancouver:

Leytem A. Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane. [Internet] [Doctoral dissertation]. Université du Luxembourg; 2016. [cited 2021 May 06]. Available from: http://orbilu.uni.lu/handle/10993/23380.

Council of Science Editors:

Leytem A. Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane. [Doctoral Dissertation]. Université du Luxembourg; 2016. Available from: http://orbilu.uni.lu/handle/10993/23380

17. A. Cattaneo. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.

Degree: 2018, Università degli Studi di Milano

La tesi si concentra sullo studio degli automorfismi di varietà olomorfe simplettiche irriducibili di tipo K3^[n], ovvero varietà equivalenti per deformazione allo schema di Hilbert… (more)

Subjects/Keywords: complex algebraic geometry; lattice theory; holomorphic symplectic manifold; Hilbert schemes of points on K3 surfaces; automorphisms; Torelli theorem; moduli spaces; Settore MAT/03 - Geometria

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cattaneo, A. (2018). NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/606455

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cattaneo, A.. “NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.” 2018. Thesis, Università degli Studi di Milano. Accessed May 06, 2021. http://hdl.handle.net/2434/606455.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cattaneo, A.. “NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.” 2018. Web. 06 May 2021.

Vancouver:

Cattaneo A. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. [Internet] [Thesis]. Università degli Studi di Milano; 2018. [cited 2021 May 06]. Available from: http://hdl.handle.net/2434/606455.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cattaneo A. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. [Thesis]. Università degli Studi di Milano; 2018. Available from: http://hdl.handle.net/2434/606455

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

18. Sacca, Giulia. Fibrations in abelian varieties associated to Enriques surfaces .

Degree: PhD, 2013, Princeton University

 Let T be a general Enriques surface and let f: S  →  T be its universal cover. Consider a smooth curve C \subset T of… (more)

Subjects/Keywords: abelian varieties; algebraic geometry; moduli spaces of sheaves

…canonical bundle is trivial. The second part of this thesis studies the geometry of moduli spaces… …Introduction Moduli spaces of sheaves on K3 surfaces are among the most studied objects… …in algebraic geometry. Part of their interesting features is that they inherit the… …of the moduli space. When smooth and projective, these moduli spaces provide examples of… …following: in every even complex dimension we have smooth projective moduli spaces of sheaves on… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sacca, G. (2013). Fibrations in abelian varieties associated to Enriques surfaces . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01z029p480w

Chicago Manual of Style (16th Edition):

Sacca, Giulia. “Fibrations in abelian varieties associated to Enriques surfaces .” 2013. Doctoral Dissertation, Princeton University. Accessed May 06, 2021. http://arks.princeton.edu/ark:/88435/dsp01z029p480w.

MLA Handbook (7th Edition):

Sacca, Giulia. “Fibrations in abelian varieties associated to Enriques surfaces .” 2013. Web. 06 May 2021.

Vancouver:

Sacca G. Fibrations in abelian varieties associated to Enriques surfaces . [Internet] [Doctoral dissertation]. Princeton University; 2013. [cited 2021 May 06]. Available from: http://arks.princeton.edu/ark:/88435/dsp01z029p480w.

Council of Science Editors:

Sacca G. Fibrations in abelian varieties associated to Enriques surfaces . [Doctoral Dissertation]. Princeton University; 2013. Available from: http://arks.princeton.edu/ark:/88435/dsp01z029p480w


ETH Zürich

19. Hubschmid, Patrik. André-Oort conjecture for Drinfeld moduli spaces.

Degree: 2011, ETH Zürich

Subjects/Keywords: MODULRÄUME (ALGEBRAISCHE GEOMETRIE); MODULI SPACES (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hubschmid, P. (2011). André-Oort conjecture for Drinfeld moduli spaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152726

Chicago Manual of Style (16th Edition):

Hubschmid, Patrik. “André-Oort conjecture for Drinfeld moduli spaces.” 2011. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/152726.

MLA Handbook (7th Edition):

Hubschmid, Patrik. “André-Oort conjecture for Drinfeld moduli spaces.” 2011. Web. 06 May 2021.

Vancouver:

Hubschmid P. André-Oort conjecture for Drinfeld moduli spaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/152726.

Council of Science Editors:

Hubschmid P. André-Oort conjecture for Drinfeld moduli spaces. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/152726


University of Texas – Austin

20. Lowrey, Parker Eastin. Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories.

Degree: PhD, Mathematics, 2010, University of Texas – Austin

 Understanding the action of an autoequivalence on a triangulated category is generally a very difficult problem. If one can find a stability condition for which… (more)

Subjects/Keywords: Category theory; Algebraic geometry; Derived categories; Moduli spaces; Autoequivalences; N-gons; Stability conditions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lowrey, P. E. (2010). Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-05-986

Chicago Manual of Style (16th Edition):

Lowrey, Parker Eastin. “Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories.” 2010. Doctoral Dissertation, University of Texas – Austin. Accessed May 06, 2021. http://hdl.handle.net/2152/ETD-UT-2010-05-986.

MLA Handbook (7th Edition):

Lowrey, Parker Eastin. “Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories.” 2010. Web. 06 May 2021.

Vancouver:

Lowrey PE. Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2010. [cited 2021 May 06]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-986.

Council of Science Editors:

Lowrey PE. Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories. [Doctoral Dissertation]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-986


Columbia University

21. Potashnik, Natasha. Derived Categories of Moduli Spaces of Semistable Pairs over Curves.

Degree: 2016, Columbia University

 The context of this thesis is derived categories in algebraic geometry and geo- metric quotients. Specifically, we prove the embedding of the derived category of… (more)

Subjects/Keywords: Moduli theory; Mathematics; Derived categories (Mathematics); Geometry, Algebraic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Potashnik, N. (2016). Derived Categories of Moduli Spaces of Semistable Pairs over Curves. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8H99542

Chicago Manual of Style (16th Edition):

Potashnik, Natasha. “Derived Categories of Moduli Spaces of Semistable Pairs over Curves.” 2016. Doctoral Dissertation, Columbia University. Accessed May 06, 2021. https://doi.org/10.7916/D8H99542.

MLA Handbook (7th Edition):

Potashnik, Natasha. “Derived Categories of Moduli Spaces of Semistable Pairs over Curves.” 2016. Web. 06 May 2021.

Vancouver:

Potashnik N. Derived Categories of Moduli Spaces of Semistable Pairs over Curves. [Internet] [Doctoral dissertation]. Columbia University; 2016. [cited 2021 May 06]. Available from: https://doi.org/10.7916/D8H99542.

Council of Science Editors:

Potashnik N. Derived Categories of Moduli Spaces of Semistable Pairs over Curves. [Doctoral Dissertation]. Columbia University; 2016. Available from: https://doi.org/10.7916/D8H99542


Freie Universität Berlin

22. Trageser, Benedikt Vincent. Moduli von Garbenhomomorphismen.

Degree: 2020, Freie Universität Berlin

Moduli spaces arise in classification problem in algebraic geometry; typically when we try to classify geometric objects we find that they have discrete invariants but… (more)

Subjects/Keywords: algebraic geometry; moduli problem; non-reductive geometric invariant theory; ddc:512

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Trageser, B. V. (2020). Moduli von Garbenhomomorphismen. (Thesis). Freie Universität Berlin. Retrieved from http://dx.doi.org/10.17169/refubium-27819

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Trageser, Benedikt Vincent. “Moduli von Garbenhomomorphismen.” 2020. Thesis, Freie Universität Berlin. Accessed May 06, 2021. http://dx.doi.org/10.17169/refubium-27819.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Trageser, Benedikt Vincent. “Moduli von Garbenhomomorphismen.” 2020. Web. 06 May 2021.

Vancouver:

Trageser BV. Moduli von Garbenhomomorphismen. [Internet] [Thesis]. Freie Universität Berlin; 2020. [cited 2021 May 06]. Available from: http://dx.doi.org/10.17169/refubium-27819.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Trageser BV. Moduli von Garbenhomomorphismen. [Thesis]. Freie Universität Berlin; 2020. Available from: http://dx.doi.org/10.17169/refubium-27819

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Northeastern University

23. He, Zhuang. Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines.

Degree: 2020, Northeastern University

 In this thesis we study the birational geometry of the blow-ups of toric varieties of Picard number one at a general point, and the blow-up… (more)

Subjects/Keywords: birational geometry; effective divisors; moduli spaces of curves; Mori dream spaces; toric varieties; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

He, Z. (2020). Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20356183

Chicago Manual of Style (16th Edition):

He, Zhuang. “Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines.” 2020. Doctoral Dissertation, Northeastern University. Accessed May 06, 2021. http://hdl.handle.net/2047/D20356183.

MLA Handbook (7th Edition):

He, Zhuang. “Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines.” 2020. Web. 06 May 2021.

Vancouver:

He Z. Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines. [Internet] [Doctoral dissertation]. Northeastern University; 2020. [cited 2021 May 06]. Available from: http://hdl.handle.net/2047/D20356183.

Council of Science Editors:

He Z. Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines. [Doctoral Dissertation]. Northeastern University; 2020. Available from: http://hdl.handle.net/2047/D20356183

24. Valluri, Dinesh. Essential dimension of parabolic bundles.

Degree: 2019, University of Western Ontario

 Essential dimension of a geometric object is roughly the number of algebraically independent parameters needed to define the object. In this thesis we give upper… (more)

Subjects/Keywords: Algebraic Stacks; Essential dimension; Moduli spaces; Root stacks; Parabolic bundles; Algebraic Geometry

…groups, moduli spaces of curves, abelian varieties, vector bundles and, in this instance… …45 4 Transcendence degree of field of moduli 51 4.1 Stack of parabolic bundles, Riemann… …has been studied for several algebraic and geometric objects. Examples include algebraic… …by essential dimension consider the following example: Given an algebraic group G over a… …moduli’ k(E) of a given vector bundle E on a curve X/k. To do this, they make use of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Valluri, D. (2019). Essential dimension of parabolic bundles. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/6308

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Valluri, Dinesh. “Essential dimension of parabolic bundles.” 2019. Thesis, University of Western Ontario. Accessed May 06, 2021. https://ir.lib.uwo.ca/etd/6308.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Valluri, Dinesh. “Essential dimension of parabolic bundles.” 2019. Web. 06 May 2021.

Vancouver:

Valluri D. Essential dimension of parabolic bundles. [Internet] [Thesis]. University of Western Ontario; 2019. [cited 2021 May 06]. Available from: https://ir.lib.uwo.ca/etd/6308.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Valluri D. Essential dimension of parabolic bundles. [Thesis]. University of Western Ontario; 2019. Available from: https://ir.lib.uwo.ca/etd/6308

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


The Ohio State University

25. Nash, Evan D., Nash. Extended Tropicalization of Spherical Varieties.

Degree: PhD, Mathematics, 2018, The Ohio State University

 The first steps in defining a notion of spherical tropicalization were recently takenby Tassos Vogiannou in his thesis and by Kiumars Kaveh and Christopher Manonin… (more)

Subjects/Keywords: Mathematics; tropical geometry; algebraic geometry; spherical varieties; spherical homogeneous spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nash, Evan D., N. (2018). Extended Tropicalization of Spherical Varieties. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1523979975350178

Chicago Manual of Style (16th Edition):

Nash, Evan D., Nash. “Extended Tropicalization of Spherical Varieties.” 2018. Doctoral Dissertation, The Ohio State University. Accessed May 06, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1523979975350178.

MLA Handbook (7th Edition):

Nash, Evan D., Nash. “Extended Tropicalization of Spherical Varieties.” 2018. Web. 06 May 2021.

Vancouver:

Nash, Evan D. N. Extended Tropicalization of Spherical Varieties. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2021 May 06]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1523979975350178.

Council of Science Editors:

Nash, Evan D. N. Extended Tropicalization of Spherical Varieties. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1523979975350178

26. He, Zhuang. On Moduli Spaces of Weighted Pointed Stable Curves and Applications.

Degree: MS, Mathematics, 2015, The Ohio State University

Moduli spaces of curves have been central objects for decades in algebraic geometry.This paper reviews a generalization by Hassett in 2003 of the classic moduli(more)

Subjects/Keywords: Mathematics; Moduli Spaces; Algebraic Geometry; Birational Geometry; Geometric Invariant Theory; Stacks

…from P3 . . . . . . . . . . . . . . . . 48 viii Chapter 1: Introduction Moduli spaces of… …curves have been central objects for decades in algebraic geometry, especially in birational… …approaches of constructions of moduli spaces of curves, the GIT approach by Deligne, Mumford and… …the coarse moduli spaces of stable curves of given genus g with n marked points, or the… …2003 paper [Has03], Hassett constructed moduli spaces of weighted pointed stable… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

He, Z. (2015). On Moduli Spaces of Weighted Pointed Stable Curves and Applications. (Masters Thesis). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1437187765

Chicago Manual of Style (16th Edition):

He, Zhuang. “On Moduli Spaces of Weighted Pointed Stable Curves and Applications.” 2015. Masters Thesis, The Ohio State University. Accessed May 06, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437187765.

MLA Handbook (7th Edition):

He, Zhuang. “On Moduli Spaces of Weighted Pointed Stable Curves and Applications.” 2015. Web. 06 May 2021.

Vancouver:

He Z. On Moduli Spaces of Weighted Pointed Stable Curves and Applications. [Internet] [Masters thesis]. The Ohio State University; 2015. [cited 2021 May 06]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1437187765.

Council of Science Editors:

He Z. On Moduli Spaces of Weighted Pointed Stable Curves and Applications. [Masters Thesis]. The Ohio State University; 2015. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1437187765


Duke University

27. Watanabe, Tatsunari. Rational Points of Universal Curves in Positive Characteristics .

Degree: 2015, Duke University

  For the moduli stack \mathcal{M}g,n/𝔽p of smooth curves of type (g,n) over Spec 𝔽p with the function field K, we show that if g ≥ 3,… (more)

Subjects/Keywords: Mathematics; Algebraic geometry; Moduli of curves; Positive characteristic; Rational points; Universal curves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Watanabe, T. (2015). Rational Points of Universal Curves in Positive Characteristics . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/9874

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Watanabe, Tatsunari. “Rational Points of Universal Curves in Positive Characteristics .” 2015. Thesis, Duke University. Accessed May 06, 2021. http://hdl.handle.net/10161/9874.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Watanabe, Tatsunari. “Rational Points of Universal Curves in Positive Characteristics .” 2015. Web. 06 May 2021.

Vancouver:

Watanabe T. Rational Points of Universal Curves in Positive Characteristics . [Internet] [Thesis]. Duke University; 2015. [cited 2021 May 06]. Available from: http://hdl.handle.net/10161/9874.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Watanabe T. Rational Points of Universal Curves in Positive Characteristics . [Thesis]. Duke University; 2015. Available from: http://hdl.handle.net/10161/9874

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Colorado State University

28. Blankers, Vance T. Properties of tautological classes and their intersections.

Degree: PhD, Mathematics, 2019, Colorado State University

 The tautological ring of the moduli space of curves is an object of interest to algebraic geometers in Gromov-Witten theory and enumerative geometry more broadly.… (more)

Subjects/Keywords: intersection theory; tautological ring; algebraic geometry; Witten's conjecture; moduli space of curves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Blankers, V. T. (2019). Properties of tautological classes and their intersections. (Doctoral Dissertation). Colorado State University. Retrieved from http://hdl.handle.net/10217/195376

Chicago Manual of Style (16th Edition):

Blankers, Vance T. “Properties of tautological classes and their intersections.” 2019. Doctoral Dissertation, Colorado State University. Accessed May 06, 2021. http://hdl.handle.net/10217/195376.

MLA Handbook (7th Edition):

Blankers, Vance T. “Properties of tautological classes and their intersections.” 2019. Web. 06 May 2021.

Vancouver:

Blankers VT. Properties of tautological classes and their intersections. [Internet] [Doctoral dissertation]. Colorado State University; 2019. [cited 2021 May 06]. Available from: http://hdl.handle.net/10217/195376.

Council of Science Editors:

Blankers VT. Properties of tautological classes and their intersections. [Doctoral Dissertation]. Colorado State University; 2019. Available from: http://hdl.handle.net/10217/195376

29. Wennink, T.N. Counting the number of trigonal curves of genus five over finite fields.

Degree: 2016, Universiteit Utrecht

 The trigonal curves form a closed subscheme of M5, the moduli space of smooth curves of genus five. The cohomological data of these spaces can… (more)

Subjects/Keywords: trigonal curves; moduli spaces; genus five; counting plane curves; cohomology; algebraic geometry; finite field

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wennink, T. N. (2016). Counting the number of trigonal curves of genus five over finite fields. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/337059

Chicago Manual of Style (16th Edition):

Wennink, T N. “Counting the number of trigonal curves of genus five over finite fields.” 2016. Masters Thesis, Universiteit Utrecht. Accessed May 06, 2021. http://dspace.library.uu.nl:8080/handle/1874/337059.

MLA Handbook (7th Edition):

Wennink, T N. “Counting the number of trigonal curves of genus five over finite fields.” 2016. Web. 06 May 2021.

Vancouver:

Wennink TN. Counting the number of trigonal curves of genus five over finite fields. [Internet] [Masters thesis]. Universiteit Utrecht; 2016. [cited 2021 May 06]. Available from: http://dspace.library.uu.nl:8080/handle/1874/337059.

Council of Science Editors:

Wennink TN. Counting the number of trigonal curves of genus five over finite fields. [Masters Thesis]. Universiteit Utrecht; 2016. Available from: http://dspace.library.uu.nl:8080/handle/1874/337059


Penn State University

30. Chen, William Y. Moduli Interpretations for Noncongruence Modular Curves.

Degree: 2016, Penn State University

 We define the notion of a ``Teichmuller level structure'' (or simply G-structure) for punctured elliptic curves, which are associated to finite 2-generated groups G. When… (more)

Subjects/Keywords: number theory; arithmetic geometry; algebraic geometry; modular curves; galois theory; noncongruence subgroups; modular forms; unbounded denominators conjecture; elliptic curves; moduli problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, W. Y. (2016). Moduli Interpretations for Noncongruence Modular Curves. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/6w924b80w

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chen, William Y. “Moduli Interpretations for Noncongruence Modular Curves.” 2016. Thesis, Penn State University. Accessed May 06, 2021. https://submit-etda.libraries.psu.edu/catalog/6w924b80w.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chen, William Y. “Moduli Interpretations for Noncongruence Modular Curves.” 2016. Web. 06 May 2021.

Vancouver:

Chen WY. Moduli Interpretations for Noncongruence Modular Curves. [Internet] [Thesis]. Penn State University; 2016. [cited 2021 May 06]. Available from: https://submit-etda.libraries.psu.edu/catalog/6w924b80w.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen WY. Moduli Interpretations for Noncongruence Modular Curves. [Thesis]. Penn State University; 2016. Available from: https://submit-etda.libraries.psu.edu/catalog/6w924b80w

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3] [4] [5] … [394]

.