Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(MODULI SPACES ALGEBRAIC GEOMETRY )`

.
Showing records 1 – 30 of
11797 total matches.

◁ [1] [2] [3] [4] [5] … [394] ▶

Search Limiters

Dates

- 2017 – 2021 (3269)
- 2012 – 2016 (4353)
- 2007 – 2011 (2515)
- 2002 – 2006 (882)
- 1997 – 2001 (403)
- 1992 – 1996 (225)
- 1987 – 1991 (198)
- 1982 – 1986 (107)
- 1977 – 1981 (79)
- 1972 – 1976 (122)

Universities

- Brno University of Technology (357)
- University of São Paulo (324)
- University of Florida (318)
- Universidade Estadual de Campinas (297)
- ETH Zürich (250)
- Brazil (210)
- Universidade Estadual Paulista (UNESP) (176)
- University of Hong Kong (153)
- Pontifical Catholic University of São Paulo (146)
- University of Michigan (139)
- The Ohio State University (133)
- Virginia Tech (133)
- Michigan State University (131)
- University of Texas – Austin (131)
- University of Waterloo (122)

Department

- Mathematics (894)
- Mathématiques (188)
- Instituto de Matemática, Estatística e Computação Científica; Programa de Pós-Graduação em Matemática (148)
- Department of Mathematics (116)
- Computer Science (89)
- Informatique (86)
- Architecture (75)
- Graduate School (72)
- Mechanical Engineering (68)
- Physics (65)
- Electrical and Computer Engineering (60)
- Electrical Engineering (52)
- Applied Mathematics (44)
- Pure Sciences (44)
- Mathematics and Statistics (37)

Degrees

Levels

- doctoral (4341)
- masters (2818)
- thesis (108)
- project (21)
- doctor of philosophy ph.d. (13)

Languages

Country

- US (3657)
- Brazil (2455)
- France (779)
- Canada (711)
- UK (468)
- Czech Republic (360)
- Sweden (347)
- Australia (306)
- Netherlands (259)
- Switzerland (253)
- Greece (240)
- South Africa (237)
- India (227)
- Portugal (221)
- Hong Kong (197)

▼ Search Limiters

Queens University

1.
Harder, Andrew.
*Moduli**Spaces* of K3 Surfaces with Large Picard Number
.

Degree: Mathematics and Statistics, 2011, Queens University

URL: http://hdl.handle.net/1974/6646

► Morrison has constructed a geometric relationship between K3 surfaces with large Picard number and abelian surfaces. In particular, this establishes that the period *spaces* of…
(more)

Subjects/Keywords: K3 Surfaces ; Algebraic Geometry ; Mathematics ; Moduli spaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Harder, A. (2011). Moduli Spaces of K3 Surfaces with Large Picard Number . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/6646

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Harder, Andrew. “Moduli Spaces of K3 Surfaces with Large Picard Number .” 2011. Thesis, Queens University. Accessed May 06, 2021. http://hdl.handle.net/1974/6646.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Harder, Andrew. “Moduli Spaces of K3 Surfaces with Large Picard Number .” 2011. Web. 06 May 2021.

Vancouver:

Harder A. Moduli Spaces of K3 Surfaces with Large Picard Number . [Internet] [Thesis]. Queens University; 2011. [cited 2021 May 06]. Available from: http://hdl.handle.net/1974/6646.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Harder A. Moduli Spaces of K3 Surfaces with Large Picard Number . [Thesis]. Queens University; 2011. Available from: http://hdl.handle.net/1974/6646

Not specified: Masters Thesis or Doctoral Dissertation

University of Oxford

2.
Gross, Jacob.
*Moduli**spaces* of complexes of coherent sheaves.

Degree: PhD, 2020, University of Oxford

URL: http://ora.ox.ac.uk/objects/uuid:857c53a5-345b-4ab9-9420-f94c8030b4b3 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820698

► In this thesis we consider problems related to Joyce’s vertex algebra construction and the topology of stabilized *moduli* *spaces*. We first compute the homology of…
(more)

Subjects/Keywords: Algebraic Topology; Algebraic Geometry; Calabi-Yau Manifolds; Moduli Spaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gross, J. (2020). Moduli spaces of complexes of coherent sheaves. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:857c53a5-345b-4ab9-9420-f94c8030b4b3 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820698

Chicago Manual of Style (16^{th} Edition):

Gross, Jacob. “Moduli spaces of complexes of coherent sheaves.” 2020. Doctoral Dissertation, University of Oxford. Accessed May 06, 2021. http://ora.ox.ac.uk/objects/uuid:857c53a5-345b-4ab9-9420-f94c8030b4b3 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820698.

MLA Handbook (7^{th} Edition):

Gross, Jacob. “Moduli spaces of complexes of coherent sheaves.” 2020. Web. 06 May 2021.

Vancouver:

Gross J. Moduli spaces of complexes of coherent sheaves. [Internet] [Doctoral dissertation]. University of Oxford; 2020. [cited 2021 May 06]. Available from: http://ora.ox.ac.uk/objects/uuid:857c53a5-345b-4ab9-9420-f94c8030b4b3 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820698.

Council of Science Editors:

Gross J. Moduli spaces of complexes of coherent sheaves. [Doctoral Dissertation]. University of Oxford; 2020. Available from: http://ora.ox.ac.uk/objects/uuid:857c53a5-345b-4ab9-9420-f94c8030b4b3 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820698

Penn State University

3.
Levine, Daniel.
Cohomology of General Sheaves in *Moduli* and Existence of Semistable Sheaves on del Pezzo Surfaces.

Degree: 2020, Penn State University

URL: https://submit-etda.libraries.psu.edu/catalog/17519dul190

► Let X_{m} be a del Pezzo surface of degree 9-m, and let L ∈ Πc(X_{m}) be the total transform of a line on \PP^{2}. When…
(more)

Subjects/Keywords: Algebraic Geometry; Sheaf Cohomology; Moduli of Sheaves; del Pezzo Surfaces; Rational Surfaces; Moduli Spaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Levine, D. (2020). Cohomology of General Sheaves in Moduli and Existence of Semistable Sheaves on del Pezzo Surfaces. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/17519dul190

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Levine, Daniel. “Cohomology of General Sheaves in Moduli and Existence of Semistable Sheaves on del Pezzo Surfaces.” 2020. Thesis, Penn State University. Accessed May 06, 2021. https://submit-etda.libraries.psu.edu/catalog/17519dul190.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Levine, Daniel. “Cohomology of General Sheaves in Moduli and Existence of Semistable Sheaves on del Pezzo Surfaces.” 2020. Web. 06 May 2021.

Vancouver:

Levine D. Cohomology of General Sheaves in Moduli and Existence of Semistable Sheaves on del Pezzo Surfaces. [Internet] [Thesis]. Penn State University; 2020. [cited 2021 May 06]. Available from: https://submit-etda.libraries.psu.edu/catalog/17519dul190.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Levine D. Cohomology of General Sheaves in Moduli and Existence of Semistable Sheaves on del Pezzo Surfaces. [Thesis]. Penn State University; 2020. Available from: https://submit-etda.libraries.psu.edu/catalog/17519dul190

Not specified: Masters Thesis or Doctoral Dissertation

University of California – Berkeley

4.
Solis, Pablo.
Wonderful Loop Group Embeddings and Applications to the *Moduli* of G-bundles on Curves.

Degree: Mathematics, 2014, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/6ns944x1

► *Moduli* problems have become a central area of interest in a wide range of mathematical fields such as representation theory and topology but particularly in…
(more)

Subjects/Keywords: Mathematics; algebraic geometry; compactification; curves; loop groups; moduli spaces; principal bundles

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Solis, P. (2014). Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/6ns944x1

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Solis, Pablo. “Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves.” 2014. Thesis, University of California – Berkeley. Accessed May 06, 2021. http://www.escholarship.org/uc/item/6ns944x1.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Solis, Pablo. “Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves.” 2014. Web. 06 May 2021.

Vancouver:

Solis P. Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves. [Internet] [Thesis]. University of California – Berkeley; 2014. [cited 2021 May 06]. Available from: http://www.escholarship.org/uc/item/6ns944x1.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Solis P. Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on Curves. [Thesis]. University of California – Berkeley; 2014. Available from: http://www.escholarship.org/uc/item/6ns944x1

Not specified: Masters Thesis or Doctoral Dissertation

University of Washington

5. Zsamboki, Pal. Toward the compactification of the stack of Lie(G)-forms using perfect complexes.

Degree: PhD, 2015, University of Washington

URL: http://hdl.handle.net/1773/34022

► To establish geometric properties of an *algebraic* stack, one can find a compactification. This method has been successfully employed to find irreducible components for example…
(more)

Subjects/Keywords: derived algebraic geometry; moduli spaces; torsors; Mathematics; mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zsamboki, P. (2015). Toward the compactification of the stack of Lie(G)-forms using perfect complexes. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/34022

Chicago Manual of Style (16^{th} Edition):

Zsamboki, Pal. “Toward the compactification of the stack of Lie(G)-forms using perfect complexes.” 2015. Doctoral Dissertation, University of Washington. Accessed May 06, 2021. http://hdl.handle.net/1773/34022.

MLA Handbook (7^{th} Edition):

Zsamboki, Pal. “Toward the compactification of the stack of Lie(G)-forms using perfect complexes.” 2015. Web. 06 May 2021.

Vancouver:

Zsamboki P. Toward the compactification of the stack of Lie(G)-forms using perfect complexes. [Internet] [Doctoral dissertation]. University of Washington; 2015. [cited 2021 May 06]. Available from: http://hdl.handle.net/1773/34022.

Council of Science Editors:

Zsamboki P. Toward the compactification of the stack of Lie(G)-forms using perfect complexes. [Doctoral Dissertation]. University of Washington; 2015. Available from: http://hdl.handle.net/1773/34022

6. Han, Changho. Stable log surfaces, trigonal covers, and canonical curves of genus 4.

Degree: PhD, 2019, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707

►

We describe a compactification of the *moduli* space of pairs (S, C) where S is isomorphic to \PP^{1} × \PP^{1} and C \subset S is…
(more)

Subjects/Keywords: Algebraic Geometry; Moduli spaces

…*algebraic* *geometry*,
namely (1) the study of compact *moduli* *spaces* of surfaces of log… …varieties are themselves parametrized
by points of *algebraic* varieties, called *moduli* *spaces*. A… …characteristics, by using the existence of M g .
1
In contrast to the *geometry* of the *moduli* *spaces*… …of curves, the *geometry* of *moduli*
*spaces* of surfaces are generally unknown. Even… …*geometry* of *moduli* *spaces* of surfaces
satisfies "Murphy’s law", i.e. it can get…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Han, C. (2019). Stable log surfaces, trigonal covers, and canonical curves of genus 4. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707

Chicago Manual of Style (16^{th} Edition):

Han, Changho. “Stable log surfaces, trigonal covers, and canonical curves of genus 4.” 2019. Doctoral Dissertation, Harvard University. Accessed May 06, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707.

MLA Handbook (7^{th} Edition):

Han, Changho. “Stable log surfaces, trigonal covers, and canonical curves of genus 4.” 2019. Web. 06 May 2021.

Vancouver:

Han C. Stable log surfaces, trigonal covers, and canonical curves of genus 4. [Internet] [Doctoral dissertation]. Harvard University; 2019. [cited 2021 May 06]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707.

Council of Science Editors:

Han C. Stable log surfaces, trigonal covers, and canonical curves of genus 4. [Doctoral Dissertation]. Harvard University; 2019. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707

University of Oxford

7.
Hoskins, Victoria Amy.
*Moduli**spaces* of complexes of sheaves.

Degree: PhD, 2011, University of Oxford

URL: http://ora.ox.ac.uk/objects/uuid:aedd2719-2a38-41f9-9825-aa8f43fb872c ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558390

► This thesis is on *moduli* *spaces* of complexes of sheaves and diagrams of such *moduli* *spaces*. The objects in these diagrams are constructed as geometric…
(more)

Subjects/Keywords: 514.224; Algebraic geometry; moduli spaces; sheaves; complexes; geometric invariant theory; Harder-Narasimhan stratifications

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hoskins, V. A. (2011). Moduli spaces of complexes of sheaves. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:aedd2719-2a38-41f9-9825-aa8f43fb872c ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558390

Chicago Manual of Style (16^{th} Edition):

Hoskins, Victoria Amy. “Moduli spaces of complexes of sheaves.” 2011. Doctoral Dissertation, University of Oxford. Accessed May 06, 2021. http://ora.ox.ac.uk/objects/uuid:aedd2719-2a38-41f9-9825-aa8f43fb872c ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558390.

MLA Handbook (7^{th} Edition):

Hoskins, Victoria Amy. “Moduli spaces of complexes of sheaves.” 2011. Web. 06 May 2021.

Vancouver:

Hoskins VA. Moduli spaces of complexes of sheaves. [Internet] [Doctoral dissertation]. University of Oxford; 2011. [cited 2021 May 06]. Available from: http://ora.ox.ac.uk/objects/uuid:aedd2719-2a38-41f9-9825-aa8f43fb872c ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558390.

Council of Science Editors:

Hoskins VA. Moduli spaces of complexes of sheaves. [Doctoral Dissertation]. University of Oxford; 2011. Available from: http://ora.ox.ac.uk/objects/uuid:aedd2719-2a38-41f9-9825-aa8f43fb872c ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558390

University of Maryland

8. Long, Terence Dyer. Twist-bulge derivatives and deformations of convex real projective structures on surfaces.

Degree: Mathematics, 2015, University of Maryland

URL: http://hdl.handle.net/1903/16644

► Let S be a closed orientable surface with genus g>1 equipped with a convex ℝP}^{2} structure. A basic example of such a convex ℝP}^{2} structure…
(more)

Subjects/Keywords: Mathematics; geometry; moduli spaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Long, T. D. (2015). Twist-bulge derivatives and deformations of convex real projective structures on surfaces. (Thesis). University of Maryland. Retrieved from http://hdl.handle.net/1903/16644

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Long, Terence Dyer. “Twist-bulge derivatives and deformations of convex real projective structures on surfaces.” 2015. Thesis, University of Maryland. Accessed May 06, 2021. http://hdl.handle.net/1903/16644.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Long, Terence Dyer. “Twist-bulge derivatives and deformations of convex real projective structures on surfaces.” 2015. Web. 06 May 2021.

Vancouver:

Long TD. Twist-bulge derivatives and deformations of convex real projective structures on surfaces. [Internet] [Thesis]. University of Maryland; 2015. [cited 2021 May 06]. Available from: http://hdl.handle.net/1903/16644.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Long TD. Twist-bulge derivatives and deformations of convex real projective structures on surfaces. [Thesis]. University of Maryland; 2015. Available from: http://hdl.handle.net/1903/16644

Not specified: Masters Thesis or Doctoral Dissertation

University of Illinois – Chicago

9.
Mercer Truett Bridges (7949348).
Effective Divisors on Kontsevich *Moduli* * Spaces*.

Degree: 2018, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/23067

► We study the cone of effective divisors on Kontsevich's *moduli* space of genus 0 stable maps to projective space in the case where map is…
(more)

Subjects/Keywords: Uncategorized; birational geometry; moduli spaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

(7949348), M. T. B. (2018). Effective Divisors on Kontsevich Moduli Spaces. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/23067

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

(7949348), Mercer Truett Bridges. “Effective Divisors on Kontsevich Moduli Spaces.” 2018. Thesis, University of Illinois – Chicago. Accessed May 06, 2021. http://hdl.handle.net/10027/23067.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

(7949348), Mercer Truett Bridges. “Effective Divisors on Kontsevich Moduli Spaces.” 2018. Web. 06 May 2021.

Vancouver:

(7949348) MTB. Effective Divisors on Kontsevich Moduli Spaces. [Internet] [Thesis]. University of Illinois – Chicago; 2018. [cited 2021 May 06]. Available from: http://hdl.handle.net/10027/23067.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

(7949348) MTB. Effective Divisors on Kontsevich Moduli Spaces. [Thesis]. University of Illinois – Chicago; 2018. Available from: http://hdl.handle.net/10027/23067

Not specified: Masters Thesis or Doctoral Dissertation

University of Oxford

10.
Schlüeter, Dirk Christopher.
Universal *moduli* of parabolic sheaves on stable marked curves.

Degree: PhD, 2011, University of Oxford

URL: http://ora.ox.ac.uk/objects/uuid:b0260f8e-6654-4bec-b670-5e925fd403dd ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572475

► The topic of this thesis is the *moduli* theory of (parabolic) sheaves on stable curves. Using geometric invariant theory (GIT), universal *moduli* *spaces* of semistable…
(more)

Subjects/Keywords: 516.35; Mathematics; Geometry; algebraic geometry; moduli spaces; geometric invariant theory; parabolic sheaves; parabolic bundles; marked curves

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Schlüeter, D. C. (2011). Universal moduli of parabolic sheaves on stable marked curves. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:b0260f8e-6654-4bec-b670-5e925fd403dd ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572475

Chicago Manual of Style (16^{th} Edition):

Schlüeter, Dirk Christopher. “Universal moduli of parabolic sheaves on stable marked curves.” 2011. Doctoral Dissertation, University of Oxford. Accessed May 06, 2021. http://ora.ox.ac.uk/objects/uuid:b0260f8e-6654-4bec-b670-5e925fd403dd ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572475.

MLA Handbook (7^{th} Edition):

Schlüeter, Dirk Christopher. “Universal moduli of parabolic sheaves on stable marked curves.” 2011. Web. 06 May 2021.

Vancouver:

Schlüeter DC. Universal moduli of parabolic sheaves on stable marked curves. [Internet] [Doctoral dissertation]. University of Oxford; 2011. [cited 2021 May 06]. Available from: http://ora.ox.ac.uk/objects/uuid:b0260f8e-6654-4bec-b670-5e925fd403dd ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572475.

Council of Science Editors:

Schlüeter DC. Universal moduli of parabolic sheaves on stable marked curves. [Doctoral Dissertation]. University of Oxford; 2011. Available from: http://ora.ox.ac.uk/objects/uuid:b0260f8e-6654-4bec-b670-5e925fd403dd ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572475

University of Illinois – Chicago

11.
Timothy L. Ryan (7974164).
The Effective Cone of *Moduli* *Spaces* of Sheaves on a Smooth Quadric Surface.

Degree: 2016, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/21355

► In this paper, we provide an approach to computing the effective cone of *moduli* *spaces* of sheaves on a smooth quadric surface. We find Brill-Noether…
(more)

Subjects/Keywords: Uncategorized; algebraic geometry; moduli spaces; bridgeland stability; stability; birational geometry; effective cone; quadric surface; mmp; minimal model program

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

(7974164), T. L. R. (2016). The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/21355

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

(7974164), Timothy L. Ryan. “The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface.” 2016. Thesis, University of Illinois – Chicago. Accessed May 06, 2021. http://hdl.handle.net/10027/21355.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

(7974164), Timothy L. Ryan. “The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface.” 2016. Web. 06 May 2021.

Vancouver:

(7974164) TLR. The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface. [Internet] [Thesis]. University of Illinois – Chicago; 2016. [cited 2021 May 06]. Available from: http://hdl.handle.net/10027/21355.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

(7974164) TLR. The Effective Cone of Moduli Spaces of Sheaves on a Smooth Quadric Surface. [Thesis]. University of Illinois – Chicago; 2016. Available from: http://hdl.handle.net/10027/21355

Not specified: Masters Thesis or Doctoral Dissertation

Queens University

12.
Ren, Owen.
*Moduli**spaces* of vector bundles on toric surfaces
.

Degree: Mathematics and Statistics, Queens University

URL: http://hdl.handle.net/1974/24812

► The *moduli* *spaces* parametrizing isomorphism classes of vector bundles are poorly understood. For certain choices of the first Chern class and a suitable second Chern…
(more)

Subjects/Keywords: Mathematics ; Moduli spaces ; Algebraic geometry ; Toric surfaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ren, O. (n.d.). Moduli spaces of vector bundles on toric surfaces . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/24812

Note: this citation may be lacking information needed for this citation format:

No year of publication.

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ren, Owen. “Moduli spaces of vector bundles on toric surfaces .” Thesis, Queens University. Accessed May 06, 2021. http://hdl.handle.net/1974/24812.

Note: this citation may be lacking information needed for this citation format:

No year of publication.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ren, Owen. “Moduli spaces of vector bundles on toric surfaces .” Web. 06 May 2021.

Note: this citation may be lacking information needed for this citation format:

No year of publication.

Vancouver:

Ren O. Moduli spaces of vector bundles on toric surfaces . [Internet] [Thesis]. Queens University; [cited 2021 May 06]. Available from: http://hdl.handle.net/1974/24812.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

No year of publication.

Council of Science Editors:

Ren O. Moduli spaces of vector bundles on toric surfaces . [Thesis]. Queens University; Available from: http://hdl.handle.net/1974/24812

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

No year of publication.

13.
Galeotti, Mattia Francesco.
* Moduli* of curves with principal and spin bundles : singularities and global

Degree: Docteur es, Mathématiques, 2017, Université Pierre et Marie Curie – Paris VI

URL: http://www.theses.fr/2017PA066485

►

L'espace de modules Mgbar des courbes stables de genre g est un object central en géométrie algébrique. Du point de vue de la géométrie birationelle,… (more)

Subjects/Keywords: Géométrie algébrique; Espaces de modules; Courbes; Singularités; Recouvrements; Anneau tautologique; Algebraic geometry; Moduli spaces; Tautological ring; 510

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Galeotti, M. F. (2017). Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2017PA066485

Chicago Manual of Style (16^{th} Edition):

Galeotti, Mattia Francesco. “Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale.” 2017. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed May 06, 2021. http://www.theses.fr/2017PA066485.

MLA Handbook (7^{th} Edition):

Galeotti, Mattia Francesco. “Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale.” 2017. Web. 06 May 2021.

Vancouver:

Galeotti MF. Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. [cited 2021 May 06]. Available from: http://www.theses.fr/2017PA066485.

Council of Science Editors:

Galeotti MF. Moduli of curves with principal and spin bundles : singularities and global geometry : Modules de courbes avec un fibré spin ou principal : singularités et géométrie globale. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. Available from: http://www.theses.fr/2017PA066485

University of Georgia

14.
Arcara, Daniele.
*Moduli**spaces* of vector bundles on curves.

Degree: 2014, University of Georgia

URL: http://hdl.handle.net/10724/20727

► In this work, we generalize Bertram’s work on rank two vector bundles on a smooth irreducible projective curve to an irreducible singular curve C with…
(more)

Subjects/Keywords: Algebraic Geometry; Algebraic Curve; Vector Bundle; Moduli Space; Blow-up

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Arcara, D. (2014). Moduli spaces of vector bundles on curves. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/20727

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Arcara, Daniele. “Moduli spaces of vector bundles on curves.” 2014. Thesis, University of Georgia. Accessed May 06, 2021. http://hdl.handle.net/10724/20727.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Arcara, Daniele. “Moduli spaces of vector bundles on curves.” 2014. Web. 06 May 2021.

Vancouver:

Arcara D. Moduli spaces of vector bundles on curves. [Internet] [Thesis]. University of Georgia; 2014. [cited 2021 May 06]. Available from: http://hdl.handle.net/10724/20727.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Arcara D. Moduli spaces of vector bundles on curves. [Thesis]. University of Georgia; 2014. Available from: http://hdl.handle.net/10724/20727

Not specified: Masters Thesis or Doctoral Dissertation

University of Washington

15.
DeVleming, Kristin Elizabeth.
Compact *Moduli* of Surfaces in Three-Dimensional Projective Space.

Degree: PhD, 2018, University of Washington

URL: http://hdl.handle.net/1773/42454

► The main goal of this paper is to construct a compactification of the *moduli* space of degree d ≥ 5 hypersurfaces in ℙ^{3}, i.e. a…
(more)

Subjects/Keywords: algebra; algebraic geometry; geometry; minimal model program; moduli; Mathematics; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

DeVleming, K. E. (2018). Compact Moduli of Surfaces in Three-Dimensional Projective Space. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/42454

Chicago Manual of Style (16^{th} Edition):

DeVleming, Kristin Elizabeth. “Compact Moduli of Surfaces in Three-Dimensional Projective Space.” 2018. Doctoral Dissertation, University of Washington. Accessed May 06, 2021. http://hdl.handle.net/1773/42454.

MLA Handbook (7^{th} Edition):

DeVleming, Kristin Elizabeth. “Compact Moduli of Surfaces in Three-Dimensional Projective Space.” 2018. Web. 06 May 2021.

Vancouver:

DeVleming KE. Compact Moduli of Surfaces in Three-Dimensional Projective Space. [Internet] [Doctoral dissertation]. University of Washington; 2018. [cited 2021 May 06]. Available from: http://hdl.handle.net/1773/42454.

Council of Science Editors:

DeVleming KE. Compact Moduli of Surfaces in Three-Dimensional Projective Space. [Doctoral Dissertation]. University of Washington; 2018. Available from: http://hdl.handle.net/1773/42454

Université du Luxembourg

16.
Leytem, Alain.
Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson *moduli* *spaces* of one-dimensional sheaves on the projective plane.

Degree: 2016, Université du Luxembourg

URL: http://orbilu.uni.lu/handle/10993/23380

► This thesis consists of two individual parts, each one having an interest in itself, but which are also related to each other. In Part I…
(more)

Subjects/Keywords: algebraic geometry; non-integral torsion; purity; Simpson moduli spaces; singular sheaves; codimension; Physical, chemical, mathematical & earth Sciences :: Mathematics [G03]; Physique, chimie, mathématiques & sciences de la terre :: Mathématiques [G03]

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Leytem, A. (2016). Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane. (Doctoral Dissertation). Université du Luxembourg. Retrieved from http://orbilu.uni.lu/handle/10993/23380

Chicago Manual of Style (16^{th} Edition):

Leytem, Alain. “Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane.” 2016. Doctoral Dissertation, Université du Luxembourg. Accessed May 06, 2021. http://orbilu.uni.lu/handle/10993/23380.

MLA Handbook (7^{th} Edition):

Leytem, Alain. “Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane.” 2016. Web. 06 May 2021.

Vancouver:

Leytem A. Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane. [Internet] [Doctoral dissertation]. Université du Luxembourg; 2016. [cited 2021 May 06]. Available from: http://orbilu.uni.lu/handle/10993/23380.

Council of Science Editors:

Leytem A. Torsion and purity on non-integral schemes and singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane. [Doctoral Dissertation]. Université du Luxembourg; 2016. Available from: http://orbilu.uni.lu/handle/10993/23380

17. A. Cattaneo. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.

Degree: 2018, Università degli Studi di Milano

URL: http://hdl.handle.net/2434/606455

►

La tesi si concentra sullo studio degli automorfismi di varietà olomorfe simplettiche irriducibili di tipo K3^[n], ovvero varietà equivalenti per deformazione allo schema di Hilbert… (more)

Subjects/Keywords: complex algebraic geometry; lattice theory; holomorphic symplectic manifold; Hilbert schemes of points on K3 surfaces; automorphisms; Torelli theorem; moduli spaces; Settore MAT/03 - Geometria

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cattaneo, A. (2018). NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/606455

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Cattaneo, A.. “NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.” 2018. Thesis, Università degli Studi di Milano. Accessed May 06, 2021. http://hdl.handle.net/2434/606455.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Cattaneo, A.. “NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.” 2018. Web. 06 May 2021.

Vancouver:

Cattaneo A. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. [Internet] [Thesis]. Università degli Studi di Milano; 2018. [cited 2021 May 06]. Available from: http://hdl.handle.net/2434/606455.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cattaneo A. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. [Thesis]. Università degli Studi di Milano; 2018. Available from: http://hdl.handle.net/2434/606455

Not specified: Masters Thesis or Doctoral Dissertation

18. Sacca, Giulia. Fibrations in abelian varieties associated to Enriques surfaces .

Degree: PhD, 2013, Princeton University

URL: http://arks.princeton.edu/ark:/88435/dsp01z029p480w

► Let T be a general Enriques surface and let f: S → T be its universal cover. Consider a smooth curve C \subset T of…
(more)

Subjects/Keywords: abelian varieties; algebraic geometry; moduli spaces of sheaves

…canonical bundle is trivial.
The second part of this thesis studies the *geometry* of *moduli* *spaces*… …Introduction
*Moduli* *spaces* of sheaves on K3 surfaces are among the most studied objects… …in *algebraic* *geometry*.
Part of their interesting features is that they inherit the… …of the *moduli* space. When smooth and
projective, these *moduli* *spaces* provide examples of… …following: in every even complex dimension we have smooth
projective *moduli* *spaces* of sheaves on…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sacca, G. (2013). Fibrations in abelian varieties associated to Enriques surfaces . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01z029p480w

Chicago Manual of Style (16^{th} Edition):

Sacca, Giulia. “Fibrations in abelian varieties associated to Enriques surfaces .” 2013. Doctoral Dissertation, Princeton University. Accessed May 06, 2021. http://arks.princeton.edu/ark:/88435/dsp01z029p480w.

MLA Handbook (7^{th} Edition):

Sacca, Giulia. “Fibrations in abelian varieties associated to Enriques surfaces .” 2013. Web. 06 May 2021.

Vancouver:

Sacca G. Fibrations in abelian varieties associated to Enriques surfaces . [Internet] [Doctoral dissertation]. Princeton University; 2013. [cited 2021 May 06]. Available from: http://arks.princeton.edu/ark:/88435/dsp01z029p480w.

Council of Science Editors:

Sacca G. Fibrations in abelian varieties associated to Enriques surfaces . [Doctoral Dissertation]. Princeton University; 2013. Available from: http://arks.princeton.edu/ark:/88435/dsp01z029p480w

ETH Zürich

19.
Hubschmid, Patrik.
André-Oort conjecture for Drinfeld *moduli* * spaces*.

Degree: 2011, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/152726

Subjects/Keywords: MODULRÄUME (ALGEBRAISCHE GEOMETRIE); MODULI SPACES (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hubschmid, P. (2011). André-Oort conjecture for Drinfeld moduli spaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152726

Chicago Manual of Style (16^{th} Edition):

Hubschmid, Patrik. “André-Oort conjecture for Drinfeld moduli spaces.” 2011. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/152726.

MLA Handbook (7^{th} Edition):

Hubschmid, Patrik. “André-Oort conjecture for Drinfeld moduli spaces.” 2011. Web. 06 May 2021.

Vancouver:

Hubschmid P. André-Oort conjecture for Drinfeld moduli spaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/152726.

Council of Science Editors:

Hubschmid P. André-Oort conjecture for Drinfeld moduli spaces. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/152726

University of Texas – Austin

20. Lowrey, Parker Eastin. Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories.

Degree: PhD, Mathematics, 2010, University of Texas – Austin

URL: http://hdl.handle.net/2152/ETD-UT-2010-05-986

► Understanding the action of an autoequivalence on a triangulated category is generally a very difficult problem. If one can find a stability condition for which…
(more)

Subjects/Keywords: Category theory; Algebraic geometry; Derived categories; Moduli spaces; Autoequivalences; N-gons; Stability conditions

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lowrey, P. E. (2010). Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-05-986

Chicago Manual of Style (16^{th} Edition):

Lowrey, Parker Eastin. “Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories.” 2010. Doctoral Dissertation, University of Texas – Austin. Accessed May 06, 2021. http://hdl.handle.net/2152/ETD-UT-2010-05-986.

MLA Handbook (7^{th} Edition):

Lowrey, Parker Eastin. “Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories.” 2010. Web. 06 May 2021.

Vancouver:

Lowrey PE. Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2010. [cited 2021 May 06]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-986.

Council of Science Editors:

Lowrey PE. Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories. [Doctoral Dissertation]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-986

Columbia University

21.
Potashnik, Natasha.
Derived Categories of *Moduli* *Spaces* of Semistable Pairs over Curves.

Degree: 2016, Columbia University

URL: https://doi.org/10.7916/D8H99542

► The context of this thesis is derived categories in *algebraic* *geometry* and geo- metric quotients. Specifically, we prove the embedding of the derived category of…
(more)

Subjects/Keywords: Moduli theory; Mathematics; Derived categories (Mathematics); Geometry, Algebraic

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Potashnik, N. (2016). Derived Categories of Moduli Spaces of Semistable Pairs over Curves. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8H99542

Chicago Manual of Style (16^{th} Edition):

Potashnik, Natasha. “Derived Categories of Moduli Spaces of Semistable Pairs over Curves.” 2016. Doctoral Dissertation, Columbia University. Accessed May 06, 2021. https://doi.org/10.7916/D8H99542.

MLA Handbook (7^{th} Edition):

Potashnik, Natasha. “Derived Categories of Moduli Spaces of Semistable Pairs over Curves.” 2016. Web. 06 May 2021.

Vancouver:

Potashnik N. Derived Categories of Moduli Spaces of Semistable Pairs over Curves. [Internet] [Doctoral dissertation]. Columbia University; 2016. [cited 2021 May 06]. Available from: https://doi.org/10.7916/D8H99542.

Council of Science Editors:

Potashnik N. Derived Categories of Moduli Spaces of Semistable Pairs over Curves. [Doctoral Dissertation]. Columbia University; 2016. Available from: https://doi.org/10.7916/D8H99542

Freie Universität Berlin

22.
Trageser, Benedikt Vincent.
* Moduli* von Garbenhomomorphismen.

Degree: 2020, Freie Universität Berlin

URL: http://dx.doi.org/10.17169/refubium-27819

► *Moduli* *spaces* arise in classification problem in *algebraic* *geometry*; typically when we try to classify geometric objects we find that they have discrete invariants but…
(more)

Subjects/Keywords: algebraic geometry; moduli problem; non-reductive geometric invariant theory; ddc:512

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Trageser, B. V. (2020). Moduli von Garbenhomomorphismen. (Thesis). Freie Universität Berlin. Retrieved from http://dx.doi.org/10.17169/refubium-27819

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Trageser, Benedikt Vincent. “Moduli von Garbenhomomorphismen.” 2020. Thesis, Freie Universität Berlin. Accessed May 06, 2021. http://dx.doi.org/10.17169/refubium-27819.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Trageser, Benedikt Vincent. “Moduli von Garbenhomomorphismen.” 2020. Web. 06 May 2021.

Vancouver:

Trageser BV. Moduli von Garbenhomomorphismen. [Internet] [Thesis]. Freie Universität Berlin; 2020. [cited 2021 May 06]. Available from: http://dx.doi.org/10.17169/refubium-27819.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Trageser BV. Moduli von Garbenhomomorphismen. [Thesis]. Freie Universität Berlin; 2020. Available from: http://dx.doi.org/10.17169/refubium-27819

Not specified: Masters Thesis or Doctoral Dissertation

Northeastern University

23.
He, Zhuang.
Birational *Geometry* Of Blow-ups Of Toric Varieties And Projective *Spaces* Along Points And Lines.

Degree: 2020, Northeastern University

URL: http://hdl.handle.net/2047/D20356183

► In this thesis we study the birational *geometry* of the blow-ups of toric varieties of Picard number one at a general point, and the blow-up…
(more)

Subjects/Keywords: birational geometry; effective divisors; moduli spaces of curves; Mori dream spaces; toric varieties; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

He, Z. (2020). Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20356183

Chicago Manual of Style (16^{th} Edition):

He, Zhuang. “Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines.” 2020. Doctoral Dissertation, Northeastern University. Accessed May 06, 2021. http://hdl.handle.net/2047/D20356183.

MLA Handbook (7^{th} Edition):

He, Zhuang. “Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines.” 2020. Web. 06 May 2021.

Vancouver:

He Z. Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines. [Internet] [Doctoral dissertation]. Northeastern University; 2020. [cited 2021 May 06]. Available from: http://hdl.handle.net/2047/D20356183.

Council of Science Editors:

He Z. Birational Geometry Of Blow-ups Of Toric Varieties And Projective Spaces Along Points And Lines. [Doctoral Dissertation]. Northeastern University; 2020. Available from: http://hdl.handle.net/2047/D20356183

24. Valluri, Dinesh. Essential dimension of parabolic bundles.

Degree: 2019, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/6308

► Essential dimension of a geometric object is roughly the number of algebraically independent parameters needed to define the object. In this thesis we give upper…
(more)

Subjects/Keywords: Algebraic Stacks; Essential dimension; Moduli spaces; Root stacks; Parabolic bundles; Algebraic Geometry

…groups, *moduli* *spaces* of curves,
abelian varieties, vector bundles and, in this instance… …45
4 Transcendence degree of field of *moduli*
51
4.1
Stack of parabolic bundles, Riemann… …has been studied for several *algebraic* and
geometric objects. Examples include *algebraic*… …by essential dimension consider the following example: Given an *algebraic* group G over a… …*moduli*’ k(E) of a given vector bundle E on a curve X/k. To do this,
they make use of…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Valluri, D. (2019). Essential dimension of parabolic bundles. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/6308

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Valluri, Dinesh. “Essential dimension of parabolic bundles.” 2019. Thesis, University of Western Ontario. Accessed May 06, 2021. https://ir.lib.uwo.ca/etd/6308.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Valluri, Dinesh. “Essential dimension of parabolic bundles.” 2019. Web. 06 May 2021.

Vancouver:

Valluri D. Essential dimension of parabolic bundles. [Internet] [Thesis]. University of Western Ontario; 2019. [cited 2021 May 06]. Available from: https://ir.lib.uwo.ca/etd/6308.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Valluri D. Essential dimension of parabolic bundles. [Thesis]. University of Western Ontario; 2019. Available from: https://ir.lib.uwo.ca/etd/6308

Not specified: Masters Thesis or Doctoral Dissertation

The Ohio State University

25. Nash, Evan D., Nash. Extended Tropicalization of Spherical Varieties.

Degree: PhD, Mathematics, 2018, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1523979975350178

► The first steps in defining a notion of spherical tropicalization were recently takenby Tassos Vogiannou in his thesis and by Kiumars Kaveh and Christopher Manonin…
(more)

Subjects/Keywords: Mathematics; tropical geometry; algebraic geometry; spherical varieties; spherical homogeneous spaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nash, Evan D., N. (2018). Extended Tropicalization of Spherical Varieties. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1523979975350178

Chicago Manual of Style (16^{th} Edition):

Nash, Evan D., Nash. “Extended Tropicalization of Spherical Varieties.” 2018. Doctoral Dissertation, The Ohio State University. Accessed May 06, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1523979975350178.

MLA Handbook (7^{th} Edition):

Nash, Evan D., Nash. “Extended Tropicalization of Spherical Varieties.” 2018. Web. 06 May 2021.

Vancouver:

Nash, Evan D. N. Extended Tropicalization of Spherical Varieties. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2021 May 06]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1523979975350178.

Council of Science Editors:

Nash, Evan D. N. Extended Tropicalization of Spherical Varieties. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1523979975350178

26.
He, Zhuang.
On *Moduli* *Spaces* of Weighted Pointed Stable Curves and
Applications.

Degree: MS, Mathematics, 2015, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1437187765

► *Moduli* *spaces* of curves have been central objects for decades in *algebraic* *geometry*.This paper reviews a generalization by Hassett in 2003 of the classic *moduli*…
(more)

Subjects/Keywords: Mathematics; Moduli Spaces; Algebraic Geometry; Birational Geometry; Geometric Invariant Theory; Stacks

…from P3 . . . . . . . . . . . . . . . .
48
viii
Chapter 1: Introduction
*Moduli* *spaces* of… …curves have been central objects for decades in *algebraic* *geometry*, especially in birational… …approaches of constructions of *moduli*
*spaces* of curves, the GIT approach by Deligne, Mumford and… …the
coarse *moduli* *spaces* of stable curves of given genus g with n marked points, or the… …2003 paper [Has03], Hassett constructed *moduli* *spaces* of weighted pointed
stable…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

He, Z. (2015). On Moduli Spaces of Weighted Pointed Stable Curves and Applications. (Masters Thesis). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1437187765

Chicago Manual of Style (16^{th} Edition):

He, Zhuang. “On Moduli Spaces of Weighted Pointed Stable Curves and Applications.” 2015. Masters Thesis, The Ohio State University. Accessed May 06, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437187765.

MLA Handbook (7^{th} Edition):

He, Zhuang. “On Moduli Spaces of Weighted Pointed Stable Curves and Applications.” 2015. Web. 06 May 2021.

Vancouver:

He Z. On Moduli Spaces of Weighted Pointed Stable Curves and Applications. [Internet] [Masters thesis]. The Ohio State University; 2015. [cited 2021 May 06]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1437187765.

Council of Science Editors:

He Z. On Moduli Spaces of Weighted Pointed Stable Curves and Applications. [Masters Thesis]. The Ohio State University; 2015. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1437187765

Duke University

27. Watanabe, Tatsunari. Rational Points of Universal Curves in Positive Characteristics .

Degree: 2015, Duke University

URL: http://hdl.handle.net/10161/9874

► For the *moduli* stack \mathcal{M}_{g,n/𝔽p} of smooth curves of type (g,n) over Spec 𝔽_{p} with the function field K, we show that if g ≥ 3,…
(more)

Subjects/Keywords: Mathematics; Algebraic geometry; Moduli of curves; Positive characteristic; Rational points; Universal curves

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Watanabe, T. (2015). Rational Points of Universal Curves in Positive Characteristics . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/9874

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Watanabe, Tatsunari. “Rational Points of Universal Curves in Positive Characteristics .” 2015. Thesis, Duke University. Accessed May 06, 2021. http://hdl.handle.net/10161/9874.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Watanabe, Tatsunari. “Rational Points of Universal Curves in Positive Characteristics .” 2015. Web. 06 May 2021.

Vancouver:

Watanabe T. Rational Points of Universal Curves in Positive Characteristics . [Internet] [Thesis]. Duke University; 2015. [cited 2021 May 06]. Available from: http://hdl.handle.net/10161/9874.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Watanabe T. Rational Points of Universal Curves in Positive Characteristics . [Thesis]. Duke University; 2015. Available from: http://hdl.handle.net/10161/9874

Not specified: Masters Thesis or Doctoral Dissertation

Colorado State University

28. Blankers, Vance T. Properties of tautological classes and their intersections.

Degree: PhD, Mathematics, 2019, Colorado State University

URL: http://hdl.handle.net/10217/195376

► The tautological ring of the *moduli* space of curves is an object of interest to *algebraic* geometers in Gromov-Witten theory and enumerative *geometry* more broadly.…
(more)

Subjects/Keywords: intersection theory; tautological ring; algebraic geometry; Witten's conjecture; moduli space of curves

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Blankers, V. T. (2019). Properties of tautological classes and their intersections. (Doctoral Dissertation). Colorado State University. Retrieved from http://hdl.handle.net/10217/195376

Chicago Manual of Style (16^{th} Edition):

Blankers, Vance T. “Properties of tautological classes and their intersections.” 2019. Doctoral Dissertation, Colorado State University. Accessed May 06, 2021. http://hdl.handle.net/10217/195376.

MLA Handbook (7^{th} Edition):

Blankers, Vance T. “Properties of tautological classes and their intersections.” 2019. Web. 06 May 2021.

Vancouver:

Blankers VT. Properties of tautological classes and their intersections. [Internet] [Doctoral dissertation]. Colorado State University; 2019. [cited 2021 May 06]. Available from: http://hdl.handle.net/10217/195376.

Council of Science Editors:

Blankers VT. Properties of tautological classes and their intersections. [Doctoral Dissertation]. Colorado State University; 2019. Available from: http://hdl.handle.net/10217/195376

29. Wennink, T.N. Counting the number of trigonal curves of genus five over finite fields.

Degree: 2016, Universiteit Utrecht

URL: http://dspace.library.uu.nl:8080/handle/1874/337059

► The trigonal curves form a closed subscheme of M5, the *moduli* space of smooth curves of genus five. The cohomological data of these *spaces* can…
(more)

Subjects/Keywords: trigonal curves; moduli spaces; genus five; counting plane curves; cohomology; algebraic geometry; finite field

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wennink, T. N. (2016). Counting the number of trigonal curves of genus five over finite fields. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/337059

Chicago Manual of Style (16^{th} Edition):

Wennink, T N. “Counting the number of trigonal curves of genus five over finite fields.” 2016. Masters Thesis, Universiteit Utrecht. Accessed May 06, 2021. http://dspace.library.uu.nl:8080/handle/1874/337059.

MLA Handbook (7^{th} Edition):

Wennink, T N. “Counting the number of trigonal curves of genus five over finite fields.” 2016. Web. 06 May 2021.

Vancouver:

Wennink TN. Counting the number of trigonal curves of genus five over finite fields. [Internet] [Masters thesis]. Universiteit Utrecht; 2016. [cited 2021 May 06]. Available from: http://dspace.library.uu.nl:8080/handle/1874/337059.

Council of Science Editors:

Wennink TN. Counting the number of trigonal curves of genus five over finite fields. [Masters Thesis]. Universiteit Utrecht; 2016. Available from: http://dspace.library.uu.nl:8080/handle/1874/337059

Penn State University

30.
Chen, William Y.
* Moduli* Interpretations for Noncongruence Modular Curves.

Degree: 2016, Penn State University

URL: https://submit-etda.libraries.psu.edu/catalog/6w924b80w

► We define the notion of a ``Teichmuller level structure'' (or simply G-structure) for punctured elliptic curves, which are associated to finite 2-generated groups G. When…
(more)

Subjects/Keywords: number theory; arithmetic geometry; algebraic geometry; modular curves; galois theory; noncongruence subgroups; modular forms; unbounded denominators conjecture; elliptic curves; moduli problems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chen, W. Y. (2016). Moduli Interpretations for Noncongruence Modular Curves. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/6w924b80w

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chen, William Y. “Moduli Interpretations for Noncongruence Modular Curves.” 2016. Thesis, Penn State University. Accessed May 06, 2021. https://submit-etda.libraries.psu.edu/catalog/6w924b80w.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chen, William Y. “Moduli Interpretations for Noncongruence Modular Curves.” 2016. Web. 06 May 2021.

Vancouver:

Chen WY. Moduli Interpretations for Noncongruence Modular Curves. [Internet] [Thesis]. Penn State University; 2016. [cited 2021 May 06]. Available from: https://submit-etda.libraries.psu.edu/catalog/6w924b80w.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen WY. Moduli Interpretations for Noncongruence Modular Curves. [Thesis]. Penn State University; 2016. Available from: https://submit-etda.libraries.psu.edu/catalog/6w924b80w

Not specified: Masters Thesis or Doctoral Dissertation