Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Lucas numbers). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Washington State University

1. [No author]. Extensions in the theory of Lucas and Lehmer pseudoprimes .

Degree: 2005, Washington State University

Subjects/Keywords: Lucas numbers.; Recurrent sequences (Mathematics); Number theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

author], [. (2005). Extensions in the theory of Lucas and Lehmer pseudoprimes . (Thesis). Washington State University. Retrieved from http://hdl.handle.net/2376/368

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

author], [No. “Extensions in the theory of Lucas and Lehmer pseudoprimes .” 2005. Thesis, Washington State University. Accessed July 11, 2020. http://hdl.handle.net/2376/368.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

author], [No. “Extensions in the theory of Lucas and Lehmer pseudoprimes .” 2005. Web. 11 Jul 2020.

Vancouver:

author] [. Extensions in the theory of Lucas and Lehmer pseudoprimes . [Internet] [Thesis]. Washington State University; 2005. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2376/368.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

author] [. Extensions in the theory of Lucas and Lehmer pseudoprimes . [Thesis]. Washington State University; 2005. Available from: http://hdl.handle.net/2376/368

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Meinke, Ashley Marie. Fibonacci Numbers and Associated Matrices.

Degree: MS, College of Arts and Sciences / Department of Mathematical Science, 2011, Kent State University

  MEINKE, ASHLEY MARIE, M.S. AUGUST 2011 MATHEMATICS FIBONACCI NUMBERS AND ASSOCIATED MATRICES (43 pp.) Director of Thesis: Aloysius Bathi Kasturiarachi In this thesis, we… (more)

Subjects/Keywords: Mathematics; Fibonacci numbers; Lucas numbers; Generalized Fibonnaci numbers; Generalized weighted Fibonacci numbers; Tribonacci numbers; Generalized Tribonacci numbers; Matrix theory; Hemachandra

…f120 ; f180 ; etc. The same result is true for f1 ; f61 ; f121 ; etc. The Lucas numbers… …which will be discussed at length in Section 2.3 Lucas Numbers, share a similar property. In… …particular, the period of the Lucas numbers is 12. Table 3 illustrates this idea for Fibonacci… …909967206666939096499764990979600 Table 5: Generating Fibonacci Numbers Using (2) and (7) 2.3 Lucas… …seeds l0 = 2 and l1 = 1: The Lucas numbers are generated by the sequence, ln = ln 2 + ln 1… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Meinke, A. M. (2011). Fibonacci Numbers and Associated Matrices. (Masters Thesis). Kent State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=kent1310588704

Chicago Manual of Style (16th Edition):

Meinke, Ashley Marie. “Fibonacci Numbers and Associated Matrices.” 2011. Masters Thesis, Kent State University. Accessed July 11, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1310588704.

MLA Handbook (7th Edition):

Meinke, Ashley Marie. “Fibonacci Numbers and Associated Matrices.” 2011. Web. 11 Jul 2020.

Vancouver:

Meinke AM. Fibonacci Numbers and Associated Matrices. [Internet] [Masters thesis]. Kent State University; 2011. [cited 2020 Jul 11]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=kent1310588704.

Council of Science Editors:

Meinke AM. Fibonacci Numbers and Associated Matrices. [Masters Thesis]. Kent State University; 2011. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=kent1310588704


Macquarie University

3. Lai, Hong. The design and analysis of quantum cryptographic protocols.

Degree: 2015, Macquarie University

Empirical thesis.

1. Introduction  – 2. Preliminaries  – 3. High-capacity quantum key distribution protocols  – 4. Quantum secret sharing protocols of secure direct communication  –… (more)

Subjects/Keywords: Data encryption (Computer science); Quantum communication  – Security measures; Coding theory; quantum key distribution; quantum secret sharing; Lucas numbers; Chebyshev maps; occurrence; fountain codes; extended unitary operations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lai, H. (2015). The design and analysis of quantum cryptographic protocols. (Doctoral Dissertation). Macquarie University. Retrieved from http://hdl.handle.net/1959.14/1068045

Chicago Manual of Style (16th Edition):

Lai, Hong. “The design and analysis of quantum cryptographic protocols.” 2015. Doctoral Dissertation, Macquarie University. Accessed July 11, 2020. http://hdl.handle.net/1959.14/1068045.

MLA Handbook (7th Edition):

Lai, Hong. “The design and analysis of quantum cryptographic protocols.” 2015. Web. 11 Jul 2020.

Vancouver:

Lai H. The design and analysis of quantum cryptographic protocols. [Internet] [Doctoral dissertation]. Macquarie University; 2015. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/1959.14/1068045.

Council of Science Editors:

Lai H. The design and analysis of quantum cryptographic protocols. [Doctoral Dissertation]. Macquarie University; 2015. Available from: http://hdl.handle.net/1959.14/1068045


Université de Bordeaux I

4. Dupuy, Benjamin. Etudes sur les équations de Ramanujan-Nagell et de Nagell-Ljunggren ou semblables : Impact of formulation and mixture of two pesticides (mesotrione and tebuconazole) on their biodegradation and microbial growth.

Degree: Docteur es, Mathématiques pures, 2009, Université de Bordeaux I

Dans cette thèse, on étudie deux types d’équations diophantiennes. Une première partie de notre étude porte sur la résolution des équations dites de Ramanujan-Nagell Cx2+… (more)

Subjects/Keywords: Nagell-Ljunggren; Ramanujan-Nagell; Formes linéaires en deux logarithmes; Nombres de Lucas; Nombres de Lehmer; Diviseurs primitifs; Théorie du corps de classe; Idéaux de Mihailescu généralisés; Nombres de classes; Idéal de Stickelberger; Entiers de Jacobi; Nagell-Ljunggren; Ramanujan-Nagell; Linear forms in two logarithms; Lucas numbers; Lehmers numbers; Primitive divisors; Class ?eld theory; Generalized Mihailescu ideals; Class number; Stickelberger ideal; Jacobi integers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dupuy, B. (2009). Etudes sur les équations de Ramanujan-Nagell et de Nagell-Ljunggren ou semblables : Impact of formulation and mixture of two pesticides (mesotrione and tebuconazole) on their biodegradation and microbial growth. (Doctoral Dissertation). Université de Bordeaux I. Retrieved from http://www.theses.fr/2009BOR13819

Chicago Manual of Style (16th Edition):

Dupuy, Benjamin. “Etudes sur les équations de Ramanujan-Nagell et de Nagell-Ljunggren ou semblables : Impact of formulation and mixture of two pesticides (mesotrione and tebuconazole) on their biodegradation and microbial growth.” 2009. Doctoral Dissertation, Université de Bordeaux I. Accessed July 11, 2020. http://www.theses.fr/2009BOR13819.

MLA Handbook (7th Edition):

Dupuy, Benjamin. “Etudes sur les équations de Ramanujan-Nagell et de Nagell-Ljunggren ou semblables : Impact of formulation and mixture of two pesticides (mesotrione and tebuconazole) on their biodegradation and microbial growth.” 2009. Web. 11 Jul 2020.

Vancouver:

Dupuy B. Etudes sur les équations de Ramanujan-Nagell et de Nagell-Ljunggren ou semblables : Impact of formulation and mixture of two pesticides (mesotrione and tebuconazole) on their biodegradation and microbial growth. [Internet] [Doctoral dissertation]. Université de Bordeaux I; 2009. [cited 2020 Jul 11]. Available from: http://www.theses.fr/2009BOR13819.

Council of Science Editors:

Dupuy B. Etudes sur les équations de Ramanujan-Nagell et de Nagell-Ljunggren ou semblables : Impact of formulation and mixture of two pesticides (mesotrione and tebuconazole) on their biodegradation and microbial growth. [Doctoral Dissertation]. Université de Bordeaux I; 2009. Available from: http://www.theses.fr/2009BOR13819


University of South Florida

5. Salter, Ena. Fibonacci Vectors.

Degree: 2005, University of South Florida

 By the n-th Fibonacci (respectively Lucas) vector of length m, we mean the vector whose components are the n-th through (n+m-1)-st Fibonacci (respectively Lucas) numbers.… (more)

Subjects/Keywords: Linear algebra; Lucas numbers; Product identites; Asymptotics; Golden ratio; American Studies; Arts and Humanities

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Salter, E. (2005). Fibonacci Vectors. (Thesis). University of South Florida. Retrieved from https://scholarcommons.usf.edu/etd/841

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Salter, Ena. “Fibonacci Vectors.” 2005. Thesis, University of South Florida. Accessed July 11, 2020. https://scholarcommons.usf.edu/etd/841.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Salter, Ena. “Fibonacci Vectors.” 2005. Web. 11 Jul 2020.

Vancouver:

Salter E. Fibonacci Vectors. [Internet] [Thesis]. University of South Florida; 2005. [cited 2020 Jul 11]. Available from: https://scholarcommons.usf.edu/etd/841.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Salter E. Fibonacci Vectors. [Thesis]. University of South Florida; 2005. Available from: https://scholarcommons.usf.edu/etd/841

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

6. Lahr, Joseph. Theorie elektrischer Leitungen unter Anwendung und Erweiterung der Fibonacci-Funktion.

Degree: 1981, ETH Zürich

Subjects/Keywords: ELEKTRISCHE SCHALTKREISE + ELEKTRONISCHE SCHALTKREISE (ELEKTROTECHNIK); MODELLRECHNUNG/ELEKTROTECHNIK, ELEKTRONIK, NACHRICHTENTECHNIK, MIKROELEKTRONIK; FIBONACCI-ZAHLEN + LUCAS-ZAHLEN (ZAHLENTHEORIE); ELECTRICAL CIRCUITS + ELECTRONIC CIRCUITS (ELECTRICAL ENGINEERING); MATHEMATICAL MODELING IN ELECTRICAL ENGINEERING, ELECTRONICS, TELECOMMUNICATIONS, MICROELECTRONICS; FIBONACCI NUMBERS + LUCAS NUMBERS (NUMBER THEORY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lahr, J. (1981). Theorie elektrischer Leitungen unter Anwendung und Erweiterung der Fibonacci-Funktion. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/137263

Chicago Manual of Style (16th Edition):

Lahr, Joseph. “Theorie elektrischer Leitungen unter Anwendung und Erweiterung der Fibonacci-Funktion.” 1981. Doctoral Dissertation, ETH Zürich. Accessed July 11, 2020. http://hdl.handle.net/20.500.11850/137263.

MLA Handbook (7th Edition):

Lahr, Joseph. “Theorie elektrischer Leitungen unter Anwendung und Erweiterung der Fibonacci-Funktion.” 1981. Web. 11 Jul 2020.

Vancouver:

Lahr J. Theorie elektrischer Leitungen unter Anwendung und Erweiterung der Fibonacci-Funktion. [Internet] [Doctoral dissertation]. ETH Zürich; 1981. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/20.500.11850/137263.

Council of Science Editors:

Lahr J. Theorie elektrischer Leitungen unter Anwendung und Erweiterung der Fibonacci-Funktion. [Doctoral Dissertation]. ETH Zürich; 1981. Available from: http://hdl.handle.net/20.500.11850/137263

.