Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Local Cohomology). Showing records 1 – 21 of 21 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Washington

1. Cameron, James Cunningham. On the Duflot filtration for equivariant cohomology rings.

Degree: PhD, 2018, University of Washington

 We study the Fp-cohomology rings of the classifying space of a compact Lie group G using methods from equivariant cohomology. Building on ideas of Duflot… (more)

Subjects/Keywords: cohomology; equivariant; local; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cameron, J. C. (2018). On the Duflot filtration for equivariant cohomology rings. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/42460

Chicago Manual of Style (16th Edition):

Cameron, James Cunningham. “On the Duflot filtration for equivariant cohomology rings.” 2018. Doctoral Dissertation, University of Washington. Accessed October 21, 2020. http://hdl.handle.net/1773/42460.

MLA Handbook (7th Edition):

Cameron, James Cunningham. “On the Duflot filtration for equivariant cohomology rings.” 2018. Web. 21 Oct 2020.

Vancouver:

Cameron JC. On the Duflot filtration for equivariant cohomology rings. [Internet] [Doctoral dissertation]. University of Washington; 2018. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/1773/42460.

Council of Science Editors:

Cameron JC. On the Duflot filtration for equivariant cohomology rings. [Doctoral Dissertation]. University of Washington; 2018. Available from: http://hdl.handle.net/1773/42460


University of Utah

2. Jeffries, Kenneth Carl. Rings of invariants, f-regularity, and local cohomology.

Degree: PhD, Mathematics, 2015, University of Utah

 First, we recall some classical results from invariant theory, and the direct summand property of ring extensions. We review the local cohomology functors and the… (more)

Subjects/Keywords: F-Regularity; Invariant theory; Local cohomology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jeffries, K. C. (2015). Rings of invariants, f-regularity, and local cohomology. (Doctoral Dissertation). University of Utah. Retrieved from http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/3758/rec/2110

Chicago Manual of Style (16th Edition):

Jeffries, Kenneth Carl. “Rings of invariants, f-regularity, and local cohomology.” 2015. Doctoral Dissertation, University of Utah. Accessed October 21, 2020. http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/3758/rec/2110.

MLA Handbook (7th Edition):

Jeffries, Kenneth Carl. “Rings of invariants, f-regularity, and local cohomology.” 2015. Web. 21 Oct 2020.

Vancouver:

Jeffries KC. Rings of invariants, f-regularity, and local cohomology. [Internet] [Doctoral dissertation]. University of Utah; 2015. [cited 2020 Oct 21]. Available from: http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/3758/rec/2110.

Council of Science Editors:

Jeffries KC. Rings of invariants, f-regularity, and local cohomology. [Doctoral Dissertation]. University of Utah; 2015. Available from: http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/3758/rec/2110

3. Zhang, Yi. Local cohomology modules over polynomial rings of prime characteristic.

Degree: PhD, Mathematics, 2012, University of Minnesota

Subjects/Keywords: Local Cohomology

…Chapter 1 Introduction Local cohomology theory, developed by A. Grothendieck, played a… …Since then, local cohomology theory has become an important and interesting research area of… …fundamentals of local cohomology. Chapter 3 presents the local duality and then our adjointness… …Chapter 2 Local Cohomology 2.1 Definitions Algebraically, let R be a noetherian ring, I an… …the local cohomology module of M with support in I. There are other different approaches to… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, Y. (2012). Local cohomology modules over polynomial rings of prime characteristic. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/139871

Chicago Manual of Style (16th Edition):

Zhang, Yi. “Local cohomology modules over polynomial rings of prime characteristic.” 2012. Doctoral Dissertation, University of Minnesota. Accessed October 21, 2020. http://purl.umn.edu/139871.

MLA Handbook (7th Edition):

Zhang, Yi. “Local cohomology modules over polynomial rings of prime characteristic.” 2012. Web. 21 Oct 2020.

Vancouver:

Zhang Y. Local cohomology modules over polynomial rings of prime characteristic. [Internet] [Doctoral dissertation]. University of Minnesota; 2012. [cited 2020 Oct 21]. Available from: http://purl.umn.edu/139871.

Council of Science Editors:

Zhang Y. Local cohomology modules over polynomial rings of prime characteristic. [Doctoral Dissertation]. University of Minnesota; 2012. Available from: http://purl.umn.edu/139871


University of Utah

4. Chan, Julian. Integer torsion in local cohomology, and questions on tight closure theory.

Degree: PhD, Mathematics, 2011, University of Utah

 Grothendieck’s theory of local cohomology has applications to basic questions such as determining the minimal number of polynomial equations needed to define an algebraic set.… (more)

Subjects/Keywords: Integer torsion; Cohomology; Tight closure theory; Grothendieck’s theory; Local cohomology; F-injectivity; Frobenius action

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chan, J. (2011). Integer torsion in local cohomology, and questions on tight closure theory. (Doctoral Dissertation). University of Utah. Retrieved from http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/338/rec/1371

Chicago Manual of Style (16th Edition):

Chan, Julian. “Integer torsion in local cohomology, and questions on tight closure theory.” 2011. Doctoral Dissertation, University of Utah. Accessed October 21, 2020. http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/338/rec/1371.

MLA Handbook (7th Edition):

Chan, Julian. “Integer torsion in local cohomology, and questions on tight closure theory.” 2011. Web. 21 Oct 2020.

Vancouver:

Chan J. Integer torsion in local cohomology, and questions on tight closure theory. [Internet] [Doctoral dissertation]. University of Utah; 2011. [cited 2020 Oct 21]. Available from: http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/338/rec/1371.

Council of Science Editors:

Chan J. Integer torsion in local cohomology, and questions on tight closure theory. [Doctoral Dissertation]. University of Utah; 2011. Available from: http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/338/rec/1371


University of Minnesota

5. Switala, Nicholas. Some invariants of nonsingular projective varieties and complete local rings.

Degree: PhD, Mathematics, 2015, University of Minnesota

 In this thesis, we establish some results concerning invariants of nonsingular projective varieties and complete local rings (in characteristic zero) which are defined using local(more)

Subjects/Keywords: Algebraic de Rham cohomology; D-modules; Local cohomology; Lyubeznik numbers; Matlis duality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Switala, N. (2015). Some invariants of nonsingular projective varieties and complete local rings. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/174895

Chicago Manual of Style (16th Edition):

Switala, Nicholas. “Some invariants of nonsingular projective varieties and complete local rings.” 2015. Doctoral Dissertation, University of Minnesota. Accessed October 21, 2020. http://hdl.handle.net/11299/174895.

MLA Handbook (7th Edition):

Switala, Nicholas. “Some invariants of nonsingular projective varieties and complete local rings.” 2015. Web. 21 Oct 2020.

Vancouver:

Switala N. Some invariants of nonsingular projective varieties and complete local rings. [Internet] [Doctoral dissertation]. University of Minnesota; 2015. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/11299/174895.

Council of Science Editors:

Switala N. Some invariants of nonsingular projective varieties and complete local rings. [Doctoral Dissertation]. University of Minnesota; 2015. Available from: http://hdl.handle.net/11299/174895

6. Costa, Esdras Teixeira. Fibrados vetoriais sobre \"spherical space forms\" tridimensionais.

Degree: PhD, Matemática, 2006, University of São Paulo

Neste trabalho consideramos o problema de enumerar G-fibrados sobre variedades de dimensão baixa (menor ou igual a 3), em particular fibrados vetoriais sobre as ?spherical… (more)

Subjects/Keywords: Cohomology; Fiber bundles; Local coefficients

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Costa, E. T. (2006). Fibrados vetoriais sobre \"spherical space forms\" tridimensionais. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27092006-103925/ ;

Chicago Manual of Style (16th Edition):

Costa, Esdras Teixeira. “Fibrados vetoriais sobre \"spherical space forms\" tridimensionais.” 2006. Doctoral Dissertation, University of São Paulo. Accessed October 21, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27092006-103925/ ;.

MLA Handbook (7th Edition):

Costa, Esdras Teixeira. “Fibrados vetoriais sobre \"spherical space forms\" tridimensionais.” 2006. Web. 21 Oct 2020.

Vancouver:

Costa ET. Fibrados vetoriais sobre \"spherical space forms\" tridimensionais. [Internet] [Doctoral dissertation]. University of São Paulo; 2006. [cited 2020 Oct 21]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27092006-103925/ ;.

Council of Science Editors:

Costa ET. Fibrados vetoriais sobre \"spherical space forms\" tridimensionais. [Doctoral Dissertation]. University of São Paulo; 2006. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27092006-103925/ ;


University of Michigan

7. Witt, Emily Elspeth. Local Cohomology and Group Actions.

Degree: PhD, Mathematics, 2011, University of Michigan

 Suppose that k is a field of characteristic zero, X is an r by s matrix of indeterminates, where r is less than or equal… (more)

Subjects/Keywords: Local Cohomology; Determinantal Ideals; Ideals of Maximal Minors; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Witt, E. E. (2011). Local Cohomology and Group Actions. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/86460

Chicago Manual of Style (16th Edition):

Witt, Emily Elspeth. “Local Cohomology and Group Actions.” 2011. Doctoral Dissertation, University of Michigan. Accessed October 21, 2020. http://hdl.handle.net/2027.42/86460.

MLA Handbook (7th Edition):

Witt, Emily Elspeth. “Local Cohomology and Group Actions.” 2011. Web. 21 Oct 2020.

Vancouver:

Witt EE. Local Cohomology and Group Actions. [Internet] [Doctoral dissertation]. University of Michigan; 2011. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/2027.42/86460.

Council of Science Editors:

Witt EE. Local Cohomology and Group Actions. [Doctoral Dissertation]. University of Michigan; 2011. Available from: http://hdl.handle.net/2027.42/86460


University of Notre Dame

8. Michael Perlman. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.

Degree: Mathematics, 2020, University of Notre Dame

  Let G be a connected linear algebraic group acting on a smooth complex variety X with finitely many orbits. In this case, the category… (more)

Subjects/Keywords: Commutative Algebra; Algebraic Geometry; Local Cohomology; D-modules; Group Actions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perlman, M. (2020). Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/g732d79512m

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Perlman, Michael. “Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.” 2020. Thesis, University of Notre Dame. Accessed October 21, 2020. https://curate.nd.edu/show/g732d79512m.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Perlman, Michael. “Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.” 2020. Web. 21 Oct 2020.

Vancouver:

Perlman M. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. [Internet] [Thesis]. University of Notre Dame; 2020. [cited 2020 Oct 21]. Available from: https://curate.nd.edu/show/g732d79512m.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perlman M. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. [Thesis]. University of Notre Dame; 2020. Available from: https://curate.nd.edu/show/g732d79512m

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

9. Nunez-Betancourt, Luis Cristobal. Finiteness Properties of Local Cohomology.

Degree: PhD, Mathematics, 2013, University of Michigan

Local cohomology modules have played an important role in commutative algebra. These modules are usually not finitely generated; however, they have finiteness properties over local(more)

Subjects/Keywords: Local Cohomology; Lyubeznik Numbers; Mathematics; Science

…properties of local cohomology modules over a ring and their use in the study of singularity. This… …difference between the types of singularities previously described. 2 I.2 Local cohomology In… …this thesis: local cohomology (see Chapter II.3). These modules were first… …R is an ideal, we denote the i-th local cohomology of M with support in I by i HI (M… …local cohomology of modules and cohomology 1 of sheaves is that the elements of HI (M… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nunez-Betancourt, L. C. (2013). Finiteness Properties of Local Cohomology. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/97791

Chicago Manual of Style (16th Edition):

Nunez-Betancourt, Luis Cristobal. “Finiteness Properties of Local Cohomology.” 2013. Doctoral Dissertation, University of Michigan. Accessed October 21, 2020. http://hdl.handle.net/2027.42/97791.

MLA Handbook (7th Edition):

Nunez-Betancourt, Luis Cristobal. “Finiteness Properties of Local Cohomology.” 2013. Web. 21 Oct 2020.

Vancouver:

Nunez-Betancourt LC. Finiteness Properties of Local Cohomology. [Internet] [Doctoral dissertation]. University of Michigan; 2013. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/2027.42/97791.

Council of Science Editors:

Nunez-Betancourt LC. Finiteness Properties of Local Cohomology. [Doctoral Dissertation]. University of Michigan; 2013. Available from: http://hdl.handle.net/2027.42/97791

10. Robbins, Hannah Reid. Finiteness of Associated Primes of Local Cohomology Modules.

Degree: PhD, Mathematics, 2008, University of Michigan

 In this thesis we investigate when the set of primes of a local cohomology module is finite. We show that there are only finitely many… (more)

Subjects/Keywords: Associated Primes of Local Cohomology; Mathematics; Science

…basic theory of local cohomology which underlies our work, as well as some of the tools used… …x29;. i We define the ith local cohomology module of I on M , HI (M ), to be the… …Below are some basic facts about these local cohomology modules. For proofs we refer the… …Grothendieck [Gro66]. One very nice property of local cohomology is that it has some… …first non-vanishing local cohomology module has a finite assassinator. The next results of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Robbins, H. R. (2008). Finiteness of Associated Primes of Local Cohomology Modules. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/60862

Chicago Manual of Style (16th Edition):

Robbins, Hannah Reid. “Finiteness of Associated Primes of Local Cohomology Modules.” 2008. Doctoral Dissertation, University of Michigan. Accessed October 21, 2020. http://hdl.handle.net/2027.42/60862.

MLA Handbook (7th Edition):

Robbins, Hannah Reid. “Finiteness of Associated Primes of Local Cohomology Modules.” 2008. Web. 21 Oct 2020.

Vancouver:

Robbins HR. Finiteness of Associated Primes of Local Cohomology Modules. [Internet] [Doctoral dissertation]. University of Michigan; 2008. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/2027.42/60862.

Council of Science Editors:

Robbins HR. Finiteness of Associated Primes of Local Cohomology Modules. [Doctoral Dissertation]. University of Michigan; 2008. Available from: http://hdl.handle.net/2027.42/60862

11. Barrera III, Roberto. Local Cohomology: Combinatorics and D-Modules.

Degree: PhD, Mathematics, 2017, Texas A&M University

 In this thesis, we study combinatorial and D-module theoretic aspects of local cohomology. Viewing local cohomology from the point of view of A-hypergeometric systems, the… (more)

Subjects/Keywords: local cohomology; D-modules; toric ideals

…xv viii 1. INTRODUCTION Local cohomology was introduced by Alexander Grothendieck to… …prove Lefschetztype theorems. Since its introduction, local cohomology has found numerous… …connections with other areas of mathematics. Algebraically, local cohomology modules can be used to… …measure the dimension and depth of a module on an ideal. As a consequence, local cohomology can… …be used to test if a ring is Cohen-Macaulay or Gorenstein. Local cohomology can also assist… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barrera III, R. (2017). Local Cohomology: Combinatorics and D-Modules. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/166092

Chicago Manual of Style (16th Edition):

Barrera III, Roberto. “Local Cohomology: Combinatorics and D-Modules.” 2017. Doctoral Dissertation, Texas A&M University. Accessed October 21, 2020. http://hdl.handle.net/1969.1/166092.

MLA Handbook (7th Edition):

Barrera III, Roberto. “Local Cohomology: Combinatorics and D-Modules.” 2017. Web. 21 Oct 2020.

Vancouver:

Barrera III R. Local Cohomology: Combinatorics and D-Modules. [Internet] [Doctoral dissertation]. Texas A&M University; 2017. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/1969.1/166092.

Council of Science Editors:

Barrera III R. Local Cohomology: Combinatorics and D-Modules. [Doctoral Dissertation]. Texas A&M University; 2017. Available from: http://hdl.handle.net/1969.1/166092

12. Molinier, Rémi. Cohomology with twisted coefficients of the geometric realization of linking systems : Cohomologie à coefficients tordus de la réalisation géométrique de systèmes de liaison.

Degree: Docteur es, Mathématiques, 2015, Sorbonne Paris Cité

Nous présentons une étude de la cohomologie à coefficients tordus de la réalisation géométrique des systèmes de liaison. Plus précisément, si (S, Ƒ, ℒ) est… (more)

Subjects/Keywords: Système de fusion; Cohomologie à coefficients tordus; Classifiant; Cohomologie des groupes; Systeme de laison; Groupe fini p-local; Fusion system; Cohomology with twisted coefficients; Cohomology of groups; System of laying; P-Local finite group

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Molinier, R. (2015). Cohomology with twisted coefficients of the geometric realization of linking systems : Cohomologie à coefficients tordus de la réalisation géométrique de systèmes de liaison. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2015USPCD021

Chicago Manual of Style (16th Edition):

Molinier, Rémi. “Cohomology with twisted coefficients of the geometric realization of linking systems : Cohomologie à coefficients tordus de la réalisation géométrique de systèmes de liaison.” 2015. Doctoral Dissertation, Sorbonne Paris Cité. Accessed October 21, 2020. http://www.theses.fr/2015USPCD021.

MLA Handbook (7th Edition):

Molinier, Rémi. “Cohomology with twisted coefficients of the geometric realization of linking systems : Cohomologie à coefficients tordus de la réalisation géométrique de systèmes de liaison.” 2015. Web. 21 Oct 2020.

Vancouver:

Molinier R. Cohomology with twisted coefficients of the geometric realization of linking systems : Cohomologie à coefficients tordus de la réalisation géométrique de systèmes de liaison. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2015. [cited 2020 Oct 21]. Available from: http://www.theses.fr/2015USPCD021.

Council of Science Editors:

Molinier R. Cohomology with twisted coefficients of the geometric realization of linking systems : Cohomologie à coefficients tordus de la réalisation géométrique de systèmes de liaison. [Doctoral Dissertation]. Sorbonne Paris Cité; 2015. Available from: http://www.theses.fr/2015USPCD021


University of Michigan

13. Denham, Graham Campbell. Local systems on the complexification of an oriented matroid.

Degree: PhD, Pure Sciences, 1999, University of Michigan

 The dissertation is concerned with topological invariants of arrangements of hyperplanes in complex affine space, particularly those that are defined over the real numbers, in… (more)

Subjects/Keywords: Cohomology; Complexification; Hyperplane Arrangements; Local; Milnor Fibres; Oriented Matroid; Systems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Denham, G. C. (1999). Local systems on the complexification of an oriented matroid. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/131881

Chicago Manual of Style (16th Edition):

Denham, Graham Campbell. “Local systems on the complexification of an oriented matroid.” 1999. Doctoral Dissertation, University of Michigan. Accessed October 21, 2020. http://hdl.handle.net/2027.42/131881.

MLA Handbook (7th Edition):

Denham, Graham Campbell. “Local systems on the complexification of an oriented matroid.” 1999. Web. 21 Oct 2020.

Vancouver:

Denham GC. Local systems on the complexification of an oriented matroid. [Internet] [Doctoral dissertation]. University of Michigan; 1999. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/2027.42/131881.

Council of Science Editors:

Denham GC. Local systems on the complexification of an oriented matroid. [Doctoral Dissertation]. University of Michigan; 1999. Available from: http://hdl.handle.net/2027.42/131881

14. Ma, Linquan. The Frobenius Endomorphism and Multiplicities.

Degree: PhD, Mathematics, 2014, University of Michigan

 The dissertation utilizes the Frobenius endomorphism in positive characteristic to attack several problems in local cohomology and multiplicities. The first main result proves that local(more)

Subjects/Keywords: Frobenius, Local Cohomology, F-modules, Multiplicity, Lech's Conjecture; Mathematics; Science

…it induces a natural action on each local cohomology module Hmi (R). We say a… …local ring is F -injective if F acts injectively on all of the local cohomology modules of R… …cohomology One of our interests in studying the Frobenius structure on local cohomology modules is… …x28;R, m), all local cohomology modules Hmi (R) have only finitely many F… …xn ]]. Then the following conditions on R are equivalent: 1. All local cohomology… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ma, L. (2014). The Frobenius Endomorphism and Multiplicities. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/108971

Chicago Manual of Style (16th Edition):

Ma, Linquan. “The Frobenius Endomorphism and Multiplicities.” 2014. Doctoral Dissertation, University of Michigan. Accessed October 21, 2020. http://hdl.handle.net/2027.42/108971.

MLA Handbook (7th Edition):

Ma, Linquan. “The Frobenius Endomorphism and Multiplicities.” 2014. Web. 21 Oct 2020.

Vancouver:

Ma L. The Frobenius Endomorphism and Multiplicities. [Internet] [Doctoral dissertation]. University of Michigan; 2014. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/2027.42/108971.

Council of Science Editors:

Ma L. The Frobenius Endomorphism and Multiplicities. [Doctoral Dissertation]. University of Michigan; 2014. Available from: http://hdl.handle.net/2027.42/108971

15. Dejoncheere, Benoît. Étude des opérateurs différentiels globaux sur certaines variétés algébriques projectives : On global differential operators on some projective algebraic varieties.

Degree: Docteur es, Mathématiques, 2016, Lyon

Initiée indépendamment par Beilinson et Bernstein et par Brylinski et Kashiwara, l'étude des opérateurs différentiels sur les variétés de drapeaux complets a permis de répondre… (more)

Subjects/Keywords: Compactifications magnifiques; Opérateurs différentiels; Variétés de drapeaux; Quotients GIT; Cohomologie locale; Wonderful compactifications; Differential operators; Flag varieties; GIT quotients; Local cohomology; 512

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dejoncheere, B. (2016). Étude des opérateurs différentiels globaux sur certaines variétés algébriques projectives : On global differential operators on some projective algebraic varieties. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2016LYSE1310

Chicago Manual of Style (16th Edition):

Dejoncheere, Benoît. “Étude des opérateurs différentiels globaux sur certaines variétés algébriques projectives : On global differential operators on some projective algebraic varieties.” 2016. Doctoral Dissertation, Lyon. Accessed October 21, 2020. http://www.theses.fr/2016LYSE1310.

MLA Handbook (7th Edition):

Dejoncheere, Benoît. “Étude des opérateurs différentiels globaux sur certaines variétés algébriques projectives : On global differential operators on some projective algebraic varieties.” 2016. Web. 21 Oct 2020.

Vancouver:

Dejoncheere B. Étude des opérateurs différentiels globaux sur certaines variétés algébriques projectives : On global differential operators on some projective algebraic varieties. [Internet] [Doctoral dissertation]. Lyon; 2016. [cited 2020 Oct 21]. Available from: http://www.theses.fr/2016LYSE1310.

Council of Science Editors:

Dejoncheere B. Étude des opérateurs différentiels globaux sur certaines variétés algébriques projectives : On global differential operators on some projective algebraic varieties. [Doctoral Dissertation]. Lyon; 2016. Available from: http://www.theses.fr/2016LYSE1310

16. Izquierdo, Diego. Dualité et principe local-global sur les corps de fonctions : Duality and local-global principle over function fields.

Degree: Docteur es, Mathématiques fondamentales, 2016, Université Paris-Saclay (ComUE)

Dans cette thèse, nous nous intéressons à l'arithmétique de certains corps de fonctions. Nous cherchons à établir dans un premier temps des théorèmes de dualité… (more)

Subjects/Keywords: Corps de fonctions; Dualité arithmétique; Groupes algébriques; Approximation faible; Torseurs; Cohomologie galoisienne; Corps locaux supérieurs; Anneaux locaux de dimension 2; Function fields; Arithmetic duality; Algebraic groups; Weak approximation; Torsors; Galois cohomology; Higher-dimensional local fields; 2-dimensional local rings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Izquierdo, D. (2016). Dualité et principe local-global sur les corps de fonctions : Duality and local-global principle over function fields. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2016SACLS345

Chicago Manual of Style (16th Edition):

Izquierdo, Diego. “Dualité et principe local-global sur les corps de fonctions : Duality and local-global principle over function fields.” 2016. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed October 21, 2020. http://www.theses.fr/2016SACLS345.

MLA Handbook (7th Edition):

Izquierdo, Diego. “Dualité et principe local-global sur les corps de fonctions : Duality and local-global principle over function fields.” 2016. Web. 21 Oct 2020.

Vancouver:

Izquierdo D. Dualité et principe local-global sur les corps de fonctions : Duality and local-global principle over function fields. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2016. [cited 2020 Oct 21]. Available from: http://www.theses.fr/2016SACLS345.

Council of Science Editors:

Izquierdo D. Dualité et principe local-global sur les corps de fonctions : Duality and local-global principle over function fields. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2016. Available from: http://www.theses.fr/2016SACLS345

17. Melo, Thiago de. "Enumeração dos fibrados vetoriais sobre superfícies fechadas".

Degree: Mestrado, Matemática, 2005, University of São Paulo

O objetivo desse trabalho é fazer uma enumeração dos fibrados planos reais sobre algumas superfícies, como por exemplo, a esfera e o g-toro. Entre outras… (more)

Subjects/Keywords: (co)homologia com coeficientes locais; classes de homotopia; cohomology with local coefficients; fiber bundles; fibrados; fibrados vetoriais; homotopy classes; vector bundles

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Melo, T. d. (2005). "Enumeração dos fibrados vetoriais sobre superfícies fechadas". (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-13052005-193219/ ;

Chicago Manual of Style (16th Edition):

Melo, Thiago de. “"Enumeração dos fibrados vetoriais sobre superfícies fechadas".” 2005. Masters Thesis, University of São Paulo. Accessed October 21, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-13052005-193219/ ;.

MLA Handbook (7th Edition):

Melo, Thiago de. “"Enumeração dos fibrados vetoriais sobre superfícies fechadas".” 2005. Web. 21 Oct 2020.

Vancouver:

Melo Td. "Enumeração dos fibrados vetoriais sobre superfícies fechadas". [Internet] [Masters thesis]. University of São Paulo; 2005. [cited 2020 Oct 21]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-13052005-193219/ ;.

Council of Science Editors:

Melo Td. "Enumeração dos fibrados vetoriais sobre superfícies fechadas". [Masters Thesis]. University of São Paulo; 2005. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-13052005-193219/ ;


University of Michigan

18. Stubbs, Joe. Potent Elements and Tight Closure in Artinian Modules.

Degree: PhD, Mathematics, 2008, University of Michigan

 In this thesis we develop the theory of potent elements, a new method for studying the question of whether tight closure equals finitistic tight closure… (more)

Subjects/Keywords: Tight Closure; Artinian Module; Potent Element; Isolated Singularity; Local Cohomology; Finitistic Tight Closure; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stubbs, J. (2008). Potent Elements and Tight Closure in Artinian Modules. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/60783

Chicago Manual of Style (16th Edition):

Stubbs, Joe. “Potent Elements and Tight Closure in Artinian Modules.” 2008. Doctoral Dissertation, University of Michigan. Accessed October 21, 2020. http://hdl.handle.net/2027.42/60783.

MLA Handbook (7th Edition):

Stubbs, Joe. “Potent Elements and Tight Closure in Artinian Modules.” 2008. Web. 21 Oct 2020.

Vancouver:

Stubbs J. Potent Elements and Tight Closure in Artinian Modules. [Internet] [Doctoral dissertation]. University of Michigan; 2008. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/2027.42/60783.

Council of Science Editors:

Stubbs J. Potent Elements and Tight Closure in Artinian Modules. [Doctoral Dissertation]. University of Michigan; 2008. Available from: http://hdl.handle.net/2027.42/60783


Colorado State University

19. Lynn, Rebecca E. Multiplicities and equivariant cohomology.

Degree: PhD, Mathematics, 2010, Colorado State University

 The aim of this paper is to address the following problem: how to relate the algebraic definitions and computations of multiplicity from commutative algebra to… (more)

Subjects/Keywords: multiplicity; graded ring; fiber bundle; equivariant cohomology; commutative algebra; algebraic topology; Multiplicity (Mathematics); Commutative algebra; Local rings; Graded rings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lynn, R. E. (2010). Multiplicities and equivariant cohomology. (Doctoral Dissertation). Colorado State University. Retrieved from http://hdl.handle.net/10217/39043

Chicago Manual of Style (16th Edition):

Lynn, Rebecca E. “Multiplicities and equivariant cohomology.” 2010. Doctoral Dissertation, Colorado State University. Accessed October 21, 2020. http://hdl.handle.net/10217/39043.

MLA Handbook (7th Edition):

Lynn, Rebecca E. “Multiplicities and equivariant cohomology.” 2010. Web. 21 Oct 2020.

Vancouver:

Lynn RE. Multiplicities and equivariant cohomology. [Internet] [Doctoral dissertation]. Colorado State University; 2010. [cited 2020 Oct 21]. Available from: http://hdl.handle.net/10217/39043.

Council of Science Editors:

Lynn RE. Multiplicities and equivariant cohomology. [Doctoral Dissertation]. Colorado State University; 2010. Available from: http://hdl.handle.net/10217/39043

20. Bujard, Cédric. Finite subgroups of the extended Morava stabilizer groups : Sous-groupes finis des groupes de stabilisateur étendus de Morava.

Degree: Docteur es, Mathématiques, 2012, Université de Strasbourg

L'objet de la thèse est la classification à conjugaison près des sous-groupes finis du groupe de stabilisateur (classique) de Morava Sn et du groupe de… (more)

Subjects/Keywords: Loi de groupe formel de hauteur finie; Groupe de stabilisateur de Morava; Cohomologie des groupes; Extensions de groupes; Algèbre à division; Groupe de Brauer; Corps locaux; Théorie du corps de classes; Formal group laws of finite height; Morava stabilizer groups; Cohomology of groups; Division algebras over local fields; Local classfield theory; 512; 516

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bujard, C. (2012). Finite subgroups of the extended Morava stabilizer groups : Sous-groupes finis des groupes de stabilisateur étendus de Morava. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2012STRAD010

Chicago Manual of Style (16th Edition):

Bujard, Cédric. “Finite subgroups of the extended Morava stabilizer groups : Sous-groupes finis des groupes de stabilisateur étendus de Morava.” 2012. Doctoral Dissertation, Université de Strasbourg. Accessed October 21, 2020. http://www.theses.fr/2012STRAD010.

MLA Handbook (7th Edition):

Bujard, Cédric. “Finite subgroups of the extended Morava stabilizer groups : Sous-groupes finis des groupes de stabilisateur étendus de Morava.” 2012. Web. 21 Oct 2020.

Vancouver:

Bujard C. Finite subgroups of the extended Morava stabilizer groups : Sous-groupes finis des groupes de stabilisateur étendus de Morava. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2012. [cited 2020 Oct 21]. Available from: http://www.theses.fr/2012STRAD010.

Council of Science Editors:

Bujard C. Finite subgroups of the extended Morava stabilizer groups : Sous-groupes finis des groupes de stabilisateur étendus de Morava. [Doctoral Dissertation]. Université de Strasbourg; 2012. Available from: http://www.theses.fr/2012STRAD010


Université Paris-Sud – Paris XI

21. Ding, Yiwen. Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global : P-adic modular forms over unitary Shimura curves and local-global compatibility.

Degree: Docteur es, Mathématiques, 2015, Université Paris-Sud – Paris XI

Cette thèse s'inscrit dans le cadre du programme de Langlands local p-adique. Soient L une extension finie de Qp, ρL une représentation p-adique de dimension… (more)

Subjects/Keywords: Programme de Langlands p-adique; Compatibilité local-global; Cohomologie étale complétée; \GL_2(L); Représentation cristalline; Courbe de Shimura unitaire; Représentation localement analytique; Variété de Hecke; Famille p-adique de représentations galoisiennes; Forme modulaire p-adique; Forme compagnon surconvergente; P-adic Langlands programme; Local-global compatibility; Completed étale cohomology; \GL_2(L); Crystalline representation; Unitary Shimura curve; Locally analytic representation; Eigenvariety; P-adic family of Galois representations; P-adic modular form; Overconvergent companion form

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ding, Y. (2015). Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global : P-adic modular forms over unitary Shimura curves and local-global compatibility. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2015PA112035

Chicago Manual of Style (16th Edition):

Ding, Yiwen. “Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global : P-adic modular forms over unitary Shimura curves and local-global compatibility.” 2015. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed October 21, 2020. http://www.theses.fr/2015PA112035.

MLA Handbook (7th Edition):

Ding, Yiwen. “Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global : P-adic modular forms over unitary Shimura curves and local-global compatibility.” 2015. Web. 21 Oct 2020.

Vancouver:

Ding Y. Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global : P-adic modular forms over unitary Shimura curves and local-global compatibility. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2015. [cited 2020 Oct 21]. Available from: http://www.theses.fr/2015PA112035.

Council of Science Editors:

Ding Y. Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global : P-adic modular forms over unitary Shimura curves and local-global compatibility. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2015. Available from: http://www.theses.fr/2015PA112035

.