Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Littlewood Paley theory). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


McGill University

1. Trudeau, Sidney. Littlewood-Paley sets and sums of permuted lacunary sequences.

Degree: PhD, Department of Mathematics and Statistics., 2009, McGill University

 Let {Ij} be an interval partition of the integers, f(x) a function on the circle group T and S(f) = (sum |f j|2)1/2 where fˆ… (more)

Subjects/Keywords: Littlewood-Paley theory.; Fourier series.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Trudeau, S. (2009). Littlewood-Paley sets and sums of permuted lacunary sequences. (Doctoral Dissertation). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile115883.pdf

Chicago Manual of Style (16th Edition):

Trudeau, Sidney. “Littlewood-Paley sets and sums of permuted lacunary sequences.” 2009. Doctoral Dissertation, McGill University. Accessed December 08, 2019. http://digitool.library.mcgill.ca/thesisfile115883.pdf.

MLA Handbook (7th Edition):

Trudeau, Sidney. “Littlewood-Paley sets and sums of permuted lacunary sequences.” 2009. Web. 08 Dec 2019.

Vancouver:

Trudeau S. Littlewood-Paley sets and sums of permuted lacunary sequences. [Internet] [Doctoral dissertation]. McGill University; 2009. [cited 2019 Dec 08]. Available from: http://digitool.library.mcgill.ca/thesisfile115883.pdf.

Council of Science Editors:

Trudeau S. Littlewood-Paley sets and sums of permuted lacunary sequences. [Doctoral Dissertation]. McGill University; 2009. Available from: http://digitool.library.mcgill.ca/thesisfile115883.pdf


Wayne State University

2. Xiao, Yayuan. Discrete Littlewood-Paley-Stein Theory And Wolff Potentials On Homogeneous Spaces And Multi-Parameter Hardy Spaces.

Degree: PhD, Mathematics, 2013, Wayne State University

  This dissertation consists of two parts: In part I, We establish a new atomic decomposition of the multi-parameter Hardy spaces of homogeneous type and… (more)

Subjects/Keywords: Atomic decomposition; Discrete Littlewood-Paley-Stein theory; Hardy space; Multi-parameter; Wolff potential; Zygmund dilation; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xiao, Y. (2013). Discrete Littlewood-Paley-Stein Theory And Wolff Potentials On Homogeneous Spaces And Multi-Parameter Hardy Spaces. (Doctoral Dissertation). Wayne State University. Retrieved from https://digitalcommons.wayne.edu/oa_dissertations/811

Chicago Manual of Style (16th Edition):

Xiao, Yayuan. “Discrete Littlewood-Paley-Stein Theory And Wolff Potentials On Homogeneous Spaces And Multi-Parameter Hardy Spaces.” 2013. Doctoral Dissertation, Wayne State University. Accessed December 08, 2019. https://digitalcommons.wayne.edu/oa_dissertations/811.

MLA Handbook (7th Edition):

Xiao, Yayuan. “Discrete Littlewood-Paley-Stein Theory And Wolff Potentials On Homogeneous Spaces And Multi-Parameter Hardy Spaces.” 2013. Web. 08 Dec 2019.

Vancouver:

Xiao Y. Discrete Littlewood-Paley-Stein Theory And Wolff Potentials On Homogeneous Spaces And Multi-Parameter Hardy Spaces. [Internet] [Doctoral dissertation]. Wayne State University; 2013. [cited 2019 Dec 08]. Available from: https://digitalcommons.wayne.edu/oa_dissertations/811.

Council of Science Editors:

Xiao Y. Discrete Littlewood-Paley-Stein Theory And Wolff Potentials On Homogeneous Spaces And Multi-Parameter Hardy Spaces. [Doctoral Dissertation]. Wayne State University; 2013. Available from: https://digitalcommons.wayne.edu/oa_dissertations/811

3. Aldo Vieira Pinto. Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica.

Degree: 2010, Universidade Federal de São Carlos

 Neste trabalho, estudamos o resultado de boa-colocação para a equação da onda cúbica u +uR3 = 0 em R3, devido a H. Bahouri e J.-Y.… (more)

Subjects/Keywords: Decomposição de Bony; Estimativas de Strichartz; Equação da Onda Cúbica; Teoria de Littlewood-Paley; Bony, Decomposição; EQUACOES DIFERENCIAIS PARCIAIS; Estimativas de Strichartz; Equação da onda; Análise; Equações diferenciais parciais; Littlewood-Paley Theory; Strichartz estimates; Cubic Wave Equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pinto, A. V. (2010). Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica. (Thesis). Universidade Federal de São Carlos. Retrieved from http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo=3581

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pinto, Aldo Vieira. “Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica.” 2010. Thesis, Universidade Federal de São Carlos. Accessed December 08, 2019. http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo=3581.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pinto, Aldo Vieira. “Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica.” 2010. Web. 08 Dec 2019.

Vancouver:

Pinto AV. Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica. [Internet] [Thesis]. Universidade Federal de São Carlos; 2010. [cited 2019 Dec 08]. Available from: http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo=3581.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pinto AV. Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica. [Thesis]. Universidade Federal de São Carlos; 2010. Available from: http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo=3581

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. De Anna, Francesco. On the dynamics of some complex fluids : Sur la dynamique de quelques fluides complexes.

Degree: Docteur es, Mathématiques appliquées et calcul scientifique, 2016, Bordeaux

 Dans le cadre de cette thèse, on s'intéresse à la dynamique de quelques fluides complexes. D'une part on étudie la dynamique des cristaux liquides nématiques,… (more)

Subjects/Keywords: Cristaux liquides nématiques; Système Ericksen-Leslie; Système Beris-Edwards; Système Qian-Sheng; Système Boussinesq; Densité variable; Viscosité variable; Théorie de Littlewood- Paley; Espaces de Besov; Analyse harmonique; Inégalités logarithmiques; Régularisation du noyau de la chaleur; Nematic liquid crystal; Ericksen-Leslie system; Beris-Edwards system; Qian-Sheng system; Boussinesq system; Variable viscosity; Littlewood-Paley theory; Besov spaces; Harmonic analysis; Logarithmic estimates; Regularizing effects for the heat kernel

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

De Anna, F. (2016). On the dynamics of some complex fluids : Sur la dynamique de quelques fluides complexes. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2016BORD0051

Chicago Manual of Style (16th Edition):

De Anna, Francesco. “On the dynamics of some complex fluids : Sur la dynamique de quelques fluides complexes.” 2016. Doctoral Dissertation, Bordeaux. Accessed December 08, 2019. http://www.theses.fr/2016BORD0051.

MLA Handbook (7th Edition):

De Anna, Francesco. “On the dynamics of some complex fluids : Sur la dynamique de quelques fluides complexes.” 2016. Web. 08 Dec 2019.

Vancouver:

De Anna F. On the dynamics of some complex fluids : Sur la dynamique de quelques fluides complexes. [Internet] [Doctoral dissertation]. Bordeaux; 2016. [cited 2019 Dec 08]. Available from: http://www.theses.fr/2016BORD0051.

Council of Science Editors:

De Anna F. On the dynamics of some complex fluids : Sur la dynamique de quelques fluides complexes. [Doctoral Dissertation]. Bordeaux; 2016. Available from: http://www.theses.fr/2016BORD0051

5. Hart, Jarod Victor. Bilinear Littlewood-Paley Square Functions and Singular Integrals.

Degree: PhD, Mathematics, 2013, University of Kansas

 In this dissertation we further develop the bilinear theory of vector valued Calderoón-Zygmund operators, Littlewood-Paley square functions, and singu- lar integral operators. These areas of… (more)

Subjects/Keywords: Mathematics; Bilinear; Calder´on- Zygmund theory; Harmonic analysis; Littlewood-paley; Singular integral

…CalderónZygmund theory, Littlewood-Paley techniques, and bilinear singular integral operators. Bilinear… …setting. Even though Littlewood-Paley theory was originally developed by Stein through different… …years, there were many contributions to the study of Littlewood-Paley theory in this context… …modifications of the square functions. Over the years, Littlewood-Paley theory has developed into a… …74], among others. Even today, linear Littlewood-Paley theory is still an active area… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hart, J. V. (2013). Bilinear Littlewood-Paley Square Functions and Singular Integrals. (Doctoral Dissertation). University of Kansas. Retrieved from http://hdl.handle.net/1808/12329

Chicago Manual of Style (16th Edition):

Hart, Jarod Victor. “Bilinear Littlewood-Paley Square Functions and Singular Integrals.” 2013. Doctoral Dissertation, University of Kansas. Accessed December 08, 2019. http://hdl.handle.net/1808/12329.

MLA Handbook (7th Edition):

Hart, Jarod Victor. “Bilinear Littlewood-Paley Square Functions and Singular Integrals.” 2013. Web. 08 Dec 2019.

Vancouver:

Hart JV. Bilinear Littlewood-Paley Square Functions and Singular Integrals. [Internet] [Doctoral dissertation]. University of Kansas; 2013. [cited 2019 Dec 08]. Available from: http://hdl.handle.net/1808/12329.

Council of Science Editors:

Hart JV. Bilinear Littlewood-Paley Square Functions and Singular Integrals. [Doctoral Dissertation]. University of Kansas; 2013. Available from: http://hdl.handle.net/1808/12329

.