Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Littlewood Paley decomposition). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Fanelli, Francesco. Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficients : Analyse mathématique des modèles de fluids non-homogènes et d'équations hyperboliques à coefficients peu réguliers.

Degree: Docteur es, Mathématiques, 2012, Université Paris-Est

Cette thèse est consacrée à l'étude des opérateurs strictement hyperboliques à coefficients peu réguliers, aussi bien qu'à l'étude du système d'Euler incompressible à densité variable.… (more)

Subjects/Keywords: Équations d'Euler; Calcul paradifferentiel; Décomposition de Littlewood-Paley; Densité variable; Fluide incompressible; Espaces de Besov; Euler equation; Paradifferential calculus; Littlewood-Paley decomposition; Variable density; Incompressible fluid; Besov spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fanelli, F. (2012). Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficients : Analyse mathématique des modèles de fluids non-homogènes et d'équations hyperboliques à coefficients peu réguliers. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2012PEST1077

Chicago Manual of Style (16th Edition):

Fanelli, Francesco. “Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficients : Analyse mathématique des modèles de fluids non-homogènes et d'équations hyperboliques à coefficients peu réguliers.” 2012. Doctoral Dissertation, Université Paris-Est. Accessed January 19, 2020. http://www.theses.fr/2012PEST1077.

MLA Handbook (7th Edition):

Fanelli, Francesco. “Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficients : Analyse mathématique des modèles de fluids non-homogènes et d'équations hyperboliques à coefficients peu réguliers.” 2012. Web. 19 Jan 2020.

Vancouver:

Fanelli F. Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficients : Analyse mathématique des modèles de fluids non-homogènes et d'équations hyperboliques à coefficients peu réguliers. [Internet] [Doctoral dissertation]. Université Paris-Est; 2012. [cited 2020 Jan 19]. Available from: http://www.theses.fr/2012PEST1077.

Council of Science Editors:

Fanelli F. Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficients : Analyse mathématique des modèles de fluids non-homogènes et d'équations hyperboliques à coefficients peu réguliers. [Doctoral Dissertation]. Université Paris-Est; 2012. Available from: http://www.theses.fr/2012PEST1077


Wayne State University

2. Xiao, Yayuan. Discrete Littlewood-Paley-Stein Theory And Wolff Potentials On Homogeneous Spaces And Multi-Parameter Hardy Spaces.

Degree: PhD, Mathematics, 2013, Wayne State University

  This dissertation consists of two parts: In part I, We establish a new atomic decomposition of the multi-parameter Hardy spaces of homogeneous type and… (more)

Subjects/Keywords: Atomic decomposition; Discrete Littlewood-Paley-Stein theory; Hardy space; Multi-parameter; Wolff potential; Zygmund dilation; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xiao, Y. (2013). Discrete Littlewood-Paley-Stein Theory And Wolff Potentials On Homogeneous Spaces And Multi-Parameter Hardy Spaces. (Doctoral Dissertation). Wayne State University. Retrieved from https://digitalcommons.wayne.edu/oa_dissertations/811

Chicago Manual of Style (16th Edition):

Xiao, Yayuan. “Discrete Littlewood-Paley-Stein Theory And Wolff Potentials On Homogeneous Spaces And Multi-Parameter Hardy Spaces.” 2013. Doctoral Dissertation, Wayne State University. Accessed January 19, 2020. https://digitalcommons.wayne.edu/oa_dissertations/811.

MLA Handbook (7th Edition):

Xiao, Yayuan. “Discrete Littlewood-Paley-Stein Theory And Wolff Potentials On Homogeneous Spaces And Multi-Parameter Hardy Spaces.” 2013. Web. 19 Jan 2020.

Vancouver:

Xiao Y. Discrete Littlewood-Paley-Stein Theory And Wolff Potentials On Homogeneous Spaces And Multi-Parameter Hardy Spaces. [Internet] [Doctoral dissertation]. Wayne State University; 2013. [cited 2020 Jan 19]. Available from: https://digitalcommons.wayne.edu/oa_dissertations/811.

Council of Science Editors:

Xiao Y. Discrete Littlewood-Paley-Stein Theory And Wolff Potentials On Homogeneous Spaces And Multi-Parameter Hardy Spaces. [Doctoral Dissertation]. Wayne State University; 2013. Available from: https://digitalcommons.wayne.edu/oa_dissertations/811

3. Rômel da Rosa da Silva. Decomposição de Bony e um teorema de regularidade para soluções do sistema de Navier-Stokes.

Degree: 2008, Universidade Federal de São Carlos

Nosso objetivo neste texto, é apresentar a decomposição J.-M. Bony para o produto de distribuições temperadas e um teorema de regularidade, devido a J.-Y. Chemin e N. Lerner, para soluções do sistema de Navier-Stokes. Advisors/Committee Members: José Ruidival Soares dos Santos Filho.

Subjects/Keywords: Equações diferenciais parciais; Decomposição Bony; Navier-Stokes, equação de; Espaço de Besov; EQUACOES DIFERENCIAIS PARCIAIS; Mathematical Analysis; Littlewood-Paley s decomposition; Bony s decomposition; Navier-Stokes s system

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Silva, R. d. R. d. (2008). Decomposição de Bony e um teorema de regularidade para soluções do sistema de Navier-Stokes. (Thesis). Universidade Federal de São Carlos. Retrieved from http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo=1836

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Silva, Rômel da Rosa da. “Decomposição de Bony e um teorema de regularidade para soluções do sistema de Navier-Stokes.” 2008. Thesis, Universidade Federal de São Carlos. Accessed January 19, 2020. http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo=1836.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Silva, Rômel da Rosa da. “Decomposição de Bony e um teorema de regularidade para soluções do sistema de Navier-Stokes.” 2008. Web. 19 Jan 2020.

Vancouver:

Silva RdRd. Decomposição de Bony e um teorema de regularidade para soluções do sistema de Navier-Stokes. [Internet] [Thesis]. Universidade Federal de São Carlos; 2008. [cited 2020 Jan 19]. Available from: http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo=1836.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Silva RdRd. Decomposição de Bony e um teorema de regularidade para soluções do sistema de Navier-Stokes. [Thesis]. Universidade Federal de São Carlos; 2008. Available from: http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo=1836

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Marcos Alves de Farias. O problema de Cauchy para a equação da onda cúbica.

Degree: 2011, Universidade Federal de São Carlos

Neste trabalho estudamos um resultado de boa colocação global para a equação da onda cúbica δ(t2)u-∆u+U3=0 em RR3, no qual os dados de Cauchy estão… (more)

Subjects/Keywords: Análise harmônica; Teoria das distribuições - análise funcional; MATEMATICA; Cubic wave equation; Homogeneous littlewood-paley decomposition; Strichartz estimates; Mollified energy; Equações diferenciais parciais

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Farias, M. A. d. (2011). O problema de Cauchy para a equação da onda cúbica. (Thesis). Universidade Federal de São Carlos. Retrieved from http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo=4361

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Farias, Marcos Alves de. “O problema de Cauchy para a equação da onda cúbica.” 2011. Thesis, Universidade Federal de São Carlos. Accessed January 19, 2020. http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo=4361.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Farias, Marcos Alves de. “O problema de Cauchy para a equação da onda cúbica.” 2011. Web. 19 Jan 2020.

Vancouver:

Farias MAd. O problema de Cauchy para a equação da onda cúbica. [Internet] [Thesis]. Universidade Federal de São Carlos; 2011. [cited 2020 Jan 19]. Available from: http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo=4361.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Farias MAd. O problema de Cauchy para a equação da onda cúbica. [Thesis]. Universidade Federal de São Carlos; 2011. Available from: http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo=4361

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.