Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Lipschitz functions). Showing records 1 – 11 of 11 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


NSYSU

1. Liu, Chih-Neng. Lipschitz constant preserving maps.

Degree: PhD, Applied Mathematics, 2015, NSYSU

 Let (X, dX) and (Y, dY) be metric spaces. A function f : X â R is called Lipschitz if there exists a real number… (more)

Subjects/Keywords: Locally Lipschitz functions; Local Lipschitz constants; Lipschitz functions; Weighted composition operators; Lipschitz constants; Flat manifolds; Pointwise Lipschitz constants

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, C. (2015). Lipschitz constant preserving maps. (Doctoral Dissertation). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0705115-095101

Chicago Manual of Style (16th Edition):

Liu, Chih-Neng. “Lipschitz constant preserving maps.” 2015. Doctoral Dissertation, NSYSU. Accessed March 01, 2021. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0705115-095101.

MLA Handbook (7th Edition):

Liu, Chih-Neng. “Lipschitz constant preserving maps.” 2015. Web. 01 Mar 2021.

Vancouver:

Liu C. Lipschitz constant preserving maps. [Internet] [Doctoral dissertation]. NSYSU; 2015. [cited 2021 Mar 01]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0705115-095101.

Council of Science Editors:

Liu C. Lipschitz constant preserving maps. [Doctoral Dissertation]. NSYSU; 2015. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0705115-095101


Universitat Politècnica de València

2. Aliaga Varea, Ramón José. Geometry and structure of Lipschitz-free spaces and their biduals .

Degree: 2021, Universitat Politècnica de València

 [ES] Los espacios libres Lipschitz F(M) son linearizaciones canónicas de espacios métricos M cualesquiera. Más concretamente, F(M) es el único espacio de Banach que contiene… (more)

Subjects/Keywords: Funciones lipschitzianas; Punto extremo; Espacios libres Lipschitz; Espacio Lipschitz; Radon measure; Lipschitz space; Lipschitz-free space; Integral representation; Extreme point; Real-valued Lipschitz functions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Aliaga Varea, R. J. (2021). Geometry and structure of Lipschitz-free spaces and their biduals . (Doctoral Dissertation). Universitat Politècnica de València. Retrieved from http://hdl.handle.net/10251/159256

Chicago Manual of Style (16th Edition):

Aliaga Varea, Ramón José. “Geometry and structure of Lipschitz-free spaces and their biduals .” 2021. Doctoral Dissertation, Universitat Politècnica de València. Accessed March 01, 2021. http://hdl.handle.net/10251/159256.

MLA Handbook (7th Edition):

Aliaga Varea, Ramón José. “Geometry and structure of Lipschitz-free spaces and their biduals .” 2021. Web. 01 Mar 2021.

Vancouver:

Aliaga Varea RJ. Geometry and structure of Lipschitz-free spaces and their biduals . [Internet] [Doctoral dissertation]. Universitat Politècnica de València; 2021. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/10251/159256.

Council of Science Editors:

Aliaga Varea RJ. Geometry and structure of Lipschitz-free spaces and their biduals . [Doctoral Dissertation]. Universitat Politècnica de València; 2021. Available from: http://hdl.handle.net/10251/159256


University of Missouri – Columbia

3. Wuertz, Michael. The implicit function theorem for Lipschitz functions and applications.

Degree: 2008, University of Missouri – Columbia

 The subject matter of this thesis is the classical Implicit Function Theorem and its generalizations. Dictated by practical applications, it is of interest to relax… (more)

Subjects/Keywords: Lipschitz spaces; Implicit functions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wuertz, M. (2008). The implicit function theorem for Lipschitz functions and applications. (Thesis). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/5744

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wuertz, Michael. “The implicit function theorem for Lipschitz functions and applications.” 2008. Thesis, University of Missouri – Columbia. Accessed March 01, 2021. http://hdl.handle.net/10355/5744.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wuertz, Michael. “The implicit function theorem for Lipschitz functions and applications.” 2008. Web. 01 Mar 2021.

Vancouver:

Wuertz M. The implicit function theorem for Lipschitz functions and applications. [Internet] [Thesis]. University of Missouri – Columbia; 2008. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/10355/5744.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wuertz M. The implicit function theorem for Lipschitz functions and applications. [Thesis]. University of Missouri – Columbia; 2008. Available from: http://hdl.handle.net/10355/5744

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Missouri – Columbia

4. Brigham, Dan, 1987-. Quasi-metric geometry : smoothness and convergence results.

Degree: 2011, University of Missouri – Columbia

 This thesis has two distinct yet related parts, the first pertaining to geometry on quasi-metric spaces with emphasis on the Hausdorff outer-measure, the natural extension… (more)

Subjects/Keywords: Quasi-metric spaces; Hausdorff measures; Hausdorff compactifications; Lipschitz spaces; Lyapunov functions; H-functions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brigham, Dan, 1. (2011). Quasi-metric geometry : smoothness and convergence results. (Thesis). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/11158

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Brigham, Dan, 1987-. “Quasi-metric geometry : smoothness and convergence results.” 2011. Thesis, University of Missouri – Columbia. Accessed March 01, 2021. http://hdl.handle.net/10355/11158.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Brigham, Dan, 1987-. “Quasi-metric geometry : smoothness and convergence results.” 2011. Web. 01 Mar 2021.

Vancouver:

Brigham, Dan 1. Quasi-metric geometry : smoothness and convergence results. [Internet] [Thesis]. University of Missouri – Columbia; 2011. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/10355/11158.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Brigham, Dan 1. Quasi-metric geometry : smoothness and convergence results. [Thesis]. University of Missouri – Columbia; 2011. Available from: http://hdl.handle.net/10355/11158

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Vilnius University

5. Dzindzalieta, Dainius. Tiksliosios Bernulio tikimybių nelygybės.

Degree: PhD, Mathematics, 2014, Vilnius University

Disertacijos darbo tikslas – įrodyti universalias tiksliąsias nelygybes atsitiktinių dydžių funkcijų nukrypimo nuo vidurkio tikimybėms. Universalios nelygybės pažymi, kad jos yra tolygios pagal tam tikras… (more)

Subjects/Keywords: Nepriklausomi atsitiktiniai dydžiai; Uodegų tikimybės; Lipšico funkcijos; Martingalai; Ekstremali kombinatorika; Random variables; Tail probabilities; Martingales; Lipschitz functions; Extremal combinatorics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dzindzalieta, D. (2014). Tiksliosios Bernulio tikimybių nelygybės. (Doctoral Dissertation). Vilnius University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20140512_103759-89684 ;

Chicago Manual of Style (16th Edition):

Dzindzalieta, Dainius. “Tiksliosios Bernulio tikimybių nelygybės.” 2014. Doctoral Dissertation, Vilnius University. Accessed March 01, 2021. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20140512_103759-89684 ;.

MLA Handbook (7th Edition):

Dzindzalieta, Dainius. “Tiksliosios Bernulio tikimybių nelygybės.” 2014. Web. 01 Mar 2021.

Vancouver:

Dzindzalieta D. Tiksliosios Bernulio tikimybių nelygybės. [Internet] [Doctoral dissertation]. Vilnius University; 2014. [cited 2021 Mar 01]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20140512_103759-89684 ;.

Council of Science Editors:

Dzindzalieta D. Tiksliosios Bernulio tikimybių nelygybės. [Doctoral Dissertation]. Vilnius University; 2014. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20140512_103759-89684 ;


Vilnius University

6. Dzindzalieta, Dainius. Tight Bernoulli tail probability bounds.

Degree: Dissertation, Mathematics, 2014, Vilnius University

The purpose of the dissertation is to prove universal tight bounds for deviation from the mean probability inequalities for functions of random variables. Universal bounds… (more)

Subjects/Keywords: Random variables; Tail probabilities; Martingales; Lipschitz functions; Extremal combinatorics; Nepriklausomi atsitiktiniai dydžiai; Uodegų tikimybės; Lipšico funkcijos; Martingalai; Ekstremali kombinatorika

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dzindzalieta, D. (2014). Tight Bernoulli tail probability bounds. (Doctoral Dissertation). Vilnius University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20140512_103743-38560 ;

Chicago Manual of Style (16th Edition):

Dzindzalieta, Dainius. “Tight Bernoulli tail probability bounds.” 2014. Doctoral Dissertation, Vilnius University. Accessed March 01, 2021. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20140512_103743-38560 ;.

MLA Handbook (7th Edition):

Dzindzalieta, Dainius. “Tight Bernoulli tail probability bounds.” 2014. Web. 01 Mar 2021.

Vancouver:

Dzindzalieta D. Tight Bernoulli tail probability bounds. [Internet] [Doctoral dissertation]. Vilnius University; 2014. [cited 2021 Mar 01]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20140512_103743-38560 ;.

Council of Science Editors:

Dzindzalieta D. Tight Bernoulli tail probability bounds. [Doctoral Dissertation]. Vilnius University; 2014. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20140512_103743-38560 ;


University of Missouri – Columbia

7. Mayboroda, Svitlana. The poisson problem on Lipschitz domains.

Degree: PhD, 2005, University of Missouri – Columbia

 The aim of this work is to describe the sharp ranges of indices, for which the Poisson problem for Laplacian with Dirichlet or Neumann boundary… (more)

Subjects/Keywords: Poisson's equation; Lipschitz spaces; Functions of complex variables

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mayboroda, S. (2005). The poisson problem on Lipschitz domains. (Doctoral Dissertation). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/4133

Chicago Manual of Style (16th Edition):

Mayboroda, Svitlana. “The poisson problem on Lipschitz domains.” 2005. Doctoral Dissertation, University of Missouri – Columbia. Accessed March 01, 2021. http://hdl.handle.net/10355/4133.

MLA Handbook (7th Edition):

Mayboroda, Svitlana. “The poisson problem on Lipschitz domains.” 2005. Web. 01 Mar 2021.

Vancouver:

Mayboroda S. The poisson problem on Lipschitz domains. [Internet] [Doctoral dissertation]. University of Missouri – Columbia; 2005. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/10355/4133.

Council of Science Editors:

Mayboroda S. The poisson problem on Lipschitz domains. [Doctoral Dissertation]. University of Missouri – Columbia; 2005. Available from: http://hdl.handle.net/10355/4133

8. FENG XIANZHE. NON-LINEAR BISEPARATING OPERATORS ON VECTOR-VALUED FUNCTION SPACES.

Degree: 2018, National University of Singapore

Subjects/Keywords: Nonlinear biseparating operators; continuous functions; uniformly continuous functions; Lipschitz functions; differentiable functions; Banach spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

XIANZHE, F. (2018). NON-LINEAR BISEPARATING OPERATORS ON VECTOR-VALUED FUNCTION SPACES. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/144266

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

XIANZHE, FENG. “NON-LINEAR BISEPARATING OPERATORS ON VECTOR-VALUED FUNCTION SPACES.” 2018. Thesis, National University of Singapore. Accessed March 01, 2021. http://scholarbank.nus.edu.sg/handle/10635/144266.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

XIANZHE, FENG. “NON-LINEAR BISEPARATING OPERATORS ON VECTOR-VALUED FUNCTION SPACES.” 2018. Web. 01 Mar 2021.

Vancouver:

XIANZHE F. NON-LINEAR BISEPARATING OPERATORS ON VECTOR-VALUED FUNCTION SPACES. [Internet] [Thesis]. National University of Singapore; 2018. [cited 2021 Mar 01]. Available from: http://scholarbank.nus.edu.sg/handle/10635/144266.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

XIANZHE F. NON-LINEAR BISEPARATING OPERATORS ON VECTOR-VALUED FUNCTION SPACES. [Thesis]. National University of Singapore; 2018. Available from: http://scholarbank.nus.edu.sg/handle/10635/144266

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Michigan

9. Keith, Stephen John. A differentiable structure for metric measure spaces.

Degree: PhD, Pure Sciences, 2002, University of Michigan

 The main result of this dissertation is the provision of conditions, weaker than those of Cheeger [Che99], under which a metric measure space admits a… (more)

Subjects/Keywords: Differentiable Structure; Homogeneous Space; Homogeneous Spaces; Lipschitz Functions; Metric Measure Spaces; Poincare Inequality; Rademacher's Differentiability Theorem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Keith, S. J. (2002). A differentiable structure for metric measure spaces. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/129745

Chicago Manual of Style (16th Edition):

Keith, Stephen John. “A differentiable structure for metric measure spaces.” 2002. Doctoral Dissertation, University of Michigan. Accessed March 01, 2021. http://hdl.handle.net/2027.42/129745.

MLA Handbook (7th Edition):

Keith, Stephen John. “A differentiable structure for metric measure spaces.” 2002. Web. 01 Mar 2021.

Vancouver:

Keith SJ. A differentiable structure for metric measure spaces. [Internet] [Doctoral dissertation]. University of Michigan; 2002. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/2027.42/129745.

Council of Science Editors:

Keith SJ. A differentiable structure for metric measure spaces. [Doctoral Dissertation]. University of Michigan; 2002. Available from: http://hdl.handle.net/2027.42/129745


University of Michigan

10. Nolder, Craig Allen. A Privalov And A Hardy-littlewood Theorem For Harmonic Functions And Quasiregular Mappings (lipschitz Classes, Lp-norm, Carleson Measure).

Degree: PhD, Pure Sciences, 1985, University of Michigan

 If f = u + iv is analytic in the unit disk //D of the complex plane, then the conjugate harmonic components, u and v,… (more)

Subjects/Keywords: Carleson; Classes; Functions; Hardy; Harmonic; Lipschitz; Littlewood; Lp; Mappings; Measure; Norm; Privalov; Quasiregular; Theorem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nolder, C. A. (1985). A Privalov And A Hardy-littlewood Theorem For Harmonic Functions And Quasiregular Mappings (lipschitz Classes, Lp-norm, Carleson Measure). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/127766

Chicago Manual of Style (16th Edition):

Nolder, Craig Allen. “A Privalov And A Hardy-littlewood Theorem For Harmonic Functions And Quasiregular Mappings (lipschitz Classes, Lp-norm, Carleson Measure).” 1985. Doctoral Dissertation, University of Michigan. Accessed March 01, 2021. http://hdl.handle.net/2027.42/127766.

MLA Handbook (7th Edition):

Nolder, Craig Allen. “A Privalov And A Hardy-littlewood Theorem For Harmonic Functions And Quasiregular Mappings (lipschitz Classes, Lp-norm, Carleson Measure).” 1985. Web. 01 Mar 2021.

Vancouver:

Nolder CA. A Privalov And A Hardy-littlewood Theorem For Harmonic Functions And Quasiregular Mappings (lipschitz Classes, Lp-norm, Carleson Measure). [Internet] [Doctoral dissertation]. University of Michigan; 1985. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/2027.42/127766.

Council of Science Editors:

Nolder CA. A Privalov And A Hardy-littlewood Theorem For Harmonic Functions And Quasiregular Mappings (lipschitz Classes, Lp-norm, Carleson Measure). [Doctoral Dissertation]. University of Michigan; 1985. Available from: http://hdl.handle.net/2027.42/127766


University of Victoria

11. Siefken, Jason. Ergodic optimization in the shift.

Degree: Dept. of Mathematics and Statistics, 2010, University of Victoria

 Ergodic optimization is the study of which ergodic measures maximize the integral of a particular function. For sufficiently regular functions, e.g. Lipschitz/Holder continuous functions, it… (more)

Subjects/Keywords: Ergodic optimization; Lipschitz functions; shift; UVic Subject Index::Sciences and Engineering::Mathematics::Pure mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Siefken, J. (2010). Ergodic optimization in the shift. (Masters Thesis). University of Victoria. Retrieved from http://hdl.handle.net/1828/2922

Chicago Manual of Style (16th Edition):

Siefken, Jason. “Ergodic optimization in the shift.” 2010. Masters Thesis, University of Victoria. Accessed March 01, 2021. http://hdl.handle.net/1828/2922.

MLA Handbook (7th Edition):

Siefken, Jason. “Ergodic optimization in the shift.” 2010. Web. 01 Mar 2021.

Vancouver:

Siefken J. Ergodic optimization in the shift. [Internet] [Masters thesis]. University of Victoria; 2010. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1828/2922.

Council of Science Editors:

Siefken J. Ergodic optimization in the shift. [Masters Thesis]. University of Victoria; 2010. Available from: http://hdl.handle.net/1828/2922

.