Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Lie algebroid)`

.
Showing records 1 – 4 of
4 total matches.

▼ Search Limiters

Penn State University

1.
Ji, Xiang.
Deformation Problems In *Lie* Algebroids And Extended Poisson Geometry.

Degree: 2013, Penn State University

URL: https://submit-etda.libraries.psu.edu/catalog/18974

► Deformation problem is an interesting problem in mathematical physics. In this paper, we discuss the deformation problems of *Lie* algebroids, *Lie* subalgebroids and coisotropic submanifolds…
(more)

Subjects/Keywords: Lie algebroid; Lie subalgebroid; extended Poisson manifold; coisotropic submanifold; deformation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ji, X. (2013). Deformation Problems In Lie Algebroids And Extended Poisson Geometry. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/18974

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ji, Xiang. “Deformation Problems In Lie Algebroids And Extended Poisson Geometry.” 2013. Thesis, Penn State University. Accessed September 19, 2020. https://submit-etda.libraries.psu.edu/catalog/18974.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ji, Xiang. “Deformation Problems In Lie Algebroids And Extended Poisson Geometry.” 2013. Web. 19 Sep 2020.

Vancouver:

Ji X. Deformation Problems In Lie Algebroids And Extended Poisson Geometry. [Internet] [Thesis]. Penn State University; 2013. [cited 2020 Sep 19]. Available from: https://submit-etda.libraries.psu.edu/catalog/18974.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ji X. Deformation Problems In Lie Algebroids And Extended Poisson Geometry. [Thesis]. Penn State University; 2013. Available from: https://submit-etda.libraries.psu.edu/catalog/18974

Not specified: Masters Thesis or Doctoral Dissertation

Penn State University

2. Liao, Hsuan Yi. FORMALITY AND KONTSEVICH–DUFLO THEOREM.

Degree: 2018, Penn State University

URL: https://submit-etda.libraries.psu.edu/catalog/15471hul170

► Kontsevich’s formality theorem states that there exists an L-infinity quasi-isomorphism from the dgla of polyvector fields on a smooth manifold M to the dgla of…
(more)

Subjects/Keywords: deformation quantization; differential geometry; mathematical physics; formality theorem; Duflo theorem; Todd class; Lie algebroid

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Liao, H. Y. (2018). FORMALITY AND KONTSEVICH–DUFLO THEOREM. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/15471hul170

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Liao, Hsuan Yi. “FORMALITY AND KONTSEVICH–DUFLO THEOREM.” 2018. Thesis, Penn State University. Accessed September 19, 2020. https://submit-etda.libraries.psu.edu/catalog/15471hul170.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Liao, Hsuan Yi. “FORMALITY AND KONTSEVICH–DUFLO THEOREM.” 2018. Web. 19 Sep 2020.

Vancouver:

Liao HY. FORMALITY AND KONTSEVICH–DUFLO THEOREM. [Internet] [Thesis]. Penn State University; 2018. [cited 2020 Sep 19]. Available from: https://submit-etda.libraries.psu.edu/catalog/15471hul170.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Liao HY. FORMALITY AND KONTSEVICH–DUFLO THEOREM. [Thesis]. Penn State University; 2018. Available from: https://submit-etda.libraries.psu.edu/catalog/15471hul170

Not specified: Masters Thesis or Doctoral Dissertation

Universidade Estadual de Campinas

3.
Struchiner, Ivan.
O algebroide classificante de uma estrutura geometrica: The classifying *Lie* *algebroid* of a geometric structure.

Degree: 2009, Universidade Estadual de Campinas

URL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306518

► Abstract: The purpose of this thesis is to show how to use *Lie* algebroids and *Lie* groupoids to get a better understanding of problems concerning…
(more)

Subjects/Keywords: Lie, Algebróide de; Lie, Simetrias de; Geometria diferencial; Lie algebroid; Lie symmetries; Differential geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Struchiner, I. (2009). O algebroide classificante de uma estrutura geometrica: The classifying Lie algebroid of a geometric structure. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306518

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Struchiner, Ivan. “O algebroide classificante de uma estrutura geometrica: The classifying Lie algebroid of a geometric structure.” 2009. Thesis, Universidade Estadual de Campinas. Accessed September 19, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306518.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Struchiner, Ivan. “O algebroide classificante de uma estrutura geometrica: The classifying Lie algebroid of a geometric structure.” 2009. Web. 19 Sep 2020.

Vancouver:

Struchiner I. O algebroide classificante de uma estrutura geometrica: The classifying Lie algebroid of a geometric structure. [Internet] [Thesis]. Universidade Estadual de Campinas; 2009. [cited 2020 Sep 19]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306518.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Struchiner I. O algebroide classificante de uma estrutura geometrica: The classifying Lie algebroid of a geometric structure. [Thesis]. Universidade Estadual de Campinas; 2009. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306518

Not specified: Masters Thesis or Doctoral Dissertation

University of Oxford

4. Rubio, Roberto. Generalized geometry of type Bn.

Degree: PhD, 2014, University of Oxford

URL: http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803

► Generalized geometry of type B_{n} is the study of geometric structures in T+T<sup>*</sup>+1, the sum of the tangent and cotangent bundles of a manifold and…
(more)

Subjects/Keywords: 516; Mathematics; 3-manifold; almost contact geometry; complex geometry; deformation theory; G2(2)-structure; generalized complex geometry; twisted cohomology; generalized geometry; Lie algebroid

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rubio, R. (2014). Generalized geometry of type Bn. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803

Chicago Manual of Style (16^{th} Edition):

Rubio, Roberto. “Generalized geometry of type Bn.” 2014. Doctoral Dissertation, University of Oxford. Accessed September 19, 2020. http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803.

MLA Handbook (7^{th} Edition):

Rubio, Roberto. “Generalized geometry of type Bn.” 2014. Web. 19 Sep 2020.

Vancouver:

Rubio R. Generalized geometry of type Bn. [Internet] [Doctoral dissertation]. University of Oxford; 2014. [cited 2020 Sep 19]. Available from: http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803.

Council of Science Editors:

Rubio R. Generalized geometry of type Bn. [Doctoral Dissertation]. University of Oxford; 2014. Available from: http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803