Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Lie algebras). Showing records 1 – 30 of 182 total matches.

[1] [2] [3] [4] [5] [6] [7]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Languages

Country

▼ Search Limiters


University of Alberta

1. Yahorau, Uladzimir. Conjugacy problems for "Cartan" subalgebras in infinite dimensional Lie algebras.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2014, University of Alberta

 Chevalley's theorem on the conjugacy of split Cartan subalgebras is one of the cornerstones of the theory of simple finite dimensional Lie algebras over a… (more)

Subjects/Keywords: Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yahorau, U. (2014). Conjugacy problems for "Cartan" subalgebras in infinite dimensional Lie algebras. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/s1784m28s

Chicago Manual of Style (16th Edition):

Yahorau, Uladzimir. “Conjugacy problems for "Cartan" subalgebras in infinite dimensional Lie algebras.” 2014. Doctoral Dissertation, University of Alberta. Accessed September 20, 2020. https://era.library.ualberta.ca/files/s1784m28s.

MLA Handbook (7th Edition):

Yahorau, Uladzimir. “Conjugacy problems for "Cartan" subalgebras in infinite dimensional Lie algebras.” 2014. Web. 20 Sep 2020.

Vancouver:

Yahorau U. Conjugacy problems for "Cartan" subalgebras in infinite dimensional Lie algebras. [Internet] [Doctoral dissertation]. University of Alberta; 2014. [cited 2020 Sep 20]. Available from: https://era.library.ualberta.ca/files/s1784m28s.

Council of Science Editors:

Yahorau U. Conjugacy problems for "Cartan" subalgebras in infinite dimensional Lie algebras. [Doctoral Dissertation]. University of Alberta; 2014. Available from: https://era.library.ualberta.ca/files/s1784m28s


University of Ghana

2. Dzikpor, D.N. Lie Groups, Lie Algebras and some applications in Physics .

Degree: 2019, University of Ghana

 Given a Lie algebra g and its complexi_cation gC; the representations of gC are isomorphic to those of g. Moreover, if g is the corresponding… (more)

Subjects/Keywords: Lie Groups; Lie Algebras; Physics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dzikpor, D. N. (2019). Lie Groups, Lie Algebras and some applications in Physics . (Masters Thesis). University of Ghana. Retrieved from http://ugspace.ug.edu.gh/handle/123456789/34762

Chicago Manual of Style (16th Edition):

Dzikpor, D N. “Lie Groups, Lie Algebras and some applications in Physics .” 2019. Masters Thesis, University of Ghana. Accessed September 20, 2020. http://ugspace.ug.edu.gh/handle/123456789/34762.

MLA Handbook (7th Edition):

Dzikpor, D N. “Lie Groups, Lie Algebras and some applications in Physics .” 2019. Web. 20 Sep 2020.

Vancouver:

Dzikpor DN. Lie Groups, Lie Algebras and some applications in Physics . [Internet] [Masters thesis]. University of Ghana; 2019. [cited 2020 Sep 20]. Available from: http://ugspace.ug.edu.gh/handle/123456789/34762.

Council of Science Editors:

Dzikpor DN. Lie Groups, Lie Algebras and some applications in Physics . [Masters Thesis]. University of Ghana; 2019. Available from: http://ugspace.ug.edu.gh/handle/123456789/34762


Utah State University

3. Graner, Nicholas. Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula.

Degree: MS, Mathematics and Statistics, 2018, Utah State University

Lie Groups occur in math and physics as representations of continuous symmetries and are often described in terms of their Lie Algebra. This thesis… (more)

Subjects/Keywords: Lie groups; Lie algebras; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Graner, N. (2018). Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula. (Masters Thesis). Utah State University. Retrieved from https://digitalcommons.usu.edu/etd/7232

Chicago Manual of Style (16th Edition):

Graner, Nicholas. “Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula.” 2018. Masters Thesis, Utah State University. Accessed September 20, 2020. https://digitalcommons.usu.edu/etd/7232.

MLA Handbook (7th Edition):

Graner, Nicholas. “Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula.” 2018. Web. 20 Sep 2020.

Vancouver:

Graner N. Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula. [Internet] [Masters thesis]. Utah State University; 2018. [cited 2020 Sep 20]. Available from: https://digitalcommons.usu.edu/etd/7232.

Council of Science Editors:

Graner N. Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula. [Masters Thesis]. Utah State University; 2018. Available from: https://digitalcommons.usu.edu/etd/7232

4. Muthiah, Dinakar. Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics.

Degree: PhD, Mathematics, 2013, Brown University

 The theory of Mirkovic-Vilonen (MV) cycles and polytopes associated to a complex reductive group G has proven to be a rich source of structures related… (more)

Subjects/Keywords: affine Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Muthiah, D. (2013). Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:320617/

Chicago Manual of Style (16th Edition):

Muthiah, Dinakar. “Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics.” 2013. Doctoral Dissertation, Brown University. Accessed September 20, 2020. https://repository.library.brown.edu/studio/item/bdr:320617/.

MLA Handbook (7th Edition):

Muthiah, Dinakar. “Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics.” 2013. Web. 20 Sep 2020.

Vancouver:

Muthiah D. Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics. [Internet] [Doctoral dissertation]. Brown University; 2013. [cited 2020 Sep 20]. Available from: https://repository.library.brown.edu/studio/item/bdr:320617/.

Council of Science Editors:

Muthiah D. Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics. [Doctoral Dissertation]. Brown University; 2013. Available from: https://repository.library.brown.edu/studio/item/bdr:320617/


Rutgers University

5. Ginory, Alejandro, 1983-. Two problems in representation theory: affine Lie algebras and algebraic combinatorics.

Degree: PhD, Affine Lie algebras, 2019, Rutgers University

In this dissertation, we investigate two topics with roots in representation theory. The first topic is about twisted affine Kac-Moody algebras and vector spaces spanned… (more)

Subjects/Keywords: Mathematics; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ginory, Alejandro, 1. (2019). Two problems in representation theory: affine Lie algebras and algebraic combinatorics. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/60636/

Chicago Manual of Style (16th Edition):

Ginory, Alejandro, 1983-. “Two problems in representation theory: affine Lie algebras and algebraic combinatorics.” 2019. Doctoral Dissertation, Rutgers University. Accessed September 20, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/60636/.

MLA Handbook (7th Edition):

Ginory, Alejandro, 1983-. “Two problems in representation theory: affine Lie algebras and algebraic combinatorics.” 2019. Web. 20 Sep 2020.

Vancouver:

Ginory, Alejandro 1. Two problems in representation theory: affine Lie algebras and algebraic combinatorics. [Internet] [Doctoral dissertation]. Rutgers University; 2019. [cited 2020 Sep 20]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/60636/.

Council of Science Editors:

Ginory, Alejandro 1. Two problems in representation theory: affine Lie algebras and algebraic combinatorics. [Doctoral Dissertation]. Rutgers University; 2019. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/60636/


Tartu University

6. Lätt, Priit. Induced 3-Lie superalgebras and their applications in superspace .

Degree: 2020, Tartu University

 Käesoleva doktoritöö eesmärk on uurida selliste n-Lie superalgerbrate omadusi, mis on konstrueeritud kasutades (n-1)-Lie superalgebra aluseks olevat (n-1)-aarset tehet, seda eriti juhul n=3. Tavalise Lie(more)

Subjects/Keywords: superalgebras; Lie' algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lätt, P. (2020). Induced 3-Lie superalgebras and their applications in superspace . (Thesis). Tartu University. Retrieved from http://hdl.handle.net/10062/68425

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lätt, Priit. “Induced 3-Lie superalgebras and their applications in superspace .” 2020. Thesis, Tartu University. Accessed September 20, 2020. http://hdl.handle.net/10062/68425.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lätt, Priit. “Induced 3-Lie superalgebras and their applications in superspace .” 2020. Web. 20 Sep 2020.

Vancouver:

Lätt P. Induced 3-Lie superalgebras and their applications in superspace . [Internet] [Thesis]. Tartu University; 2020. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10062/68425.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lätt P. Induced 3-Lie superalgebras and their applications in superspace . [Thesis]. Tartu University; 2020. Available from: http://hdl.handle.net/10062/68425

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

7. Calvert, Kieran. Variants of Schur-Weyl duality and Dirac cohomology.

Degree: PhD, 2019, University of Oxford

 This thesis is divided into the following three parts. <b>Chapter 1: Realising the projective representations of Sn</b> We derive an explicit description of the genuine… (more)

Subjects/Keywords: Lie Groups; Lie algebras; Representations of groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Calvert, K. (2019). Variants of Schur-Weyl duality and Dirac cohomology. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:29e57863-76c7-4f1d-83e2-fa5080a44824 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.786251

Chicago Manual of Style (16th Edition):

Calvert, Kieran. “Variants of Schur-Weyl duality and Dirac cohomology.” 2019. Doctoral Dissertation, University of Oxford. Accessed September 20, 2020. http://ora.ox.ac.uk/objects/uuid:29e57863-76c7-4f1d-83e2-fa5080a44824 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.786251.

MLA Handbook (7th Edition):

Calvert, Kieran. “Variants of Schur-Weyl duality and Dirac cohomology.” 2019. Web. 20 Sep 2020.

Vancouver:

Calvert K. Variants of Schur-Weyl duality and Dirac cohomology. [Internet] [Doctoral dissertation]. University of Oxford; 2019. [cited 2020 Sep 20]. Available from: http://ora.ox.ac.uk/objects/uuid:29e57863-76c7-4f1d-83e2-fa5080a44824 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.786251.

Council of Science Editors:

Calvert K. Variants of Schur-Weyl duality and Dirac cohomology. [Doctoral Dissertation]. University of Oxford; 2019. Available from: http://ora.ox.ac.uk/objects/uuid:29e57863-76c7-4f1d-83e2-fa5080a44824 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.786251


Latrobe University

8. Hinic Galic, Ana. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.

Degree: PhD, 2012, Latrobe University

Thesis (Ph.D.) - La Trobe University, 2012

Submission note: "A thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy… (more)

Subjects/Keywords: Lie algebras.; Geometry, Riemannian.; Nilpotent Lie groups.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hinic Galic, A. (2012). Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. (Doctoral Dissertation). Latrobe University. Retrieved from http://hdl.handle.net/1959.9/512945

Chicago Manual of Style (16th Edition):

Hinic Galic, Ana. “Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.” 2012. Doctoral Dissertation, Latrobe University. Accessed September 20, 2020. http://hdl.handle.net/1959.9/512945.

MLA Handbook (7th Edition):

Hinic Galic, Ana. “Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.” 2012. Web. 20 Sep 2020.

Vancouver:

Hinic Galic A. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. [Internet] [Doctoral dissertation]. Latrobe University; 2012. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/1959.9/512945.

Council of Science Editors:

Hinic Galic A. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. [Doctoral Dissertation]. Latrobe University; 2012. Available from: http://hdl.handle.net/1959.9/512945


University of California – Riverside

9. Shereen, Peri. A Steinberg Type Decomposition Theorem for Higher Level Demazure Modules.

Degree: Mathematics, 2015, University of California – Riverside

 We study Demazure modules which occur in a level ℓ irreducible integrable representation of an affine Lie algebra. We also assume that they are stable… (more)

Subjects/Keywords: Mathematics; Lie Algebras; Representation Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shereen, P. (2015). A Steinberg Type Decomposition Theorem for Higher Level Demazure Modules. (Thesis). University of California – Riverside. Retrieved from http://www.escholarship.org/uc/item/85r1r7nd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Shereen, Peri. “A Steinberg Type Decomposition Theorem for Higher Level Demazure Modules.” 2015. Thesis, University of California – Riverside. Accessed September 20, 2020. http://www.escholarship.org/uc/item/85r1r7nd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Shereen, Peri. “A Steinberg Type Decomposition Theorem for Higher Level Demazure Modules.” 2015. Web. 20 Sep 2020.

Vancouver:

Shereen P. A Steinberg Type Decomposition Theorem for Higher Level Demazure Modules. [Internet] [Thesis]. University of California – Riverside; 2015. [cited 2020 Sep 20]. Available from: http://www.escholarship.org/uc/item/85r1r7nd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shereen P. A Steinberg Type Decomposition Theorem for Higher Level Demazure Modules. [Thesis]. University of California – Riverside; 2015. Available from: http://www.escholarship.org/uc/item/85r1r7nd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Alberta

10. Skierski, Maciej. Solutions of the 3-dimensional time-dependent Landau-Ginzburg equation for real order parameters obtained by symmetry reduction.

Degree: PhD, Department of Physics, 1991, University of Alberta

Subjects/Keywords: Lie algebras.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Skierski, M. (1991). Solutions of the 3-dimensional time-dependent Landau-Ginzburg equation for real order parameters obtained by symmetry reduction. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/8g84mp31v

Chicago Manual of Style (16th Edition):

Skierski, Maciej. “Solutions of the 3-dimensional time-dependent Landau-Ginzburg equation for real order parameters obtained by symmetry reduction.” 1991. Doctoral Dissertation, University of Alberta. Accessed September 20, 2020. https://era.library.ualberta.ca/files/8g84mp31v.

MLA Handbook (7th Edition):

Skierski, Maciej. “Solutions of the 3-dimensional time-dependent Landau-Ginzburg equation for real order parameters obtained by symmetry reduction.” 1991. Web. 20 Sep 2020.

Vancouver:

Skierski M. Solutions of the 3-dimensional time-dependent Landau-Ginzburg equation for real order parameters obtained by symmetry reduction. [Internet] [Doctoral dissertation]. University of Alberta; 1991. [cited 2020 Sep 20]. Available from: https://era.library.ualberta.ca/files/8g84mp31v.

Council of Science Editors:

Skierski M. Solutions of the 3-dimensional time-dependent Landau-Ginzburg equation for real order parameters obtained by symmetry reduction. [Doctoral Dissertation]. University of Alberta; 1991. Available from: https://era.library.ualberta.ca/files/8g84mp31v


University of Johannesburg

11. Euler, Norbert. Continuous symmetries, lie algebras and differential equations.

Degree: 2014, University of Johannesburg

D.Sc. (Mathematics)

In this thesis aspects of continuous symmetries of differential equations are studied. In particular the following aspects are studied in detail: Lie algebras,… (more)

Subjects/Keywords: Differential equations, Nonlinear; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Euler, N. (2014). Continuous symmetries, lie algebras and differential equations. (Thesis). University of Johannesburg. Retrieved from http://hdl.handle.net/10210/9131

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Euler, Norbert. “Continuous symmetries, lie algebras and differential equations.” 2014. Thesis, University of Johannesburg. Accessed September 20, 2020. http://hdl.handle.net/10210/9131.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Euler, Norbert. “Continuous symmetries, lie algebras and differential equations.” 2014. Web. 20 Sep 2020.

Vancouver:

Euler N. Continuous symmetries, lie algebras and differential equations. [Internet] [Thesis]. University of Johannesburg; 2014. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10210/9131.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Euler N. Continuous symmetries, lie algebras and differential equations. [Thesis]. University of Johannesburg; 2014. Available from: http://hdl.handle.net/10210/9131

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Rutgers University

12. Nandi, Debajyoti, 1980-. Partition identities arising from the standard A(2)2-modules of level 4.

Degree: PhD, Mathematics, 2014, Rutgers University

In this dissertation, we propose a set of new partition identities, arising from a twisted vertex operator construction of the level 4 standard modules for… (more)

Subjects/Keywords: Affine algebraic groups; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nandi, Debajyoti, 1. (2014). Partition identities arising from the standard A(2)2-modules of level 4. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/45379/

Chicago Manual of Style (16th Edition):

Nandi, Debajyoti, 1980-. “Partition identities arising from the standard A(2)2-modules of level 4.” 2014. Doctoral Dissertation, Rutgers University. Accessed September 20, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/45379/.

MLA Handbook (7th Edition):

Nandi, Debajyoti, 1980-. “Partition identities arising from the standard A(2)2-modules of level 4.” 2014. Web. 20 Sep 2020.

Vancouver:

Nandi, Debajyoti 1. Partition identities arising from the standard A(2)2-modules of level 4. [Internet] [Doctoral dissertation]. Rutgers University; 2014. [cited 2020 Sep 20]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45379/.

Council of Science Editors:

Nandi, Debajyoti 1. Partition identities arising from the standard A(2)2-modules of level 4. [Doctoral Dissertation]. Rutgers University; 2014. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45379/


Hong Kong University of Science and Technology

13. Hu, Mingan. Dihedral groups of Lie algebra automorphisms.

Degree: 2017, Hong Kong University of Science and Technology

 In this thesis, we consider a general construction of dihedral subgroups Dn, in the auto-morphism group of a complex finite-dimensional simple Lie algebra g. Our… (more)

Subjects/Keywords: Group theory ; Lie algebras ; Automorphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hu, M. (2017). Dihedral groups of Lie algebra automorphisms. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-89189 ; https://doi.org/10.14711/thesis-991012530268403412 ; http://repository.ust.hk/ir/bitstream/1783.1-89189/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hu, Mingan. “Dihedral groups of Lie algebra automorphisms.” 2017. Thesis, Hong Kong University of Science and Technology. Accessed September 20, 2020. http://repository.ust.hk/ir/Record/1783.1-89189 ; https://doi.org/10.14711/thesis-991012530268403412 ; http://repository.ust.hk/ir/bitstream/1783.1-89189/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hu, Mingan. “Dihedral groups of Lie algebra automorphisms.” 2017. Web. 20 Sep 2020.

Vancouver:

Hu M. Dihedral groups of Lie algebra automorphisms. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2017. [cited 2020 Sep 20]. Available from: http://repository.ust.hk/ir/Record/1783.1-89189 ; https://doi.org/10.14711/thesis-991012530268403412 ; http://repository.ust.hk/ir/bitstream/1783.1-89189/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hu M. Dihedral groups of Lie algebra automorphisms. [Thesis]. Hong Kong University of Science and Technology; 2017. Available from: http://repository.ust.hk/ir/Record/1783.1-89189 ; https://doi.org/10.14711/thesis-991012530268403412 ; http://repository.ust.hk/ir/bitstream/1783.1-89189/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

14. Myung, Hyo Chul, 1937-. Flexible lie-admissible algebras.

Degree: PhD, Department of Mathematics, 1970, Michigan State University

Subjects/Keywords: Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Myung, Hyo Chul, 1. (1970). Flexible lie-admissible algebras. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:41574

Chicago Manual of Style (16th Edition):

Myung, Hyo Chul, 1937-. “Flexible lie-admissible algebras.” 1970. Doctoral Dissertation, Michigan State University. Accessed September 20, 2020. http://etd.lib.msu.edu/islandora/object/etd:41574.

MLA Handbook (7th Edition):

Myung, Hyo Chul, 1937-. “Flexible lie-admissible algebras.” 1970. Web. 20 Sep 2020.

Vancouver:

Myung, Hyo Chul 1. Flexible lie-admissible algebras. [Internet] [Doctoral dissertation]. Michigan State University; 1970. [cited 2020 Sep 20]. Available from: http://etd.lib.msu.edu/islandora/object/etd:41574.

Council of Science Editors:

Myung, Hyo Chul 1. Flexible lie-admissible algebras. [Doctoral Dissertation]. Michigan State University; 1970. Available from: http://etd.lib.msu.edu/islandora/object/etd:41574


University of Notre Dame

15. Nicole Rae Kroeger. Coisotropic Subalgebras of Complex Semisimple Lie Bialgebras</h1>.

Degree: Mathematics, 2014, University of Notre Dame

  Given a complex, semisimple Lie biaglebra, we consider the coisotropic subalgebras–the Lie subalgebras of whose annihilator in the dual space is a Lie subalgebra… (more)

Subjects/Keywords: coisotropic subalgebras; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kroeger, N. R. (2014). Coisotropic Subalgebras of Complex Semisimple Lie Bialgebras</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/ks65h99214b

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kroeger, Nicole Rae. “Coisotropic Subalgebras of Complex Semisimple Lie Bialgebras</h1>.” 2014. Thesis, University of Notre Dame. Accessed September 20, 2020. https://curate.nd.edu/show/ks65h99214b.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kroeger, Nicole Rae. “Coisotropic Subalgebras of Complex Semisimple Lie Bialgebras</h1>.” 2014. Web. 20 Sep 2020.

Vancouver:

Kroeger NR. Coisotropic Subalgebras of Complex Semisimple Lie Bialgebras</h1>. [Internet] [Thesis]. University of Notre Dame; 2014. [cited 2020 Sep 20]. Available from: https://curate.nd.edu/show/ks65h99214b.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kroeger NR. Coisotropic Subalgebras of Complex Semisimple Lie Bialgebras</h1>. [Thesis]. University of Notre Dame; 2014. Available from: https://curate.nd.edu/show/ks65h99214b

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


East Carolina University

16. Clark, Erica. Lie Algebra Representation Theory.

Degree: MA, MA-Mathematics, 2019, East Carolina University

We give a brief introduction to structure theory of Lie algebras, followed by representation theory. This thesis culminates in the presentation of the Theorem of the Highest Weight for a Lie algebra. Advisors/Committee Members: Jantzen, Chris, 1962- (advisor).

Subjects/Keywords: representation theory; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Clark, E. (2019). Lie Algebra Representation Theory. (Masters Thesis). East Carolina University. Retrieved from http://hdl.handle.net/10342/7283

Chicago Manual of Style (16th Edition):

Clark, Erica. “Lie Algebra Representation Theory.” 2019. Masters Thesis, East Carolina University. Accessed September 20, 2020. http://hdl.handle.net/10342/7283.

MLA Handbook (7th Edition):

Clark, Erica. “Lie Algebra Representation Theory.” 2019. Web. 20 Sep 2020.

Vancouver:

Clark E. Lie Algebra Representation Theory. [Internet] [Masters thesis]. East Carolina University; 2019. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10342/7283.

Council of Science Editors:

Clark E. Lie Algebra Representation Theory. [Masters Thesis]. East Carolina University; 2019. Available from: http://hdl.handle.net/10342/7283

17. Shi, Song. Imaginary Whittaker Modules For Extended Affine Lie Algebras.

Degree: PhD, Mathematics & Statistics, 2016, York University

 We classify irreducible Whittaker modules for generalized Heisenberg Lie algebra t and irreducible Whittaker modules for Lie algebra t obtained by adjoining m degree derivations… (more)

Subjects/Keywords: Mathematics; Extended affine Lie algebras; Imaginary Whittaker modules; Generalized Heisenberg Lie algebra; Affine Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shi, S. (2016). Imaginary Whittaker Modules For Extended Affine Lie Algebras. (Doctoral Dissertation). York University. Retrieved from http://hdl.handle.net/10315/32319

Chicago Manual of Style (16th Edition):

Shi, Song. “Imaginary Whittaker Modules For Extended Affine Lie Algebras.” 2016. Doctoral Dissertation, York University. Accessed September 20, 2020. http://hdl.handle.net/10315/32319.

MLA Handbook (7th Edition):

Shi, Song. “Imaginary Whittaker Modules For Extended Affine Lie Algebras.” 2016. Web. 20 Sep 2020.

Vancouver:

Shi S. Imaginary Whittaker Modules For Extended Affine Lie Algebras. [Internet] [Doctoral dissertation]. York University; 2016. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10315/32319.

Council of Science Editors:

Shi S. Imaginary Whittaker Modules For Extended Affine Lie Algebras. [Doctoral Dissertation]. York University; 2016. Available from: http://hdl.handle.net/10315/32319


The Ohio State University

18. Wong, Kwok Chi. Restricted representations of classical lie algebras of prime characteristics.

Degree: PhD, Graduate School, 1973, The Ohio State University

Subjects/Keywords: Mathematics; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wong, K. C. (1973). Restricted representations of classical lie algebras of prime characteristics. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1486746723829676

Chicago Manual of Style (16th Edition):

Wong, Kwok Chi. “Restricted representations of classical lie algebras of prime characteristics.” 1973. Doctoral Dissertation, The Ohio State University. Accessed September 20, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486746723829676.

MLA Handbook (7th Edition):

Wong, Kwok Chi. “Restricted representations of classical lie algebras of prime characteristics.” 1973. Web. 20 Sep 2020.

Vancouver:

Wong KC. Restricted representations of classical lie algebras of prime characteristics. [Internet] [Doctoral dissertation]. The Ohio State University; 1973. [cited 2020 Sep 20]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486746723829676.

Council of Science Editors:

Wong KC. Restricted representations of classical lie algebras of prime characteristics. [Doctoral Dissertation]. The Ohio State University; 1973. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486746723829676


The Ohio State University

19. Ray, Phillip Paul. Classical Kac-Moody algebras in characteristic p.

Degree: PhD, Graduate School, 1987, The Ohio State University

Subjects/Keywords: Mathematics; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ray, P. P. (1987). Classical Kac-Moody algebras in characteristic p. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu148733599290202

Chicago Manual of Style (16th Edition):

Ray, Phillip Paul. “Classical Kac-Moody algebras in characteristic p.” 1987. Doctoral Dissertation, The Ohio State University. Accessed September 20, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu148733599290202.

MLA Handbook (7th Edition):

Ray, Phillip Paul. “Classical Kac-Moody algebras in characteristic p.” 1987. Web. 20 Sep 2020.

Vancouver:

Ray PP. Classical Kac-Moody algebras in characteristic p. [Internet] [Doctoral dissertation]. The Ohio State University; 1987. [cited 2020 Sep 20]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148733599290202.

Council of Science Editors:

Ray PP. Classical Kac-Moody algebras in characteristic p. [Doctoral Dissertation]. The Ohio State University; 1987. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148733599290202


The Ohio State University

20. Ku, Jong-Min. Irreducible subquotients of Verma modules over Kac-Moody Lie algebras.

Degree: PhD, Graduate School, 1984, The Ohio State University

Subjects/Keywords: Mathematics; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ku, J. (1984). Irreducible subquotients of Verma modules over Kac-Moody Lie algebras. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256380164851

Chicago Manual of Style (16th Edition):

Ku, Jong-Min. “Irreducible subquotients of Verma modules over Kac-Moody Lie algebras.” 1984. Doctoral Dissertation, The Ohio State University. Accessed September 20, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256380164851.

MLA Handbook (7th Edition):

Ku, Jong-Min. “Irreducible subquotients of Verma modules over Kac-Moody Lie algebras.” 1984. Web. 20 Sep 2020.

Vancouver:

Ku J. Irreducible subquotients of Verma modules over Kac-Moody Lie algebras. [Internet] [Doctoral dissertation]. The Ohio State University; 1984. [cited 2020 Sep 20]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256380164851.

Council of Science Editors:

Ku J. Irreducible subquotients of Verma modules over Kac-Moody Lie algebras. [Doctoral Dissertation]. The Ohio State University; 1984. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487256380164851


The Ohio State University

21. Singer, Phyllis E. Kac-Moody algebras with nonsymmetrizable cartan matrices .

Degree: PhD, Graduate School, 1985, The Ohio State University

Subjects/Keywords: Mathematics; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Singer, P. E. (1985). Kac-Moody algebras with nonsymmetrizable cartan matrices . (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1487259580264582

Chicago Manual of Style (16th Edition):

Singer, Phyllis E. “Kac-Moody algebras with nonsymmetrizable cartan matrices .” 1985. Doctoral Dissertation, The Ohio State University. Accessed September 20, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487259580264582.

MLA Handbook (7th Edition):

Singer, Phyllis E. “Kac-Moody algebras with nonsymmetrizable cartan matrices .” 1985. Web. 20 Sep 2020.

Vancouver:

Singer PE. Kac-Moody algebras with nonsymmetrizable cartan matrices . [Internet] [Doctoral dissertation]. The Ohio State University; 1985. [cited 2020 Sep 20]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487259580264582.

Council of Science Editors:

Singer PE. Kac-Moody algebras with nonsymmetrizable cartan matrices . [Doctoral Dissertation]. The Ohio State University; 1985. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487259580264582


University of Tasmania

22. Farmer, R J(Richard Joseph). Orthosymplectic superalgebras in mathematics and science.

Degree: 1984, University of Tasmania

 This thesis is devoted to the study of the representation theory of orthosymplectic superalgebras and their applications to physical theories. Techniques are developed to educe… (more)

Subjects/Keywords: Lie algebras; Algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Farmer, R. J. J. (1984). Orthosymplectic superalgebras in mathematics and science. (Thesis). University of Tasmania. Retrieved from https://eprints.utas.edu.au/19542/1/whole_FarmerRichardJoseph1985_thesis.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Farmer, R J(Richard Joseph). “Orthosymplectic superalgebras in mathematics and science.” 1984. Thesis, University of Tasmania. Accessed September 20, 2020. https://eprints.utas.edu.au/19542/1/whole_FarmerRichardJoseph1985_thesis.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Farmer, R J(Richard Joseph). “Orthosymplectic superalgebras in mathematics and science.” 1984. Web. 20 Sep 2020.

Vancouver:

Farmer RJJ. Orthosymplectic superalgebras in mathematics and science. [Internet] [Thesis]. University of Tasmania; 1984. [cited 2020 Sep 20]. Available from: https://eprints.utas.edu.au/19542/1/whole_FarmerRichardJoseph1985_thesis.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Farmer RJJ. Orthosymplectic superalgebras in mathematics and science. [Thesis]. University of Tasmania; 1984. Available from: https://eprints.utas.edu.au/19542/1/whole_FarmerRichardJoseph1985_thesis.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Johannesburg

23. Kohler, Astri. Conditional and approximate symmetries for nonlinear partial differential equations.

Degree: 2014, University of Johannesburg

M.Sc.

In this work we concentrate on two generalizations of Lie symmetries namely conditional symmetries in the form of Q-symmetries and approximate symmetries. The theorems… (more)

Subjects/Keywords: Lie algebras; Symmetry; Differential equations, Nonlinear

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kohler, A. (2014). Conditional and approximate symmetries for nonlinear partial differential equations. (Thesis). University of Johannesburg. Retrieved from http://hdl.handle.net/10210/11449

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kohler, Astri. “Conditional and approximate symmetries for nonlinear partial differential equations.” 2014. Thesis, University of Johannesburg. Accessed September 20, 2020. http://hdl.handle.net/10210/11449.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kohler, Astri. “Conditional and approximate symmetries for nonlinear partial differential equations.” 2014. Web. 20 Sep 2020.

Vancouver:

Kohler A. Conditional and approximate symmetries for nonlinear partial differential equations. [Internet] [Thesis]. University of Johannesburg; 2014. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10210/11449.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kohler A. Conditional and approximate symmetries for nonlinear partial differential equations. [Thesis]. University of Johannesburg; 2014. Available from: http://hdl.handle.net/10210/11449

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


North Carolina State University

24. Daily, Marilyn Elizabeth. L(Infinity) Structures on Spaces of Low Dimension.

Degree: PhD, Mathematics, 2004, North Carolina State University

 L(Infinity) structures are natural generalizations of Lie algebras, which need satisfy the standard graded Jacobi identity only up to homotopy. They have also been a… (more)

Subjects/Keywords: homotopy Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Daily, M. E. (2004). L(Infinity) Structures on Spaces of Low Dimension. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/5282

Chicago Manual of Style (16th Edition):

Daily, Marilyn Elizabeth. “L(Infinity) Structures on Spaces of Low Dimension.” 2004. Doctoral Dissertation, North Carolina State University. Accessed September 20, 2020. http://www.lib.ncsu.edu/resolver/1840.16/5282.

MLA Handbook (7th Edition):

Daily, Marilyn Elizabeth. “L(Infinity) Structures on Spaces of Low Dimension.” 2004. Web. 20 Sep 2020.

Vancouver:

Daily ME. L(Infinity) Structures on Spaces of Low Dimension. [Internet] [Doctoral dissertation]. North Carolina State University; 2004. [cited 2020 Sep 20]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5282.

Council of Science Editors:

Daily ME. L(Infinity) Structures on Spaces of Low Dimension. [Doctoral Dissertation]. North Carolina State University; 2004. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5282


North Carolina State University

25. Zack, Laurie Margaret. Nilpotent Lie Algebras with a Small Second Derived Quotient.

Degree: PhD, Mathematics, 2007, North Carolina State University

 There are many parallels between Groups and Lie algebras, and mathematicians have been studying the similarities between them for decades. Many times researchers can look… (more)

Subjects/Keywords: Nilpoten Lie Algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zack, L. M. (2007). Nilpotent Lie Algebras with a Small Second Derived Quotient. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/3856

Chicago Manual of Style (16th Edition):

Zack, Laurie Margaret. “Nilpotent Lie Algebras with a Small Second Derived Quotient.” 2007. Doctoral Dissertation, North Carolina State University. Accessed September 20, 2020. http://www.lib.ncsu.edu/resolver/1840.16/3856.

MLA Handbook (7th Edition):

Zack, Laurie Margaret. “Nilpotent Lie Algebras with a Small Second Derived Quotient.” 2007. Web. 20 Sep 2020.

Vancouver:

Zack LM. Nilpotent Lie Algebras with a Small Second Derived Quotient. [Internet] [Doctoral dissertation]. North Carolina State University; 2007. [cited 2020 Sep 20]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/3856.

Council of Science Editors:

Zack LM. Nilpotent Lie Algebras with a Small Second Derived Quotient. [Doctoral Dissertation]. North Carolina State University; 2007. Available from: http://www.lib.ncsu.edu/resolver/1840.16/3856


Halmstad University

26. Kobel, Conrad. On the Classification of Solvable Lie Algebras of Finite Dimension Containing an Abelian Ideal of Codimension One.

Degree: Computer and Electrical Engineering (IDE), 2008, Halmstad University

  In this work we investigate the structure of this type of Lie algebras over arbitrary fields F by constructing them from their Abelian ideal.… (more)

Subjects/Keywords: Classification; Lie Algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kobel, C. (2008). On the Classification of Solvable Lie Algebras of Finite Dimension Containing an Abelian Ideal of Codimension One. (Thesis). Halmstad University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-1188

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kobel, Conrad. “On the Classification of Solvable Lie Algebras of Finite Dimension Containing an Abelian Ideal of Codimension One.” 2008. Thesis, Halmstad University. Accessed September 20, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-1188.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kobel, Conrad. “On the Classification of Solvable Lie Algebras of Finite Dimension Containing an Abelian Ideal of Codimension One.” 2008. Web. 20 Sep 2020.

Vancouver:

Kobel C. On the Classification of Solvable Lie Algebras of Finite Dimension Containing an Abelian Ideal of Codimension One. [Internet] [Thesis]. Halmstad University; 2008. [cited 2020 Sep 20]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-1188.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kobel C. On the Classification of Solvable Lie Algebras of Finite Dimension Containing an Abelian Ideal of Codimension One. [Thesis]. Halmstad University; 2008. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-1188

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Utah State University

27. Parker, Mychelle. Semisimple Subalgebras of Semisimple Lie Algebras.

Degree: MS, Mathematics and Statistics, 2020, Utah State University

  Let g be a Lie algebra. The subalgebra classification problem is to create a list of all subalgebras of g up to equivalence. The… (more)

Subjects/Keywords: Subalgebras; Lie Algebras; Maple; Semisimple; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Parker, M. (2020). Semisimple Subalgebras of Semisimple Lie Algebras. (Masters Thesis). Utah State University. Retrieved from https://digitalcommons.usu.edu/etd/7713

Chicago Manual of Style (16th Edition):

Parker, Mychelle. “Semisimple Subalgebras of Semisimple Lie Algebras.” 2020. Masters Thesis, Utah State University. Accessed September 20, 2020. https://digitalcommons.usu.edu/etd/7713.

MLA Handbook (7th Edition):

Parker, Mychelle. “Semisimple Subalgebras of Semisimple Lie Algebras.” 2020. Web. 20 Sep 2020.

Vancouver:

Parker M. Semisimple Subalgebras of Semisimple Lie Algebras. [Internet] [Masters thesis]. Utah State University; 2020. [cited 2020 Sep 20]. Available from: https://digitalcommons.usu.edu/etd/7713.

Council of Science Editors:

Parker M. Semisimple Subalgebras of Semisimple Lie Algebras. [Masters Thesis]. Utah State University; 2020. Available from: https://digitalcommons.usu.edu/etd/7713


Universidade Estadual de Campinas

28. Macedo, Tiago Rodrigues, 1985-. Characters and cohomology of modules for affine Kac-Moody algebras and generalizations : Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizações: Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizações.

Degree: 2013, Universidade Estadual de Campinas

 Abstract: In this thesis we consider two main problems. The first problem concerns extensions between simple modules for current algebras associated to complex, simple, finite-dimensional… (more)

Subjects/Keywords: Lie, Álgebra de; Álgebra homológica; Representações de álgebras; Lie algebras; Homological algebra; Representations of algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Macedo, Tiago Rodrigues, 1. (2013). Characters and cohomology of modules for affine Kac-Moody algebras and generalizations : Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizações: Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizações. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306998

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Macedo, Tiago Rodrigues, 1985-. “Characters and cohomology of modules for affine Kac-Moody algebras and generalizations : Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizações: Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizações.” 2013. Thesis, Universidade Estadual de Campinas. Accessed September 20, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306998.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Macedo, Tiago Rodrigues, 1985-. “Characters and cohomology of modules for affine Kac-Moody algebras and generalizations : Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizações: Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizações.” 2013. Web. 20 Sep 2020.

Vancouver:

Macedo, Tiago Rodrigues 1. Characters and cohomology of modules for affine Kac-Moody algebras and generalizations : Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizações: Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizações. [Internet] [Thesis]. Universidade Estadual de Campinas; 2013. [cited 2020 Sep 20]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306998.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Macedo, Tiago Rodrigues 1. Characters and cohomology of modules for affine Kac-Moody algebras and generalizations : Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizações: Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizações. [Thesis]. Universidade Estadual de Campinas; 2013. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306998

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade Federal de Viçosa

29. Victor do Nascimento Martins. Representações de peso máximo para álgebras de Lie correntes truncadas.

Degree: 2013, Universidade Federal de Viçosa

Neste trabalho estudamos representações de peso máxirno de álgebras de Lie correntes trancados. Estas álgebras são definidas corno o produto tensorial de urna álgebra de… (more)

Subjects/Keywords: ALGEBRA; Álgebras; Representações; Álgebras de Lie; Peso máximo; Algebras; Representations; Lie Algebras; Highest weight

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martins, V. d. N. (2013). Representações de peso máximo para álgebras de Lie correntes truncadas. (Thesis). Universidade Federal de Viçosa. Retrieved from http://www.tede.ufv.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=5615

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Martins, Victor do Nascimento. “Representações de peso máximo para álgebras de Lie correntes truncadas.” 2013. Thesis, Universidade Federal de Viçosa. Accessed September 20, 2020. http://www.tede.ufv.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=5615.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Martins, Victor do Nascimento. “Representações de peso máximo para álgebras de Lie correntes truncadas.” 2013. Web. 20 Sep 2020.

Vancouver:

Martins VdN. Representações de peso máximo para álgebras de Lie correntes truncadas. [Internet] [Thesis]. Universidade Federal de Viçosa; 2013. [cited 2020 Sep 20]. Available from: http://www.tede.ufv.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=5615.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Martins VdN. Representações de peso máximo para álgebras de Lie correntes truncadas. [Thesis]. Universidade Federal de Viçosa; 2013. Available from: http://www.tede.ufv.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=5615

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

30. Dahamna, Khaled. Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. : Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equations.

Degree: Docteur es, Mathématiques, 2011, Rouen, INSA

Dans cette thèse, on s'intéresse en premier aux problèmes sous-riemanniens sur un groupe de Lie nilpotent d'ordre 2. Dans un premier temps, on réalise la… (more)

Subjects/Keywords: Groupes de Lie; Algèbres de Lie; Contact; Classification; Sous-riemannien; Géodésiques; Intégrabilité; Lie groups; Lie algebras; Sub-Riemannian; Geodesics; Lie-Poisson

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dahamna, K. (2011). Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. : Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equations. (Doctoral Dissertation). Rouen, INSA. Retrieved from http://www.theses.fr/2011ISAM0012

Chicago Manual of Style (16th Edition):

Dahamna, Khaled. “Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. : Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equations.” 2011. Doctoral Dissertation, Rouen, INSA. Accessed September 20, 2020. http://www.theses.fr/2011ISAM0012.

MLA Handbook (7th Edition):

Dahamna, Khaled. “Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. : Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equations.” 2011. Web. 20 Sep 2020.

Vancouver:

Dahamna K. Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. : Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equations. [Internet] [Doctoral dissertation]. Rouen, INSA; 2011. [cited 2020 Sep 20]. Available from: http://www.theses.fr/2011ISAM0012.

Council of Science Editors:

Dahamna K. Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. : Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equations. [Doctoral Dissertation]. Rouen, INSA; 2011. Available from: http://www.theses.fr/2011ISAM0012

[1] [2] [3] [4] [5] [6] [7]

.